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Abstract: In this paper, an approach to biometric verification based on human body communication
(HBC) is presented for wearable devices. For this purpose, the transmission gain S21 of volunteer’s
forearm is measured by vector network analyzer (VNA). Specifically, in order to determine the chosen
frequency for biometric verification, 1800 groups of data are acquired from 10 volunteers in the
frequency range 0.3 MHz to 1500 MHz, and each group includes 1601 sample data. In addition,
to achieve the rapid verification, 30 groups of data for each volunteer are acquired at the chosen
frequency, and each group contains only 21 sample data. Furthermore, a threshold-adaptive template
matching (TATM) algorithm based on weighted Euclidean distance is proposed for rapid verification
in this work. The results indicate that the chosen frequency for biometric verification is from 650 MHz
to 750 MHz. The false acceptance rate (FAR) and false rejection rate (FRR) based on TATM are
approximately 5.79% and 6.74%, respectively. In contrast, the FAR and FRR were 4.17% and 37.5%,
3.37% and 33.33%, and 3.80% and 34.17% using K-nearest neighbor (KNN) classification, support
vector machines (SVM), and naive Bayesian method (NBM) classification, respectively. In addition,
the running time of TATM is 0.019 s, whereas the running times of KNN, SVM and NBM are
0.310 s, 0.0385 s, and 0.168 s, respectively. Therefore, TATM is suggested to be appropriate for rapid
verification use in wearable devices.

Keywords: biometric verification; human body communication; threshold-adaptive template
matching; weighted Euclidean distance; transmission gain S21; wearable device

1. Introduction

Body sensor networks (BSNs), which also referred to as body area networks (BANs), are
wireless networks for interconnecting wearable nodes/devices centered on an individual person’s
workspace [1,2]. With the rapid development of microprocessor technologies and wireless
communication, BSNs have emerged as a revolutionary technology and have demonstrated great
potential in healthcare monitoring (blood pressure monitoring [3], blood glucose monitoring [4], etc.),
emotion recognition (negative emotional state of fear [5], etc.), sport performance monitoring [6],
physical/virtual social interactions [7], and so on [8–10]. However, because wearable devices usually
carry user’s personal information, information leakage from wearable devices in BSNs is regarded as a
challenge, which may bring about an immeasurable loss [11]. Therefore, the information security of
wearable devices should be strictly considered [12].

Biometric verification, which uses the human physiological or behavioral trait to achieve personal
verification, is widely used in information security [13,14]. Compared with conventional verifications,
such as digital password, personal identification number and IC card, biometric verification has the
advantages of being much more difficult to forget, lose, steal, copy or forge [15]. Thus far, biometric
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verification using fingerprint, face, iris, vein, voice, electroencephalograph (EEG), electrocardiogram
(ECG) and gait, among others, has been an active research topic in recent years [16–19]. Mathur et al.
demonstrated the methodology of fingerprint verification in a wearable system [20]. However, the
identification performance will be reduced when the finger is moist. Klonovs et al. introduced a mobile
biometric verification system utilizing EEG recordings headset [21]. However, the EEG recordings
headset is not suitable to wear for a long time. Peter et al. proposed an ECG-based authentication
protocol to identify sensor nodes attached to the same human body [22]. Choudhary et al. presented
a biometric verification approach based on the photoplethysmographic (PPG) signal for BSNs [23].
Derawi et al. collected the user’s gait as biometric trait through a wireless monitor [24]. However, the
wireless monitor is so complicated that it is difficult to wear. Kim et al. presented a multimodal
verification approach that uses face, teeth and voice modalities as biometric traits for mobile
device [25]. However, the power of multimodal verification is too large to be used in wearable
devices. Other biometric verifications, such as iris, hand and vein verification, are difficult to integrate
into wearable devices due to the limitation of wearable devices’ size [26–28]. Therefore, a new approach
to biometric verification is necessary in wearable devices [29].

Human body communication (HBC), which uses the human body itself as a transmission medium,
provides a potential personal verification solution for wearable devices [30]. Specifically, due to the
thickness differences of biological tissues in human body, the transmission gain S21, which reflects
the variation of transmission characteristics at different frequencies, are different while the signal is
coupled into the human body. Therefore, the transmission gain S21 may be used as a biometric trait to
achieve personal verification. This is the theoretical foundation of biometric verification based on HBC.
Considering that the location of a specified wearable device is usually fixed (e.g., a wristband is worn
on the forearm), the HBC sensor, which is attached to the wearable device, can collect the biometric trait
in the fixed location. In other words, the biometric verification based on HBC is readily integrated into
different wearable devices. Thus, biometric verification based on HBC may be a promising technology
in wearable devices [31].

Thus far, few investigations have characterized the biometric verification based on HBC.
Nakanishi et al. presented a verification approach that uses a pseudo white noise as an input signal to
acquire human biometric trait [32]. However, the identification performance is low due to the influence
of randomness from white noise. Rasmussen et al. proposed a biometric based on the human body’s
response to an electric square pulse signal, and used the pulse-response biometric as an additional
verification mechanism [33]. However, all sample data are used in both learning and verification by
the researchers, which may lead to a higher risk of confidence level. The authors of this article also
made a preliminary research on biometric verification based on HBC [34]. However, the amount of
computation in [34] is so large that it is inappropriate for rapid verification in wearable devices.

In this work, we aim to study the biometric verification based on HBC for wearable devices.
The contribution and originality of this paper is summarized as follows. Firstly, the transmission
gain S21 is proposed as the biometric trait for different individuals. Secondly, to achieve the
rapid verification, a threshold-adaptive template matching (TATM) algorithm based on weighted
Euclidean distance is employed. Furthermore, in order to evaluate TATM algorithm, the identification
performance of TATM is compared with K-nearest neighbor (KNN) classification [35], support vector
machines (SVM) [36], and naive Bayesian method (NBM) classification [37]. The remainder of this
paper is organized as follows. In Section 2, we will demonstrate the validity of biometric verification
method based on HBC through numerical simulation. In Section 3, the experimental setup will be
introduced. Section 4 is about measurement result and analysis. TATM algorithm will be reported in
Section 5. Section 6 gives a detailed analysis of identification performance. Finally, the conclusions are
drawn in Section 7.
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2. Modeling Biometric Verification Based on HBC

2.1. Forearm Modeling

As demonstrated in Figure 1, in order to evaluate the feasibility of biometric verification based
on HBC, three different forearm models, namely, Model A, Model B and Model C, are established.
These models are abstracted as cylinders. The length and diameter of all models are 300 mm and
56 mm, respectively. Furthermore, each model includes, from outside to inside, skin, fat, muscle,
cortical bone and bone marrow [38]. The thicknesses of tissue layers for different models are listed
in Table 1. Specifically, the thicknesses of fat and muscle for Model A are 2.30 mm and 17.86 mm,
respectively. Compared with Model A, the thickness of fat in Model B is increased, whereas the
thickness of muscle is decreased. In addition, the thickness of fat in Model C is 7.60 mm, and the
thickness of muscle is about 12.56 mm. Details of simulation setup are as follows. A transmitting
electrode and a receiving electrode are attached on the surface of model. A voltage source with an
output impedance of 50 Ω is fed to the transmitting electrode. In order to acquire the transmission gain
S21 in the frequency range 0.3 MHz to 1500 MHz conveniently, a Gaussian signal, of which the pulse
width was 0.25 ns, is adopted in the simulation. In addition, there is a load with impedance of 50 Ω
in receiving electrode. The simulations are performed using commercial electromagnetic modeling
software XFDTD based on the finite-difference time-domain (FDTD) method.

Sensors 2017, 17, 125 3 of 18 

 

2. Modeling Biometric Verification Based on HBC 

2.1. Forearm Modeling 

As demonstrated in Figure 1, in order to evaluate the feasibility of biometric verification based 
on HBC, three different forearm models, namely, Model A, Model B and Model C, are established. 
These models are abstracted as cylinders. The length and diameter of all models are 300 mm and  
56 mm, respectively. Furthermore, each model includes, from outside to inside, skin, fat, muscle, 
cortical bone and bone marrow [38]. The thicknesses of tissue layers for different models are listed in 
Table 1. Specifically, the thicknesses of fat and muscle for Model A are 2.30 mm and 17.86 mm, 
respectively. Compared with Model A, the thickness of fat in Model B is increased, whereas the 
thickness of muscle is decreased. In addition, the thickness of fat in Model C is 7.60 mm, and the 
thickness of muscle is about 12.56 mm. Details of simulation setup are as follows. A transmitting 
electrode and a receiving electrode are attached on the surface of model. A voltage source with an 
output impedance of 50 Ω is fed to the transmitting electrode. In order to acquire the transmission 
gain S21 in the frequency range 0.3 MHz to 1500 MHz conveniently, a Gaussian signal, of which the 
pulse width was 0.25 ns, is adopted in the simulation. In addition, there is a load with impedance of 
50 Ω in receiving electrode. The simulations are performed using commercial electromagnetic 
modeling software XFDTD based on the finite-difference time-domain (FDTD) method. 

(a) (b) (c)

skin

fat

muscle

cortical 
bone

bone marrow

skin

fat

muscle

cortical 
bone

bone marrow

skin

fat

muscle

cortical 
bone

bone marrow

Transmitting electrode

Receiving electrode

Forearm model

300 mm(d)

56 mm

 
Figure 1. (a) The cross-section of Model A; (b) the cross-section of Model B; (c) the cross-section of 
Model C; and (d) transmitting electrode and receiving electrode. 

Table 1. Thicknesses of difference tissue layers (mm). 

 Model A Model B Model C
Skin 0.84 0.84 0.84 
Fat 2.30 4.76 7.60 

Muscle 17.86 15.4 12.56 
Cortical bone 3.36 3.36 3.36 
Bone marrow 3.64 3.64 3.64 

2.2. Simulation Result 

Figure 2 shows the transmission gain S21 (in dB) of three forearm models. The gains of three 
forearm models are somewhat different when the frequency is below 200 MHz. The gain of Model A 
is about −3 dB at 150 MHz, whereas the gain of Model C is −5.3 dB. The gains of all models are 
similar in the frequency range 200 MHz to 530 MHz. However, the gains are quite different when the 

Figure 1. (a) The cross-section of Model A; (b) the cross-section of Model B; (c) the cross-section of
Model C; and (d) transmitting electrode and receiving electrode.

Table 1. Thicknesses of difference tissue layers (mm).

Model A Model B Model C

Skin 0.84 0.84 0.84
Fat 2.30 4.76 7.60

Muscle 17.86 15.4 12.56
Cortical bone 3.36 3.36 3.36
Bone marrow 3.64 3.64 3.64

2.2. Simulation Result

Figure 2 shows the transmission gain S21 (in dB) of three forearm models. The gains of three
forearm models are somewhat different when the frequency is below 200 MHz. The gain of Model
A is about −3 dB at 150 MHz, whereas the gain of Model C is −5.3 dB. The gains of all models are
similar in the frequency range 200 MHz to 530 MHz. However, the gains are quite different when
the frequency is 530 MHz to 750 MHz and 900 MHz to 1500 MHz. For instance, the gain of Model C
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is the smallest at 630 MHz, about −28 dB, whereas the gain of Model A is approximately −23 dB at
630 MHz. In addition, the gain of Model C is more than −26.5 dB at 1000 MHz, whereas the gain of
Model A is about −30 dB. From Figure 2, it can be revealed that the transmission gain S21 of each
forearm model is different, which is related with the thicknesses of tissue layers, as demonstrated in
Figure 1. Thus, considering the difference of biological tissues for each individual, the transmission
gain S21 is an optional biometric trait to achieve personal verification.
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Figure 2. Transmission gain S21 of different models in FDTD simulations.

3. Experimental Setup

3.1. Experimental Equipment

The experimental equipment includes a vector network analyzer (VNA, Agilent E5061A),
a transmitting electrode and a receiving electrode. In order to ensure that the electrodes are in close
contact with the skin, the electrodes are attached on a plastic clip, as shown in Figure 3a. The VNA
is adopted to acquire the transmission gain S21 of volunteer. Figure 3b illustrates the measurement
location of volunteer. The transmitting electrode and receiving electrode are placed on the volunteer’s
forearm. The distance between electrode and wrist is 6 cm. The transmitting electrode is connected to
the Port 1 of VNA through cable. Similarly, the receiving electrode is connected to the Port 2 of VNA.
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3.2. Experimental Setup

In our study, ten volunteers (average age of 24 years) with body weights of 50 kg to 80 kg and
body heights of 165 cm to 180 cm were selected. Written informed consent was obtained from all
volunteers. Figure 4 shows the experimental scenario. Two experiments were carried out in this work.
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Table 2 lists the detailed setup for Experiments 1 and 2. In Experiment 1, we aimed to find the
chosen frequency for biometric verification based on HBC. For this purpose, the transmission gain S21
in the frequency range 0.3 MHz to 1500 MHz was investigated. The measurement was done 60 times
(groups) per day for each volunteer and repeated for 3 days. Specifically, the measurement was done
10 times per hour for 6 hours each day. Moreover, 1601 sample data are acquired in each time. Thus,
2,881,800 sample data are acquired in Experiment 1.

According to Experiment 1, it can be known that the chosen frequency for biometric verification
is from 650 MHz to 750 MHz. In Experiment 2, we aimed to obtain the sample data used for learning
and verification at the chosen frequency. In Experiment 2, the measurement was done 6 times (groups)
per day for each volunteer and was repeated for 5 days. Furthermore, 21 sample data are acquired
each time. Therefore, 6300 sample data are acquired in Experiment 2.

Table 2. Experimental setup.

Frequency Bands Volunteers Days Times per Day Sample Data
per Time Total

Experiment 1 0.3 MHz–1500 MHz 10 3 60 1601 2,881,800
Experiment 2 650 MHz–750 MHz 10 5 6 21 6300

4. Measurement Results and Analysis

4.1. Feasibility of Biometric Verification Based on HBC

Figure 5a depicts the transmission gain S21 (in dB) of five volunteers at the same time. As shown
in Figure 5a, it is interesting to observe that there is a significantly difference among five volunteers in
the frequency range 500 MHz to 1500 MHz. Moreover, as the frequency increases, the difference is
become more discernible. Therefore, it can be inferred that the biometric verification based on HBC is
feasible due to the difference of transmission gain S21 between individuals. Figure 5b describes the
transmission gain S21 of one volunteer at four different times. It can be observed that the transmission
gain S21 is almost the same when the frequency is from 0.3 MHz to 1000 MHz, which means that the
transmission gain S21 of the same individual is steady over a period of time.
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4.2. Chosen Frequency for Biometric Verification

In order to decrease the number of sample data, it is critical to determine the HBC frequency
for biometric verification, which is of great benefit to achieve rapid verification in wearable devices.
For this purpose, the standard deviation of transmission gain S21 for ten volunteers in the frequency
range 0.3 MHz to 1500 MHz is investigated in this section. In addition, the standard deviation of
transmission gain S21 for one volunteer at nine different times is also studied. The standard deviation
calculation is shown as Equation (1).

si =

(
∑n

i=1(xi − x)2

n− 1

) 1
2

(1)

where si is the standard deviation, xi is the value of i-th sample data, x is the average value of sample
data, and n is the sample times; n is 10 in the former calculation and n is 9 in the latter calculation.

Figure 6 illustrates the standard deviation of transmission gain S21 when the frequency is 0.3 MHz
to 1500 MHz. The black curve represents the standard deviation among ten volunteers, and the red
curve shows the standard deviation of a volunteer at nine different times. As demonstrated in Figure 6,
the standard deviation among ten volunteers is equal to or less than 0.9 when the frequency is below
600 MHz. However, the standard deviation is greater than 1.3 when the frequency is 650 MHz to
750 MHz and 950 MHz to 1050 MHz. furthermore, the standard deviation is up to 2.1 at 700 MHz. Thus,
it is indicated that there is a distinguishable difference among volunteers in aforementioned frequency
range. On the other hand, the standard deviation of a volunteer (Volunteer 4) at nine different times is
less than 0.6 in the frequency range 290 MHz to 950 MHz. As the frequency increases, the standard
deviation is become larger. Thus, it can be deduced that the chosen frequency for biometric verification
based on HBC should be from 650 MHz to 750 MHz, in which the standard deviation of ten volunteers
is more than 1.3, but the standard deviation of a volunteer at nine different times is approximately 0.4.

In order to better understand the statistic characteristics of biometric verification based on HBC
in the frequency range 650 MHz to 750 MHz, the coefficient of variation, which can reflect the relative
dispersion of data, is adopted in this section. The calculation of coefficient of variation is shown as
Equation (2).

CV =
∣∣∣ si

x

∣∣∣× 100% (2)

where CV is the coefficient of variation, si is the standard deviation of sample data, and x is the average
value of sample data.
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As shown in Figure 7, the coefficient of variation of ten volunteers is more than 8% when the
frequency is 664 MHz. As the frequency increases, the coefficient of variation has a feature of sustained
rise in the frequency range 665 MHz to 715 MHz. In addition, the coefficient of variation is 12.5%
at 715 MHz and is 9.5% at 750 MHz. However, the coefficient of variation of one volunteer at nine
different times is approximately 2.5% when the frequency is 650 MHz to 750 MHz. Thus, it is indicated
that the frequency 650 MHz to 750 MHz may be appropriate for biometric verification based on HBC.
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4.3. Transmission Gain S21 at Chosen Frequency

To achieve rapid verification, the number of sample data for human biometric trait should not be
too high. In this paper, 21 sample data are acquired in each time (group) via VNA when frequency is
from 650 MHz to 750 MHz. The frequency interval between each sample data is 5 MHz. Figure 8 shows
the transmission gain S21 (21 sample data) in the frequency range 650 MHz to 750 MHz. As shown in
Figure 8, there is a significantly difference among volunteers at the chosen frequency. In contrast, the
difference of one volunteer at four times is small. Therefore, those 21 sample data can be regarded as
human biometric trait.
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5. TATM Algorithm Proposed

5.1. Template Building

In this paper, a threshold adaptive template matching (TATM) algorithm based on weighted
Euclidean distance is proposed to achieve personal verification. Figure 9 illustrates the process of
the TATM algorithm. In general, the personal verification is divided into two steps: learning and
verification [39]. In the first step, the error data need to be cleaned from the template library before
the matching template is built. The second step is to determine the correlation between sample data
and matching template. It is worth noting that the data used for matching template building and
verification are obtained via Experiment 2. Specifically, 18 groups of data for each volunteer, obtained
during the first three days, are used as template library to build the matching template, and the
remaining groups (12 groups) are used to verification. Moreover, each group includes 21 sample data.

However, the sample data are unsteady in a certain range owing to the influence of VNA and
ambient environment. Moreover, the change of experimental condition sometimes has a great impact
on sample data. Therefore, the error data should be removed from the template library. In this paper,
a simple and effective method is adopted to remove the error data from template library. Firstly, the
sample data of 18 groups for each volunteer are taken as the initial template library lib1, as shown in
Equation (3). 

lib1 =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn


m×n

yj =
1
m

m
∑

i=1
xij, 1 ≤ j ≤ n

M1 =
(

y1 y2 · · · yn

)
1×n

(3)

where m represents the number of feature vectors in each initial template library and the value of m is
18. n represents the number of feature points in each feature vector, and the value of n is 21. M1 is the
initial matching template which consists of 21 feature points.
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Figure 9. Flow diagram of TATM algorithm. 
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Secondly, the Euclidean distance between the initial matching template M1 and each feature
vector that belongs to the template library is calculated. The feature vector will be excluded when the
Euclidean distance is greater than the threshold T1. The calculation of Euclidean distance is represented
in Equation (4). 

Si =
(

xi1 xi2 · · · xin

)
1×n

Si ∈ lib1, 1 ≤ i ≤ m

D1 = ||Si −M1||2 =
√
(Si −M1)

T(Si −M1)

D1 =

{
≥ T1, delete
≤ T1, save

(4)

where Si is the feature vector of initial template library lib1, D1 is the Euclidean distance between
M1 and Si, and T1 is the Euclidean distance threshold. The value of threshold T1 can be set to 2 in
this paper.

A new template library lib2 is obtained after the error data are removed from lib1. Subsequently,
the matching template M2 is generated according to Equation (5). This template is the final feature
vector of individual, which represents individual’s behavioral trait.

lib2 =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

x(m−r)1 x(m−r)2 · · · x(m−r)n


(m−r)×n

y′j =
1

m−r

m−r
∑

i=1
x′ij, 1 ≤ j ≤ n

M2 =
(

y′1 y′2 · · · y′n
)

1×n

(5)

where lib2 is (m− r)× n Matrix, r is the number of feature vectors which have been cleaned, and M2

is the matching template used for verification.

5.2. Verification

Considering that the weights of feature points are different in a feature vector, TATM based on
weighted Euclidean distance is proposed in this work. Compared with classical Euclidean distance
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calculation method, the calculations are more precise. The calculation of TATM based on weighted
Euclidean distance is performed as follows. The difference between maximum max1i and minimum
min1i of sample data, which belong to template library lib2 at the same frequency, is calculated.
The reciprocal of difference is used as the corresponding feature point weight Ci, as shown in
Equation (6). 

max1j = max
(

x1j , x2j , · · · , x(m−r)j

)
, 0 ≤ j ≤ n

min1j = min
(

x1j , x2j , · · · , x(m−r)j

)
, 0 ≤ j ≤ n

Cj = 1/
(
max1j −min1j

) (6)

According to the value of matching template M2, the distance between the feature vector in
template library lib2 and matching template M2 is calculated. Then, the maximal value of distance
max2 is set to threshold T2, as shown in Equation (7).

D2i =

√
n
∑

j=1
Cj
(

xij −M2j
)2, 0 ≤ i ≤ m− r

max2 = max
(

D21, D22, D23, . . . , D2(m−r)

)
T2 = max2

(7)

where j is the j-th feature point in a feature vector, and D2i is the value of Euclidean distance between
matching template M2 and i-th feature vector in lib2.

In terms of Equation (7), it is revealed that the threshold and weight are defined by matching
template. The advantage of this method is that it does not required many experiments to find the
suitable value. T2 is utilized as the verification threshold in TATM algorithm to confirm whether the
user is the authorized person. In verification mode, the test sample will be divided into two classes:
the I-related and the I-non-related. Under the premise of the acceptable false acceptance rate (FAR),
this method can get the smallest false rejection rate (FRR). The final determination condition is shown
as Equation (8). 

D =

√
n
∑

j=1
Cj
(

Fdataj −M2j
)2

D

{
≥ T2, I − non− related

< T2, I − related

(8)

where Fdataj is the j-th sample data in test feature vector, and D is the distance between test data and
matching template M2.

6. Algorithm Evaluation

6.1. Effect of Data Cleaning

Figure 10 demonstrates the variance of 21 feature points in the frequency range 650 MHz to
750 MHz. As demonstrated in Figure 10, the variance of feature points is reduced after data cleaning.
The maximum and minimum values are 0.23 and 0.05 before data cleaning, and 0.1736 and 0.0365 after
data cleaning, respectively. Therefore, the data cleaning method adopted in this paper is effective at
removing error data from template library.

On the other hand, the variance of feature points is different at different frequencies after data
cleaning. Specifically, the variances of these feature points are 0.0365, 0.1401, 0.1266, 0.1395, 0.1736, and
0.1289, respectively, at frequencies 650 MHz, 665 MHz, 670 MHz, 705 MHz, 740 MHz, and 750 MHz.
It is revealed that feature points are not invariable values. A smaller variance of feature point means
that the biometric trait is more stable, which is of great help to improve the accuracy of personal
verification. Therefore, the weight of feature point of which the variance is relatively small should be
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set to a higher value to highlight its importance. In contrast, the weight should be decreased if the
variance of feature point is large.Sensors 2017, 17, 125 11 of 18 
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To better understand the influence of Euclidean distance threshold T1 on data cleaning, the false
acceptance rate (FAR) and false rejection rate (FRR) are acquired at different threshold T1. FAR reflects
the rate at which the imposters are accepted into the system, and FRR reflects the rate at which the
authorized users are denied entry into the system. The calculations of FAR and FRR are shown as
Equations (9) and (10). Table 3 lists the FAR and FRR at different Euclidean distance threshold T1.

FAR =
f alse acceptance samples
total acceptance samples

× 100% (9)

FRR =
f alse rejection samples

total acceptance samples
× 100% (10)

As listed in Table 3, the Euclidean distance threshold T1 has a great impact on data cleaning
when it is less than 5. Furthermore, the FAR is 5.79% and the FRR is 6.74% when the Euclidean
distance threshold T1 is equal to 2. However, the FRR is up to 36.8% and 13.3%, respectively, when the
Euclidean distance threshold T1 is 1.5 and 2.5. Therefore, considering the relatively low FAR and FRR,
the Euclidean distance threshold T1 can be set to 2 in this paper.

Table 3. Influence of Euclidean distance threshold T1.

Threshold T1 1 1.5 2 2.5 3 3.5 4 5 6 7

FAR 1.09% 5.24% 5.79% 8.26% 15.2% 14.5% 17.6% 17.4% 17.4% 17.4%
FRR 77.7% 36.8% 6.74% 13.3% 3.33% 4.17% 4.17% 5.0% 5.0% 5.0%

6.2. The EER

In this section, 120 groups of data obtained during Days 4 and 5 in Experiment 2 are adopted to
calculate the FAR, FRR and equal error rate (EER). Figure 11 shows the values of FAR and FRR when
the verification threshold T2 is from 0.8 to 2.8. As shown in Figure 11, the range of FRR is from 80% to
0.5%, and the range of FAR is from 0.1% to 18%. Furthermore, the EER is 7.06% when the FAR is equal
to FRR at verification threshold T2 = 1.91.
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6.3. Algorithm Comparison 

In this paper, the TATM based on weighted Euclidean distance is compared with K-nearest 
neighbor (KNN) classification, support vector machines (SVM) and naive Bayesian method (NBM). 
All algorithms are implemented by MATLAB on a personal computer. Furthermore, the SVM is 
achieved by the LIBSVM which is a library designed by Taiwan University [40], and the KNN and 
NBM are acquired from MATLAB function library. A total of 120 groups of sample data are used as 
the test data. The FAR and FRR of different algorithms are listed in Table 4. Additionally, the 
running time of algorithm is listed in Table 5. 

Table 4. FAR and FRR of different algorithms. 
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FRR of Volunteers 7 and 9 is 91.67%. The FRR of SVM is so large that it is inappropriate for 
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6.3. Algorithm Comparison

In this paper, the TATM based on weighted Euclidean distance is compared with K-nearest
neighbor (KNN) classification, support vector machines (SVM) and naive Bayesian method (NBM).
All algorithms are implemented by MATLAB on a personal computer. Furthermore, the SVM is
achieved by the LIBSVM which is a library designed by Taiwan University [40], and the KNN and
NBM are acquired from MATLAB function library. A total of 120 groups of sample data are used as
the test data. The FAR and FRR of different algorithms are listed in Table 4. Additionally, the running
time of algorithm is listed in Table 5.

Table 4. FAR and FRR of different algorithms.

Volunteer
TATM KNN SVM NBM

FAR FRR FAR FRR FAR FRR FAR FRR

1 0.95% 0 7.41% 8.33% 0 0 0 16.67%
2 15.24% 0 8.33% 33.33% 7.41% 58.33% 7.41% 41.67%
3 3.81% 25% 4.63% 66.67% 5.56% 25.0% 10.19% 41.67%
4 1.89% 0 3.70% 8.33% 2.78% 8.33% 3.70% 8.33%
5 0 8.33% 0 25% 0 33.33% 0 41.67%
6 13.21% 0 6.48% 50.0% 5.56% 8.33% 4.63% 25.0%
7 6.67% 25% 0.93% 58.33% 1.85% 91.67% 0.93% 25.0%
8 3.77% 9.09% 3.70% 33.33% 10.19% 16.67% 3.70% 41.67%
9 12.38% 0% 6.48% 91.67% 3.70% 91.67% 7.41% 100%
10 0 0 0 0 0 0 0 0

Average 5.79% 6.74% 4.17% 37.5% 3.37% 33.33% 3.80% 34.17%

Table 5. Running time of different algorithms

Algorithm TATM KNN SVM NBM

Running time (s) 0.019 0.310 0.0385 0.168

As illustrated in Table 4, for Volunteers 1, 4, and 10, KNN shows a good performance of low FAR
and FRR. However, KNN has a disappointing result for other volunteers. The FRR is more than 50%
for Volunteers 3, 6, 7, and 9. Thus, the KNN is unsuitable for biometric verification based on HBC.
The FRR obtained by SVM is more than 10% for Volunteers 2, 3, 5, 6, 7, 8, and 9. Moreover, the FRR
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of Volunteers 7 and 9 is 91.67%. The FRR of SVM is so large that it is inappropriate for verification.
Similarly, the NBM also shows a bad performance, and the FRR is greater than 10% for eight volunteers
in the measurement. On the other hand, the TATM shows a good performance for different volunteers
(Table 4). The average values of FAR and FRR are 5.79% and 6.74%, respectively. Furthermore, as listed
in Table 5, the running time of TATM is the shortest (0.019 s), whereas the running time of KNN is
up to 0.310 s, while the running times of SVM and NBM are 0.0385 s and 0.168 s, respectively. Thus,
it can be concluded that the TATM is more suitable for rapid verification owing to it has lower FRR
and shorter running time.

The influence of the number of feature vectors on FAR and FRR is investigated next. Figure 12
describes the FAR and FRR with different numbers of feature vectors. In Figure 12a, it can be observed
that the FAR of three algorithms is less than 6% when the number of feature vectors is 18. Additionally,
as demonstrated in Figure 12b, the FRR is sensitive to the numbers of feature vectors. The FRRs of all
algorithms are greater than 50% when the numbers of feature vectors is equal to 3. However, the FRR
of SVM and NBM is approximately 25%, and the FRR of TATM is only 6.74% when the number of
feature vectors is 18. Thus, compared with SVM and NBM, TATM presents a lower FRR.
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Table 6 lists the EER, running time, and computational memory of biometric verification based on
HBC in previous works. In [34], the EER of 0.56% is achieved by SVM. However, the number of feature
vectors is 160, and the number of feature points for each feature vector is up to 1600. Furthermore,
the running time and computational memory of SVM in Reference [34] are approximately 9.941 s and
91 MB. In Reference [31], the EER of 25% is obtained by SVM when 40 feature vectors and each feature
vector includes 100 feature points are adopted. In our paper, the EER of 7.06% is achieved by TATM
when 18 feature vectors are utilized. Furthermore, the number of feature points in each feature vector
is only 21. Additionally, the running time and computational memory of TATM in this article are
0.019 s and 2 MB, respectively. Thus, it is concluded that TATM can provide a rapid verification with a
relatively low running time and computational memory.

Table 6. Comparison with previous works.

[34] [31] This Article

The number of feature vectors 160 40 18
Feature point in each feature vector 1600 100 21

Algorithm SVM SVM TATM
EER 0.56% 25% 7.06%

Running time 9.941 s - 0.019 s
Computational memory 91 MB - 2 MB
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6.4. Discussion

As listed in Table 4, it is worth noting that both the FAR and FRR of Volunteer 10 are equal to zero,
which may be associated with the volunteer herself. Specifically, the forearm of Volunteer 10 is thinner
than the other volunteers, which led to her transmission gain S21 being quite different.

On the whole, as listed in Table 4, The FRR of KNN, SVM, and NBM is high even when the
parameters of algorithms were varied, which may be related with the number of training data [27].
In the learning groups, the training data for each volunteer (18 groups of data) are fewer than those of
others (162 groups of data), so a volunteer’s classification area is narrower and might overlap with
those of other volunteers, which leads to a high FRR.

However, the FRR of TATM is relatively low, which is associated with the verification threshold
T2. The verification threshold T2 is threshold-adaptive in this paper, namely, the verification threshold
T2 of each volunteer is mainly dependent on the number of each volunteer’s own training data rather
than those of others. Thus, the TATM shows low FRR.

7. Conclusions

This paper proposes a rapid biometric verification for application in wearable devices.
The transmission gain S21 of individual is measured in the frequency range 0.3 MHz to 1500 MHz.
The results indicate that there is significantly different transmission gain S21 among individuals, and
the transmission gain S21 for the same individual is steady over a period of time. Furthermore, it is also
revealed that the chosen frequency for biometric verification based on HBC is 650 MHz to 750 MHz.
In addition, a threshold-adaptive template matching (TATM) algorithm based on weighted Euclidean
distance is proposed in this paper. In order to achieve rapid verification, 18 groups of data, each group
including 21 sample data, are used as the template library. In terms of template library, the matching
template used for personal verification is built after the data cleaning. Meanwhile, the weights of
feature points are calculated. The results show that the TATM algorithm presents a good performance
with relative lower FAR and FRR, 5.79% and 6.74%, respectively. In contrast, the FAR and FRR were
4.17% and 37.5%, 3.37% and 33.33%, and 3.80% and 34.17%, respectively, using KNN, SVM, and NBM.
In addition, the running time of TATM is the shortest (0.019 s), while the running times of KNN, SVM
and NBM are 0.310 s, 0.0385 s, and 0.168 s, respectively. Compared with other algorithms, the TATM
based on weighted Euclidean distance has lower FRR and shorter running time. Therefore, the TATM
proposed in this paper may be a potential solution for rapid verification for wearable devices. In the
near future, the biometric verification based on HBC and the TATM algorithm will be achieved in a
wearable prototype.
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Appendix A

The algorithms of KNN, NBM and SVM are introduced as follows.

A.1. KNN

KNN is usually used for clustering with the advantage of simple principle and fast running speed
for large datasets. The main idea of KNN is that the datasets are divided into different categories by
the iterative process. The detailed steps for KNN are as follows.
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(1) The dataset X and the number of clustering N (N > 1) are set at initialization time. N objects are
randomly selected as the initial cluster centers in dataset X.

(2) The Euclidean distance between each object and the cluster centers is calculated. According to
the principle of minimum distance, datasets will be divided into N classes again.

(3) The average value of each class is used as a new clustering center.
(4) If the new clustering center is equal to the cluster center, the iterative process stops; otherwise,

repeat Step 2 and Step 3.

A.2. NBM

NBM, which is based on the probability density function, is an efficient and simple classification
algorithm. NBM can be used to describe the relation between conditional probability and classification
in the system, as shown in Equation (A1).

P(B|A) =
P(A|B)P(B)

P(A)
(A1)

Compared with the other classification methods, NBM has lower time complexity and higher
accuracy. As a well-developed classification method, NBM has been widely used in classification.
The steps of NBM are as follows.

(1) X = {a1, a2, . . . , am} and C = {y1, y2, . . . , yn} are set as a sorting item and collection of categories,
respectively. C is trained in advance.

(2) The Conditional probability P(yi|X) for the sorting item X is calculated by Equation (A2).

P(yi|X) =
P(X|yi)

P(X)
, 0 < i ≤ n (A2)

(3) The value of P(yk|X) is obtained through Equation (A3).

P(yk|X) = max{P(y1|X), P(y2|X), . . . P(yn|X)} (A3)

A.3. SVM

SVM is a data mining algorithm based on statistical theory. The mechanism of SVM is to obtain
an optimal separating hyperplane to meet the requirements of classification. The optimal separating
hyperplane ensures the accuracy of the classification. In addition, it has the largest distance of the
classification point at optimal separating hyperplane. The two-class classification problem is taken as
an example.

First, a training data set is acquired, as shown in Equation (A4).{
(xi , yi), i = 1, 2, . . . , l

x ∈ R, yi = ±1
(A4)

To solve two-class classification problem, the separating hyperplane is obtained.

ω · x + b = 0 (A5)

In order to classify all the samples correctly, the Equation (A6) needs to be satisfied.

yi[(ω · xi + b)] ≥ 1, i = 1, 2, . . . l (A6)
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The classification interval is set to 2/||ω||. Thus, the problem of constructing the hyperplane is
transformed into solving the constraint problem.

min∅(x) =
1
2
||ω||2 =

1
2
(
ω′ ·ω

)
(A7)

In order to solve the constrained optimization problem, the Lagrange function is introduced,
as shown in Equation (A8).

L(ω, b, a) =
1
2
||ω|| − a(y((ω · x) + b)− 1) (A8)

where a > 0 is Lagrange multiplier. The solution of the optimization problem is determined by the
saddle point of the Lagrange function. This solution’s partial derivatives of b and ω are 0 at the saddle
point. The quadratic programming (QP) problem is transformed into a dual problem.

maxQ(a) =
l

∑
j=1

aj − 1
2

l
∑

i=1

l
∑

j=1
aiajyiyj

(
xi · xj

)
s.t.

l
∑

j=1
ajyj = 0 i, j = 1, 2, . . . , l aj ≥ 0

(A9)

The solution is obtained by Equations (A8) and (A9).

a∗ =
(
a∗1 , a∗2 , . . . , a∗l

)T

ω∗ =
l

∑
j=1

a∗j yjxj

b∗ = yi −
l

∑
j=1

yja∗j
(
xj · xi

)
.

(A10)

Finally, the optimal classification function is obtained according to Equation (A5) and (A10).

f(x) = sgn{(w∗ · x) + b∗} = sgn

{(
l

∑
j=1

a∗j yj
(
xj · xi

))
+ b∗

}
(A11)
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