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Abstract
Temporomandibular disorder (TMD) is a musculoskeletal condition characterized by pain and reduced function in the temporomandibular 
joint and/or associated masticatory musculature. Prevalence in the United States is 5% and twice as high among women as men. We 
conducted a discovery genome-wide association study (GWAS) of TMD in 10,153 participants (769 cases, 9,384 controls) of the US 
Hispanic Community Health Study/Study of Latinos (HCHS/SOL). The most promising single-nucleotide polymorphisms (SNPs) were 
tested in meta-analysis of 4 independent cohorts. One replication cohort was from the United States, and the others were from 
Germany, Finland, and Brazil, totaling 1,911 TMD cases and 6,903 controls. A locus near the sarcoglycan alpha (SGCA), rs4794106, was 
suggestive in the discovery analysis (P = 2.6 × 106) and replicated (i.e., 1-tailed P = 0.016) in the Brazilian cohort. In the discovery cohort, 
sex-stratified analysis identified 2 additional genome-wide significant loci in females. One lying upstream of the relaxin/insulin-like family 
peptide receptor 2 (RXP2) (chromosome 13, rs60249166, odds ratio [OR] = 0.65, P = 3.6 × 10–8) was replicated among females in the 
meta-analysis (1-tailed P = 0.052). The other (chromosome 17, rs1531554, OR = 0.68, P = 2.9 × 10–8) was replicated among females 
(1-tailed P = 0.002), as well as replicated in meta-analysis of both sexes (1-tailed P = 0.021). A novel locus at genome-wide level of 
significance (rs73460075, OR = 0.56, P = 3.8 × 10–8) in the intron of the dystrophin gene DMD (X chromosome), and a suggestive locus 
on chromosome 7 (rs73271865, P = 2.9 × 10–7) upstream of the Sp4 Transcription Factor (SP4) gene were identified in the discovery 
cohort, but neither of these was replicated. The SGCA gene encodes SGCA, which is involved in the cellular structure of muscle fibers 
and, along with DMD, forms part of the dystrophin-glycoprotein complex. Functional annotation suggested that several of these variants 
reside in loci that regulate processes relevant to TMD pathobiologic processes.
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Introduction

Chronic pain is pain that persists beyond the normal healing 
time (Bonica 1953) and no longer serves the adaptive warning 
function of nociception. In the United States, 25 million adults 
report chronic pain on a daily basis (Nahin 2015), and preva-
lence of pain disorders increased, including facial pain, from 
1997–1999 to 2011–2013 (Case and Deaton 2015). Because 
mechanisms underlying chronic pain are largely unknown, 
treatment in general has low effectiveness. For example, man-
agement with nonsteroidal anti-inflammatory drugs has lim-
ited efficacy (da Costa et al. 2016).

Much of the burden of chronic pain is attributable to tension 
headache, low back pain, neck pain, fibromyalgia, and face 
pain. One such condition, temporomandibular disorder (TMD), 
is a musculoskeletal condition characterized by nonodonto-
genic pain and loss of function in the region innervated by the 

trigeminal nerve. The condition is diagnosed clinically by 
assessing palpation tenderness and functional pain in the mas-
seter and temporalis masticatory muscles (myalgia) and/or the 
temporomandibular joint/s (arthralgia). In contrast, most popula-
tion-based surveys classify the condition using screening ques-
tions. For example, in the 2014 US National Health Interview 
Survey, 4.6% of adults reported pain in the face or jaw in the 
previous 3 mo, with prevalence being higher among women 
(5.8%) than men (3.4%) (Blackwell et al. 2014).

TMD pain is not attributable to any known tissue damage, 
and its pathophysiology is unclear. Multiple clinical and bio-
psychosocial risk factors are implicated in its sensory and 
affective dimensions. Among these, anxiety, depression and 
somatosensory amplification (Von Korff and Simon 1996; 
Manfredini et al. 2004), and sleep disturbance (Edwards et al. 
2009; Smith et al. 2009) have undergone intensive investigation. 
Frequently, TMD overlaps with other pain disorders, including 
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headache, irritable bowel syndrome, low back pain, and 
chronic widespread pain. In a study that asked 200 women 
with persistent TMD to indicate the anatomic locations of their 
painful body sites on manikins, only 19% indicated sites lim-
ited to the trigeminal system (Türp et al. 1998). Of the 5% of 
adults with TMD pain in 2000 to 2006 National Health 
Interview Surveys, 53% reported concomitant headache/
migraine and 64% reported concomitant low back pain (Plesh 
et al. 2011). Prevalence was similar in Sweden, affecting 5% of 
women and 2% of men (Lövgren et al. 2016), but higher preva-
lence was reported in other population-based studies, including 
Germany (Gesch et al. 2004) and Italy (Ciancaglini and 
Radaelli 2001). Genetic studies are beginning to shed light 
onto the molecular basis for pain perception and to identify 
putative genes associated with various chronic pain disorders. 
Although these associations have not been consistently repli-
cated (Foulkes and Wood 2008; Mogil 2012), a genetic basis 
for TMD pain seems plausible. The largest twin study of 1,236 
monozygotic and 570 dizygotic female twin pairs estimated 
that the heredity of TMD pain was 27% (95% confidence limit 
[CL], 15 to 38) of the population variance in TMD pain (Plesh 
et al. 2012).

The discovery phase of this study sought to identify genetic 
loci associated with painful TMD via a genome-wide associa-
tion scan of 10,153 men and women of Hispanic/Latino ances-
try. The top signals were tested for replication in a meta-analysis 
using data from independent studies that conducted genome-
wide association scans of painful TMD. We also conducted 
functional genomic analysis of significant loci to assess how the 
associated alleles could modulate gene or protein function.

Materials and Methods

Ethical Statement

This study was conducted according to the principles expressed 
in the Declaration of Helsinki. This study was approved by the 
institutional review boards (IRBs) of the 4 Hispanic Community 
Health Study/Study of Latinos (HCHS/SOL) field centers 
affiliated with San Diego State University, Northwestern 
University in Chicago, Albert Einstein College of Medicine in 
the Bronx area of New York, and the University of Miami. The 
Orofacial Pain: Prospective Evaluation and Risk Assessment 
(OPPERA) study was approved by the IRBs at the 4 study sites 
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at the University of North Carolina at Chapel Hill, University 
of Maryland at Baltimore, University of Buffalo, University of 
Florida at Gainesville, and the data coordinating center Battelle 
Memorial Institute. The Study of Health in Pomerania (SHIP) 
was approved by the IRB affiliated with study at the University 
of Greifswald, Germany. The Northern Finland Birth Cohort 
(NFBC) study was approved by the human study ethical com-
mittees of the University of Oulu and the Northern Ostrobothnia 
Hospital District. The Brazilian study was approved by the 
IRB affiliated with the University of Campinas, Piracicaba, 
São Paulo in Brazil.

This study conformed with Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) guidelines 
for observational studies.

HCHS/SOL

The HCHS/SOL is a population-based cohort in the United 
States. Between 2008 and 2011, the HCHS/SOL enrolled 
16,415 study participants who were recruited as self-identified 
Hispanic/Latino participants aged 18–74 y at each of 4 US com-
munities located in the Bronx, New York; San Diego, California; 
Miami, Florida; and Chicago, Illinois. The stratified multistage 
area probability sample of the 4 study sites was purposefully 
designed to have high concentrations of specific Hispanic/
Latino backgrounds, allowing estimation of prevalence rates of 
diseases and risk factors for each background. Details of the 
design, recruitment, and implementation of HCHS/SOL have 
been published (Lavange et al. 2010; Sorlie et al. 2010). The 
present study reports cross-sectional analysis of baseline data.

TMD Phenotype in the Discovery  
HCHS/SOL Cohort

The HCHS/SOL Oral Health Questionnaire asked participants, 
“In the past 12 mo have you had or do you currently have pain 
in your face?” They were also asked, “In the past 12 mo have 
you had or do you currently have pain in your jaw joint?” 
Response options for both questions were yes/no. To be classi-
fied as a TMD case, participants had to report having had pain 
in both their face and in their jaw joint. The requirement of 
pain in both face and jaw joint is a stringent case definition. 
The rationale was to reduce misclassification bias due to other 
causes underlying one or the other pain locations and limit phe-
notypic heterogeneity that could arise from the presence of 
pain in either the muscle or the joint. However, no information 
was available on the duration of symptoms; thus, TMD cases 
may include individuals with acute (i.e., self-limited short-
term pain) or chronic (i.e., persistent) TMD.

Descriptive univariate multivariate analyses were con-
ducted on all 15,344 HCHS/SOL participants who provided 
information about TMD symptoms. These analyses were 
weighted to account for the stratified multistage area probabil-
ity sampling and to at least partially adjust for any bias effects 
due to differential nonresponse in the selected sample at the 

household and person levels. The adjusted weights were also 
trimmed to limit precision losses due to the variability of the 
adjusted weights and calibrated to the 2010 Census character-
istics by age, sex, and Hispanic background in each field site’s 
target population. All analyses also account for cluster sam-
pling and the use of stratification in sample selection.

Genome-Wide Association Study Quality Control

In the HCHS/SOL, DNA was extracted from blood samples 
according to standard protocols. Participants were genotyped 
on the HCHS Custom 15041502 B3 array (Illumina 
Omni2.5M+custom content). Quality control was conducted as 
previously described (Laurie et al. 2010; Conomos et al. 2016). 
In brief, DNA samples were checked for annotated versus 
genetic sex discrepancies, gross chromosomal anomalies, 
missing call rates, contaminations, and batch effects. Single-
nucleotide polymorphism (SNP) quality metrics included 
Illumina/LA Biomed assay failure indicator, missing call rates, 
deviation from Hardy-Weinberg equilibrium, Mendelian 
errors, and duplicate sample discordance. After quality control, 
there were about 1.7 million genotyped SNPs and 10.3 million 
imputed SNPs available for analysis.

Genotypes were prephased using SHAPEIT2 and imputed 
using IMPUTE2 into the 1000 Genomes Phase 1 reference 
panel. For imputed SNPs, we calculated the imputation quality 
scores “info” and “oevar” (ratio of observed to expected vari-
ance of imputed dosage) for each SNP and excluded SNPs with 
oevar <0.3 (Li et al. 2010). Finally, SNPs with 50 or fewer 
counts of the expected or effective number of copies (effN) of 
the minor allele were excluded from analysis (Cade et al. 
2016). A variant’s effN is approximately its minor allele count 
and was estimated as 2 × MAF × (1−MAF) × N × oevar, where 
MAF is the frequency of the minor allele, N is the number of 
participants, and oevar is set to 1 for genotyped variants. After 
quality control, there were about 1.4 million genotyped SNPs 
and 7 million imputed SNPs available for analysis.

Statistical Analysis in HCHS/SOL

To account for population structure and relatedness, we applied 
a logistic mixed model using GMMAT (Chen et al. 2016) to test 
for a SNP genotype and case versus control status. The model 
adjusted for fixed effects of age, sex, recruitment site, log sam-
pling weight, 5 principal components of ancestry, and 6 genetic 
analysis groups. We provide 95% CLs obtained from the replica-
tion cohort but not the discovery cohort; confidence intervals 
from the discovery study underestimate the plausible range of 
values for the measure of association (Zhong and Prentice 2008). 
We provide 95% CLs obtained from the replication cohort, as 
these are expected to have the correct 95% coverage, while the 
confidence limits from the discovery study underestimate the 
plausible range of values for the measure of association.

The genetic analysis groups are based on self-reported eth-
nicity and genetic similarity between participants, and it was 
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shown by Conomos et al. (2016) that it is advantageous to 
adjust for this variable, compared to self-reported ethnicity.

Meta-Analysis

We looked for replication of the top findings in 4 independent 
cohorts of examiner-determined TMD. Meta-analysis was used 
to combine the effects of all replication cohorts, where possible, 
as a primary test of replication. For SNPs that were not found in 
multiple replication cohorts, evidence from the single available 
cohort was used to assess replication. Random-effects meta-
analysis was performed using PLINK 1.07 software (Purcell et al. 
2007). Allelic odds ratios (ORs), 95% CLs, and P values were 
calculated separately for each genome-wide association study 
(GWAS) included in the meta-analysis. Study-specific SNP fil-
ters for imputation quality and minor allele frequency (MAF) 
were imposed, as described for each study. All SNPs passing 
quality assurance (QA)/quality control (QC) filters in at least 2 
cohorts were included in the meta-analysis. The forward strand 
allele (using reference assemble GRCh37) was used as the ref-
erence to standardize direction of ORs. As replication implicitly 
requires the same direction of effect as the original finding, P 
values were calculated for one-sided tests; P < 0.05 in a 1-sided 
test was considered the threshold for a replicated association. 
The Cochrane’s Q statistic P value was used as a measure of 
heterogeneity between studies (Xu et al. 2008).

Replication Cohorts

Details of the clinical examination used to determine TMD 
case classification are described in the online Appendix. Here 
we describe the TMD phenotype.

OPPERA

The OPPERA case-control cohort included 3,030 participants, 
of whom 999 were TMD cases and 2,031 TMD-free controls. 
Examiners determined classification of TMD according to the 
Research Diagnostic Criteria for TMD (Dworkin and LeResche 
1992). As reported previously (Ohrbach et al. 2011), cases met 
all 3 of the following criteria: 1) pain reported with sufficient 
frequency in the cheeks, jaw muscles, temples, or jaw joints 
during the preceding 6 mo; 2) pain reported in the examiner-
defined orofacial region for at least 5 d out of the prior 30 d; 
and 3) pain reported in at least 3 masticatory muscles or at least 

1 temporomandibular joint in response to palpation of the oro-
facial muscles or maneuver of the jaw.

SHIP

The German cohort was derived from a large cross-sectional 
survey of a representative sample of Pomerania, Germany, the 
SHIP study (Bernhardt et al. 2004). Participants were aged 20 to 
81 y and included 51% females. Participants reported symptoms 
by questionnaire regarding pain in the temporomandibular joint 
and facial muscles; presence and frequency of pain were 
assessed. During a clinical exam, the examiner inquired about 
pain or discomfort upon palpation of masticatory tissues, includ-
ing temporomandibular joints (dorsocranial and lateral) at 2 kg/cm2 
and masseter, temporalis, and medial pterygoid at 1 kg/cm2.

NFBC

The NFBC is a cohort study of all births in 1966 in the Oulu 
and Lapland provinces of northern Finland. An assessment for 
TMD was performed at the 46-y follow-up time point. 
Participants (52% female) reported symptoms by responding 
to a questionnaire with the following questions: 1) “Do you 
experience temple, temporomandibular joint, face, or jaw pain 
once a week or more often?” 2) “Do you experience pain once 
a week or more often while opening your mouth wide?” A 
clinical exam determined the presence of examiner-evoked 
pain in 3 or more temporomandibular muscles and/or joints.

Brazilian Cohort

The Brazilian participants were enrolled in a community-based 
case-control study in Piracicaba, São Paulo, Brazil, and included 
females between the ages of 18 and 44 y. Pain history was deter-
mined by asking participants the following question: “Have you 
had pain in your head, face, jaw, or in front of the ears in the last 
30 d?” The examiner manually palpated lateral and posterior 
temporomandibular joints (0.45 kg) and asked participants to 
report yes or no responses to the presence of pain.

Results
Descriptive univariate associations between study participant 
characteristics and TMD in the full HCHS/SOL cohort are 
reported in Appendix Table 1 along with recruitment 

Table 1. Summary of the Association Results of the Discovery GWAS in the HCHS/SOL.

Analysis Chromosome Position rsID Nearest Gene A1/A2 A1.freq n OR P Value

All 23 32283492 rs73460075 DMD G/C 0.964 10,142 0.563 3.79E-08
All 17 48238294 rs4794106 SGCA T/C 0.549 10,153 1.296 2.60E-06
All 7 21399327 rs73271865 SP4 C/T 0.959 10,153 0.559 2.91E-07
Females 13 32084901 rs60249166 RXP2 C/T 0.812 5,820 0.645 3.57E-08
Females 17 79380547 rs1531554 BAHCC1 T/C 0.476 5,820 0.678 2.92E-08

A1, effect allele, A1.freq, its frequency; A2, other allele; GWAS, genome-wide association study; HCHS/SOL, Hispanic Community Health Study/Study 
of Latinos; OR, odds ratio; rsID, reference SNP cluster ID.
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site-adjusted OR and 95% CL. Prevalence 
of TMD was 5.1%. Females had 2-fold 
greater odds of TMD than males. Odds of 
TMD declined after age 55 y. Adults who 
did not graduate high school had 20% 
greater odds of TMD than those with edu-
cation beyond high school education. 
Current smokers had 30% greater odds 
than lifetime nonsmokers. Depressive 
symptoms, anxiety, and poor mental and 
physical health were all associated with 
increased odds of TMD. Odds of TMD did 
not differ among Hispanic/Latino groups 
or differ on the basis of nativity, body mass 
index, or health insurance status.

The genome-wide scan of the HCHS/
SOL cohort used DNA from whole blood 
collected at baseline from 10,153 study par-
ticipants (769 TMD cases and 9,384 con-
trols). Excluded from analysis were 2,603 
participants with missing information for 
the TMD trait and an additional 63 partici-
pants with missing information for genetic 
subgroup. A quantile-quantile (Q-Q) plot 
analysis was conducted of the observed 
versus expected P values for all 8,441,843 
SNPs that passed quality filters (effN > 50 
in both cases and controls) and had a MAF 
of >3% (Appendix Fig. 1). Departures in 
the extreme tail of the distribution of test 
statistics are due to regions with a strong 
signal for association. The genomic infla-
tion factor (lambda statistic 1.007) shows 
no evidence of genomic inflation.

The discovery GWAS (Table 1) 
revealed a novel locus that exceeded the 
genome-wide threshold for significance on 
the X chromosome, rs73460075 (Manhattan 
plot, Fig. 1), OR = 0.56, P = 3.8 × 10–8. A 
regional association plot (Fig. 2) shows all 
SNPs in this region plotted according to 
the significance of their association with 
TMD and color-coded according to their 
linkage disequilibrium (r2) with the most 
significant SNP. This locus is rare in 
European populations (MAF < 0.001) but 
is common in African populations (MAF = 
0.146), according to the 1000 Genomes 
Project Phase 1. This SNP lies in the intron 
of the dystrophin-encoding DMD gene 
responsible for Duchenne muscular dystro-
phies. In addition, we found suggestive 
evidence of an association with TMD for 2 loci (Appendix Fig. 
4A, B). One was rs4794106 near the sarcoglycan alpha (SGCA) 
gene (OR = 1.30, P = 2.6 × 10–6), and the other was rs73271865 
upstream of the Sp4 transcription factor (SP4) gene (OR = 
0.56, P = 2.9 × 10–7) (Appendix Fig. 2A, B).

The Q-Q plots for sex-stratified genome-wide association 
analyses did not indicate any evidence for systematic increase 
in false positives as the observed distribution did not deviate 
from the expected distribution (Appendix Fig. 3). The sex-
stratified genome-wide association in females identified 2 

Figure 1. Manhattan plot showing association between the tested single-nucleotide 
polymorphisms and painful temporomandibular disorder for men and women combined in the 
Hispanic Community Health Study/Study of Latinos discovery genome-wide association analysis. 
The X axis shows the chromosomal position, and the Y axis shows the significance level with 
the horizontal dashed line indicating the genome-wide significance threshold (P = 5 × 10–8).

Figure 2. Regional association plot (LocusZoom) for the DMD-region (X chromosome) 
significantly associated with painful temporomandibular disorder in the Hispanic Community 
Health Study/Study of Latinos discovery cohort, men and women combined. The –log10 of  
P values are plotted against the single-nucleotide polymorphism (SNP) genomic position based 
on NCBI build 37; the estimated recombination rate from the 1000 Genomes Project is on 
the right vertical axis and is plotted in blue. SNPs are colored to reflect correlation with 
the most significant SNP. The inverted triangle indicates that the genome-wide significant 
SNP, rs73460075, was imputed. Other x-symbols denote imputed SNPs, and circles denote 
genotyped SNPs.
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additional significant loci shown in the Manhattan plot (Fig. 
3). The first, rs60249166 on chromosome 13 (P = 3.6 × 10–8), 
lies upstream of the RXP2 gene (relaxin/insulin-like family 
peptide receptor 2, Appendix Fig. 4A). The second, rs1531554 
on chromosome 17 (P = 2.9 × 10–8), is located in the first exon 
of the BAHCC1 gene (BAH domain and coiled-coil containing 
1, Appendix Fig. 4B).

The 3 SNPs associated with TMD among all adults 
(rs73460075, rs4794106, and rs73271865) and the 2 SNPs 
associated with TMD among females only (rs60249166, 
rs1531554) in the HCHS/SOL discovery phase were further 
evaluated in 4 independent cohorts (Appendix Table 2), as well 
as in a meta-analysis of their combined evidence of associa-
tions (Table 2). These independent studies are OPPERA (con-
ducted in the United States), SHIP (conducted in Germany), 
NFBC, and a case-control study of TMD conducted in 
Piracicaba, São Paulo, Brazil.

The SNPs in the DMD (rs73460075) and SP4 (rs73271865) 
loci were only available in the OPPERA cohort, and neither 
was significantly associated with TMD (P = 0.28 and 0.36, 
respectively). However, the SNP near the SGCA locus 
(rs4794106) was found in all 4 replication cohorts. Although 
the combined evidence from the 4 cohorts was not significant 
(meta-analysis P = 0.40), the association observed in the cohort 
from Brazil supported the original finding (P = 0.02). To 

confirm the female-specific findings, we 
used the results of sex-stratified analyses in 
the replication cohorts. There was evidence 
from the meta-analysis of 2 studies to sup-
port the association near the RXP2 locus 
(rs60249166, P = 0.05), although it was not 
significant in either the OPPERA study (P 
= 0.10) or SHIP study (P = 0.11) alone. 
Finally, the SNP in the BAHCC1 locus was 
significant in both OPPERA (P = 0.001) 
and SHIP (P = 0.03), as well as in the meta-
analysis of both cohorts (P = 0.002).

Discussion
This GWAS in the HCHS/SOL cohort 
revealed several promising association sig-
nals for painful TMD, with supporting evi-

dence from both biological relevance to nociception as well as 
replication in a meta-analysis of 4 independent cohorts. Two 
prominent associations (near DMD and SGCA) implicate the 
same dystrophin-glycoprotein pathway, suggesting that biome-
chanical properties of muscle fibers contribute to orofacial 
pain. Although we were not able to replicate the association at 
the DMD locus, the association at the SGCA locus was signifi-
cantly replicated in 1 independent cohort and was consistent in 
direction in the meta-analysis of 4 cohorts. The SGCA gene 
encodes SGCA, which is involved in the cellular structure of 
muscle fibers and, along with DMD, forms part of the dystrophin-
glycoprotein complex. Likewise, we were limited in our ability 
to confirm the suggestive association at the SP4 locus, but the 
effect direction was the same in the 1 independent cohort with 
data available. As SP4 is a transcription factor for the transient 
receptor potential vanilloid 1 (TRPV1), which is upregulated in 
chronic pain states, this finding should be investigated further. 
The biological relevance to nociception of the 2 loci discov-
ered in the female-only GWAS analyses (near RXP2 and 
BAHCC1) is not as easily explained, but these associations 
were consistently supported by the replication cohorts and may 
be important novel discoveries.

A potential limitation of the HCHS/SOL discovery cohort 
was its dependence on self-reported facial pain, which is 
known to have good specificity (95%) but poor sensitivity 

Figure 3. Manhattan plot showing the chromosomal position and –log10 (P value) of the 
single-nucleotide polymorphisms (SNPs) among females in the Hispanic Community Health 
Study/Study of Latinos discovery genome-wide association analysis (P < 5 × 10−8 indicated by 
the dotted black line). Two SNPs exceed the genome-wide significance threshold.

Table 2. Summary of the Association Results of the Meta-analysis.

Included rsID Chromosome Base Pair Closest Gene

Coded/
Noncoded 

Allele

No. of 
Studies in 

Meta-analysis
OR  

(95% CL) P Q H

All rs73460075 23 32283492 DMD G/C 1 NA NA NA NA
All rs4794106 17 48238294 SGCA T/C 4 1.03  

(0.94 to 1.11)
0.357 0.085 54.74

All rs73271865 7 21399327 SP4 C/T 1 NA NA NA NA
Females rs60249166 13 32084901 RXP2 C/T 2 0.87  

(0.74 to 1.03)
0.052 0.854 0

Females rs1531554 17 79380547 BAHCC1 T/C 2 0.83  
(0.73 to 0.95)

0.002 0.869 0

CL, confidence limits; OR, odds ratio from random-effects meta-analysis; H, index of heterogeneity; NA, not applicable; Q, Cochrane’s Q statistic.
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(43%) compared to examiner-determined TMD (Janal et al. 
2008).

However, in most situations, misclassification that is non-
differential with respect to the genotype will bias estimates 
toward the null, assuming that the misclassification of TMD 
pain is independent of other errors. Based on this assumption, 
our estimates of association in the discovery cohort are conser-
vative and reduce the risk of false-positive genetic associa-
tions. A related point is that 3 of the 4 replication cohorts used 
examiner-determined case classifications for TMD, which 
means that data from those studies do not satisfy requirements 
for “exact replication” of the HCHS/SOL discoveries (Ioannidis 
et al. 2009). This is a common problem for GWAS replication 
studies where at least some variation in phenotype definitions 
has been described as “unavoidable” (Kraft et al. 2009). The 
replication studies also varied in sampling methods, study pop-
ulation, and demographic characteristics. We therefore inter-
pret the current findings of consistency among cohorts as 
evidence that the associations are robust and generalizable to 
different study populations.

Overall, we discovered and replicated SNP associations 
with TMD in multiple loci. For 2 loci, we propose plausible 
mechanism of regulation and potential causal SNPs via com-
prehensive functional annotation of processes relevant to TMD 
pathology.
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