
Cell death in the pathogenesis of systemic lupus erythematosus 
and lupus nephritis

Pragnesh Mistry and Mariana J. Kaplan1

Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin 
Diseases, National Institutes of Health, Bethesda, Maryland, USA 20892.

Abstract

Nephritis is one of the most severe complications of systemic lupus erythematosus (SLE). One key 

characteristic of lupus nephritis (LN) is the deposition of immune complexes containing nucleic 

acids and/or proteins binding to nucleic acids and autoantibodies recognizing these molecules. A 

variety of cell death processes are implicated in the generation and externalization of modified 

nuclear autoantigens and in the development of LN. Among these processes, apoptosis, primary 

and secondary necrosis, NETosis, necroptosis, pyroptosis, and autophagy have been proposed to 

play roles in tissue damage and immune dysregulation. Cell death occurs in healthy individuals 

during conditions of homeostasis yet autoimmunity does not develop, at least in part, because of 

rapid clearance of dying cells. In SLE, accelerated cell death combined with a clearance deficiency 

may lead to the accumulation and externalization of nuclear autoantigens and to autoantibody 

production. In addition, specific types of cell death may modify autoantigens and alter their 

immunogenicity. These modified molecules may then become novel targets of the immune system 

and promote autoimmune responses in predisposed hosts. In this review, we examine various cell 

death pathways and discuss how enhanced cell death, impaired clearance, and post-translational 

modifications of proteins could contribute to the development of lupus nephritis.

Introduction

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder characterized 

by the presence of pathogenic autoantibodies, immune complex formation and deposition in 

various organs, profound innate and adaptive immune dysregulation and inflammation, and a 

wide range of clinical manifestations including kidney involvement (1, 2). A characteristic 

of lupus is the production of antibodies (Abs) recognizing nucleic acids and proteins binding 

to nucleic acids. Among them, synthesis of anti-double-stranded (ds)DNA Abs is considered 

a hallmark feature of SLE (3, 4).
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Lupus glomerulonephritis (LN) is one of the most common and severe complications in SLE 

and a major cause of morbidity and mortality (5, 6). LN affects predominantly younger 

individuals and is frequently observed in children (7). Various mechanisms have been 

proposed in the pathogenesis of this complex lupus complication and both innate and 

adaptive branches of the immune system appear to contribute to LN (8-11).

Dysregulated cell death and defective clearance of dying cells have been proposed to 

contribute to autoantigen generation and induction of autoantibodies and other aberrant 

immune responses in SLE and in LN specifically (12). Indeed, dysregulation in various cell 

death processes (e.g. apoptosis, primary and secondary necrosis, NETosis, necroptosis, 

pyroptosis and autophagy) and the response of the immune system to these processes have 

been implicated in the pathogenesis of LN (12, 13). This review will focus on the putative 

mechanisms by which various mechanisms of cell death can promote immune dysregulation 

and renal disease in SLE.

Apoptosis

Apoptosis is a silent form of cell death that is active during both physiological and 

pathological conditions and plays a critical role in homeostasis of tissues experiencing a 

high rate of turnover, as observed during embryogenesis and development (14). Apoptosis 

also plays a key role in the immune system by eliminating autoreactive T cells and B cells 

during positive and negative selection to prevent autoimmunity (15). Apoptosis can be 

initiated by ligation of cell surface receptors such as Fas or tumor necrosis factor (TNF) 

receptor or due to cellular stress (12). Once activated, a series of enzymatic reactions leads 

to changes in membrane phospholipid expression, DNA fragmentation, post-translational 

modifications of histones, and membrane blebbing (16). Apoptotic cells express “eat me” 

signals, which include phosphatidylserine and phosphatidylethanolamine exposure on the 

membrane outer leaflet (14). Phosphatidylserine can be recognized directly by phagocytic 

cells expressing scavenger receptors leading to clearance or it can bind to opsonizing agents 

to enhance phagocytosis. Uptake of apoptotic cells occurs very rapidly and leads to an anti-

inflammatory effect with the release of transforming growth factor beta (TGF-β) (17). 

Various defects in the apoptotic cell death pathway or in clearance of apoptotic material have 

been implicated in SLE subjects and in mouse models (Table 1) (12).

One of the earliest reports linking impaired apoptosis to SLE was the identification of 

mutations in Fas receptor and Fas ligand (FasL) in MRL/lpr-lpr and C3H/HeJ-gld/gld mice, 

respectively (18-20). Both mice strains develop similar disease phenotypes characterized by 

hypergammaglobulinemia, autoantibody production, glomerulonephritis, and arthritis 

(19-21). Mutations in Fas or FasL have been identified in humans that develop autoimmune 

lymphoproliferative syndrome (ALPS) (21, 22) but the incidence of renal damage in this 

condition is extremely rare (23). Based on these findings, the role of Fas/FasL in the 

development of lupus nephritis appears stronger in mouse models of SLE compared to 

human SLE.

Other apoptotic signaling molecules including B cell lymphoma 2 (Bcl-2), Bim, 

transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), B 
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cell-activating factor (BAFF), phosphatase and tensin homolog (PTEN), and p53 have also 

been linked to lupus nephritis (15). Bcl-2 is an anti-apoptotic protein reported to be elevated 

in glomeruli and serum in patients with LN, although the significance of this is unclear (24). 

Immunized transgenic mice overexpressing BCL2 under the control of immunoglobulin 

heavy chain enhancer exhibit autoantibodies and develop immune complex-

glomerulonephritis (25). Bim is a member of the Bcl-2 family that promotes apoptosis and 

mice with a combined deficiency in Bim and Fas develop a lupus-like disease with renal 

damage caused by increased infiltration of B cells and macrophages, apoptotic cells and 

deposition of immune complexes (26). BAFF is a cytokine essential for B cell survival and 

maturation and SLE patients have elevated circulating BAFF levels that positively correlate 

with disease activity (27, 28). Mice overexpressing BAFF manifest lupus-like disease 

characterized by enhanced germinal center formation, splenomegaly, autoantibodies and 

immune-complex glomerulonephriits (29). In humans, LN patients treated with Belimumab, 

a BAFF neutralizing antibody, have shown greater reduction in proteinuria, normalization of 

anti-dsDNA and complement levels, and renal function improvement compared to those that 

received standard of care therapy (30). One of the key receptors for BAFF that has also been 

shown to potentially play a role in renal disease in lupus patients is TACI. In a 2010 study 

examining 73 Chinese SLE patients for expression of BAFF and BAFF receptors, SLE 

patients had elevated numbers of CD19+TACI+ B cells compared to healthy controls and 

lupus nephritis patients expressed the highest numbers of these cells (28). Targeting TACI, 

instead of BAFF, has been shown to protect against autoimmune kidney disease while 

maintaining the B cell population (31). PTEN is a tumor suppressor protein that negatively 

regulates the phosphoinositide 3-kinase (PI3K)-AKT pathway and loss of this protein has 

been shown to promote autoimmunity (32). Mice with a specific deletion of Pten in Foxp3+ 

regulatory T cells (Treg) lose immune tolerance and develop a systemic autoimmune-like 

phenotype characterized by immune complex LN. Tumor suppressor p53 protein has been 

known to play a critical role for the prevention of tumorigenesis but recent evidence has 

suggested that p53 also has a vital function in inhibiting autoimmunity (33-39). Kawashima 

et al showed that mice with a specific deletion of p53 in T cells develop inflammatory 

diseases including glomerulonephritis that is associated with a reduction in splenic Treg cells 

(40). Moreover, p53 interacted with the FoxP3 promoter driving the expression of this gene 

and promoted the differentiation of regulatory T cells. Apoptosis is a finely tuned machine 

that requires proper functioning of both pro-apoptotic and anti-apoptotic proteins. Based on 

the previous findings, aberrant expression and function of these proteins can result in 

decreased apoptosis and lead to an autoimmune-like phenotype in both mice and humans 

likely through the accumulation of autoreactive immune cells. In addition, increased 

apoptosis has also been observed in SLE and may also contribute to the development of 

nephritis.

Enhanced apoptosis contributes to development of nephritis

Accelerated apoptosis in SLE can potentially overwhelm the host clearance mechanisms and 

result in an accumulation of apoptotic debris that can undergo secondary necrosis (12). 

Secondary necrotic cells lose the integrity of the plasma membrane and release nuclear 

autoantigens that can lead to immune complex formation, their glomerular deposition, and 
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development of nephritis (14). Apoptosis of kidney cells, defective clearance, and release of 

nucleosomes may lead to development of nephritis but whether or not increased apoptosis of 

glomerular cells contributes to renal pathology is controversial (3, 41). Soto et al reported a 

decrease in apoptotic cells from the glomerulus and tubulointerstitium in LN biopsies 

compared to control kidneys (42). In addition, renal cells from LN patients had enhanced 

proliferation without an increase in apoptosis. It is worth noting that the apoptotic cell 

numbers from control kidneys was higher than apoptotic renal cell numbers from healthy 

subjects from previous similar studies (42, 43). Faurschou et al found that kidney biopsies 

from both lupus nephritis patients and healthy controls did not express apoptotic glomerular 

cells (44). However, one-third of the LN biopsies expressed low levels of apoptotic tubular 

cells that positively correlated with interstitial inflammation. In lupus-prone NZB/NZW F1 

(NZB/W) mice, the appearance of circulating anti-dsDNA antibodies and glomerular 

deposits did not correlate with the activation of apoptotic pathways in the kidneys, but rather, 

correlates with the downregulation of Dnase1 gene expression (45). Seredkina et al suggests 

that severe nephritis may develop due to the decreased expression of DNase1 that leads to an 

accumulation of chromatin, subsequent immune complex formation and deposition in 

glomerular membranes. However, Kalaaji et al demonstrated that nucleosomes released from 

apoptotic intraglomerular cells deposited in glomerulus basement membranes (GBM) and 

were targeted by nephritogenic lupus antibodies (46, 47). Unlike the results from Seredkina 

et al, Kalaaji demonstrated intraglomerular cell death that correlates with anti-dsDNA Ab in 

nephritic NZB/W mice (45, 47). Lupus nephritis patients have been reported to have 

increased numbers of apoptotic glomerular cells and infiltrating neutrophils compared to 

healthy controls, in correlation with anti-dsDNA Ab levels, complement consumption, and 

cell proliferation (41). Takemura et al reported the presence of apoptotic cells in the 

mesangial area and glomerular capillaries from LN patients and this positively correlates 

with the expression of Fas antigen (48). Bcl-2 expression was upregulated in mesangial cells 

and infiltrating leukocytes from LN patients and this correlates with the expansion of 

glomerular cells and degree of proteinuria. These authors postulated that increased Bcl-2 

expression may contribute to the hypercellularity of glomerular cells and prolonged survival 

of infiltrating leukocytes in LN (48). Increased apoptosis of interstitial inflammatory cells, 

renal tubular epithelial cells, and glomerular parenchymal cells has been reported in lupus 

nephritis patients in association with enhanced expression of apoptosis-related proteins Fas, 

Bax, and caspase-3 (49). In summary, it is debatable whether or not increased apoptosis of 

glomerular cells is a significant source of circulating and/or tissue nucleosomes promoting 

glomerulonephritis. It is unclear why there are significant discrepancies when determining if 

renal cells from LN patients undergo increased apoptosis but one potential explanation could 

be the type of experimental method used to quantify this process (44, 51).

Accelerated apoptosis has also been observed in SLE for various key immune cells including 

phagocytes (monocytes, macrophages, neutrophils, and immature dendritic cells) that are 

critical for clearance (52). Autoreactive T cells in SLE patients induce apoptosis in 

autologous monocytes through TNF-related ligands (53). In NZB × SWR (SNF1) lupus-

prone mice, induction of accelerated macrophage apoptosis using clodronate liposomes 

results in increases in anti-dsDNA and anti-nucleosome antibody levels and enhanced 

proteinuria and LN features (54). SLE patients have increased numbers of circulating 
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apoptotic neutrophils compared to healthy control donors and this positively correlates with 

disease activity and anti-dsDNA levels (55). Serum from SLE patients can induce apoptosis 

in antigen presenting cells (APCs) and lymphocytes and is associated with complement 

consumption (56, 57). In summary, SLE patients experience accelerated apoptosis of 

immune cells that are critical for clearance of apoptotic debris. This can potentially result in 

inefficient removal of dying cells and chronic exposure of intracellular autoantigens.

Defects in clearance mechanisms contribute to nephritis

Conflicting results have been observed when apoptotic cells are administered to mice with 

regards to immunogenicity (58, 59). While apoptosis is considered a silent form of cell 

death, defects in apoptotic cell clearance may result in secondary necrosis and lead to 

autoimmunity. The apoptotic clearance program is a highly redundant and multi-tiered 

system and defects in apoptotic cell receptors and bridging molecules have been observed in 

SLE. The TAM receptor protein tyrosine kinase subfamily includes Mer, Tyro3, and Axl and 

they detect ligands bound to phosphatidylserine on the membrane of dying cells and are 

involved in their removal (60). TAM-deficient mice develop an autoimmune-like syndrome 

with renal immune complex deposition (61, 62). Class A scavenger receptors macrophage 

receptor with collagenous structure (MARCO) and scavenger receptor A (SR-A) also 

recognize apoptotic cells and mice deficient in these receptors develop autoantibodies 

following transfer of apoptotic cells (63). In lupus-prone NZB/W mice and in SLE patients, 

autoantibodies against SR-A and MARCO are present and detected before onset of disease 

and may play a putative role in reduced uptake of dying cells (63).

In addition to phosphatidylserine exposure, proper recognition and clearance of apoptotic 

cells requires their opsonization by serum proteins including C-reactive protein (CRP), 

serum amyloid protein (SAP), pentraxin-related protein (PTX3), IgM, mannose binding 

lectin (MBL), and complement C1q (12). CRP and SAP are short pentraxins produced by 

the liver in response to interleukin 6 (IL-6) and PTX3 is a long pentraxin that is generated 

from a variety of tissues after TLR stimulation and in response to inflammatory cytokines 

(64). CRP interacts with polysaccharides and phosphocholine exposed on apoptotic cells and 

microbes and mediates activation of the classical pathway of complement (65). CRP also 

opsonizes cells and mediates their removal by interacting with the Fc receptor on phagocytic 

cells (14). Abnormalities in CRP function and expression have been observed in SLE 

(66-69). SLE patients produce autoantibodies against CRP and this correlates with disease 

activity, anti-dsDNA, and LN (66, 67, 69). Genome-wide linkage studies have revealed that 

CRP maps to a locus associated with SLE and polymorphisms in the CRP locus are 

associated with development of SLE, autoantibodies and low CRP expression (70). CRP can 

improve murine lupus and its associated nephritis (71, 72).

SAP is another acute phase reactant and opsonin that is critical for the removal of apoptotic 

cells (73). SAP binds to DNA and chromatin exposed in apoptotic blebs and solubilizes 

chromatin released during necrosis (74). As observed with CRP, defects in SAP lead to 

murine lupus-like disease including glomerulonephritis (75). SLE patients also develop anti-

SAP Abs that correlate with disease activity and are reduced with improved clinical outcome 
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(76). Exogenous administration of SAP has a therapeutic effect in mice, including decrease 

in immune-complex deposition and prevention of LN (77).

PTX3 binds to nuclear antigens exposed on the cell membrane in apoptotic cells (78) and 

regulates autoimmunity by sequestering cell debris that would otherwise be internalized by 

APCs. Similar to CRP and SAP, autoantibodies against PTX3 are detected in SLE patients 

and correlate with disease activity (79). Ptx3-deficient mice that are crossed with Fas-

deficient (lpr) C57BL/6 mice develop autoimmune lung disease but no glomerulonephritis 

(80). In summary, the pentraxins CRP, SAP, and PTX3 play critical roles in the clearance of 

apoptotic cells and dysregulation in the function of these molecules may promote 

autoimmunity.

MBL is a serum pattern recognition receptor that recognizes and opsonizes carbohydrate 

moieties present on microorganisms, resulting in complement activation (81). The role of 

MBL in the lupus pathogenesis is potentially complex as high expression results in 

complement activation and tissue damage while low levels lead to defective apoptotic cell 

clearance (82, 83). Variants in the MBL2 gene result in MBL deficiency, predisposition to 

SLE, and increased risk of LN (84-86). IgM is also involved in the opsonization and 

clearance of dying cells and low serum IgM levels have been reported in SLE patients (87). 

Finally, C1q is a member of the classical complement pathway and an opsonin that binds to 

apoptotic cells and mediates their removal by phagocytic cells (88). Deficiencies in C1q 

have been linked to SLE (89). SLE patients may have anti-C1q Abs in association with LN, 

complement consumption, autoantibodies, and disease activity (90, 91). C1q-deficient mice 

develop immune complex nephritis and accumulation of renal apoptotic bodies (92). 

Together, these results suggest that recognition and opsonization of apoptotic cells is highly 

critical for their clearance and prevention of autoimmune disease. Although significant 

redundancy exists in proteins involved in the clearance of apoptotic cells, the functional loss 

of just one protein may be sufficient to promote activation of the immune response.

Once phagocytic cells have recognized apoptotic cells, they must be efficiently ingested to 

prevent immune system activation. Defects in phagocytosis have been observed in lupus 

(93). SLE patients have an accumulation of apoptotic cells in lymph node germinal centers 

likely due to a reduction in tingible body macrophages that specialize in the removal of dead 

cells (93). Defects in the differentiation of myeloid progenitors into macrophages may 

potentially lead to phagocytosis defects in SLE (60). Macrophages derived from SLE 

monocytes display impaired uptake of apoptotic material (94, 95). Lupus-prone mouse 

macrophages have been reported to display impaired lysosomal maturation that can lead to 

the recycling and accumulation of nuclear antigens to the cell surface that can potentially 

activate autoreactive lymphocytes (96). Impairments in lysosomal acidification can promote 

leakage of nuclear contents into the cytosol resulting in activation of the cytosolic sensor for 

dsDNA and inflammasome protein absent in melanoma 2 (AIM2) and sensor for IgG, 

tripartite motif-containing protein 21 (TRIM21). Activation of AIM2 results in another form 

of cell death called pyroptosis and release of IL-1β (mentioned below), while stimulation of 

TRIM21 can lead to type I IFN production, a phenomenon that promotes immune 

dysregulation in SLE (97, 98). Together, these results suggest that defective uptake and 
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processing of apoptotic cells in SLE can result in activation of innate and adaptive immune 

responses.

Apoptosis-associated histone modifications in LN

Apoptosis is characterized by chromatin condensation and DNA fragmentation. Post-

translational modifications of histones alter the structure and function of chromatin during 

apoptosis (99). Most histone modifications occur at the N-terminus and include serine and 

threonine phosphorylation, lysine acetylation and ubiquitination, lysine and arginine 

methylation and ADP ribosylation. Histone phosphorylation weakens its interactions with 

DNA and promotes structural chromatin reorganization (100) and DNA fragmentation 

(101-104).

Acetylation of lysine residues on histones results in structural chromatin changes leading to 

an open conformation that activates gene transcription (105). Histone acetylation also 

promotes increased accessibility to nucleases and DNA fragmentation (99). Addition and 

removal of acetyl groups on histones is mediated by histone acetyltransferases (HAT) and 

histone deacetylases (HDAC). HDAC inhibitors delivered at high concentrations induce 

apoptosis (106, 107). Conversely, hypoacetylated histone H4 has been associated with early 

apoptosis (108). Histone methylation represses transcription and hypermethylated histone 

H4 has been linked to apoptosis (109). Ubiquitination targets proteins for proteasomal 

degradation and promotes protein-protein interactions (12). Histone H2A deubiquitination is 

also associated with chromatin condensation in apoptosis (110, 111). Poly(ADP-

ribosyl)ation is involved in many signaling pathways including DNA repair and apoptosis 

and is characterized by the addition of poly(ADP-ribose) (PAR) residues by poly(ADP-

ribose) polymerases (PARPs) (12). Chemical inhibition of poly(ADP-ribosyl)ation prevents 

DNA cleavage and cell death, suggesting the critical role of poly(ADP-ribosyl)ation in 

apoptosis (112-115). In summary, many types of post-translational histone modifications are 

generated during the apoptotic process. Various post-translational modifications that take 

place during apoptosis could create neoantigens that become targets for autoantibody 

formation (12, 116). Indeed, experiments performed by several groups suggest that 

apoptosis-induced post-translational histone modifications are targets for autoimmune 

responses in SLE patients and mice (117-120). Plasma from SLE patients and lupus-prone 

mice contains autoantibodies specific for modified histones that target acetylated residues in 

H2B and H4, methylated H3, and ubiquitinated H2A. Deposition of histone H3 is observed 

in kidney sections of MRL/lpr mice and glomerular ubiquitinated histone H2A has been 

reported in a significant proportion of patients with LN (120, 121). In summary, SLE 

patients generate autoantibodies targeting modified histones and this could promote immune 

complex formation and glomerulonephritis. Indeed, modified histones have been reported to 

be more immunogenic compared to unmodified histones (117, 122). Lupus-prone mice 

treated with a triacetylated histone H4 peptide have enhanced mortality, proteinuria, and 

glomerular IgG deposition when compared to mice treated with a nonacetylated histone H4 

peptide (117). Bone marrow-derived DCs exposed to acetylated nucleosomes undergo 

maturation and activate syngenic T cells. Apoptotic microparticles, which expose modified 

nucleosomes at the cell surface (123-125), are found in both SLE patients and mice 

(125-127). Apoptotic microparticles from MRL/lpr mice express elevated levels of modified 
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chromatin and induce enhanced maturation of DCs than BALB/c mice (125). DNASE1L3 is 

a serum enzyme that is critical for the degradation of chromatin in microparticles precluding 

autoantibody recognition of microparticle DNA and humans and mice lacking DNASE1L3 

develop SLE-like disease (127-131). Microparticles from SLE patients express apoptosis-

related histone modifications while these were absent in microparticles from healthy 

individuals (126). Microparticles from SLE patients activate pDCs and myeloid DCs that 

results in the induction of proinflammatory cytokines and type I IFN and also primes 

neutrophils for neutrophil extracellular trap (NET) formation (126). Based on this evidence, 

increased apoptosis-induced histone modifications in SLE may have immunostimulatory 

roles and contribute to the pathogenesis of LN

Necrosis

In contrast to apoptosis, primary and secondary necrosis are considered inflammatory 

modalities of cell death. Primary necrosis is often induced by cellular injury caused by ATP 

depletion, heat-shock or freeze/thaw, toxins, oxidative stress, and other noxious insults (14, 

132, 133). Necrosis can also be induced by inhibition of apoptosis combined with blockade 

of autophagy and/or caspase inhibition (134-138). Apoptotic cells can become secondary 

necrotic cells after phagocytes fail to clear the dying cells (132, 133). Necrotic cell death is 

characterized by ROS production, mitochondria hyperpolarization, lysosomal membrane 

disintegration, cellular and organelle swelling, and plasma membrane rupture (133). 

Necrotic cell death is considered inflammatory because loss of plasma membrane integrity 

promote release of autoantigens and damage associated molecular pattern (DAMPs) that 

serve as chemoattractants for inflammatory cell recruitment (139, 140). To prevent further 

inflammation, rapid clearance of necrotic cells is critical. Necrotic cells differ from apoptotic 

cells in the way they are internalized by macrophages (132, 141). While apoptotic cells are 

ingested by phagocytosis, necrotic cells are cleared by macropinocytosis (132, 141). Both 

apoptotic and necrotic cells depend on the externalization of phosphatidylserine for 

phagocyte recognition (142-144). CRP, SAP, C1q, and DNase I are also critical for clearance 

of necrotic cells (145-147). Unlike apoptosis, where complement binding is a late event, 

complement binding to necrotic cells occurs early on (146). In contrast to apoptosis, genes 

required for necrosis have yet to be defined although receptor-interacting serine/threonine-

protein kinase 1 and 3 (RIP1 and RIP3) appear to be critical for a type of programmed 

necrotic cell death called necroptosis (137, 148, 149). Necrosis can be a programmed 

occurrence in healthy individuals during development and intestinal epithelial cell 

homeostasis (137, 150, 151). In SLE, accelerated primary necrosis or accelerated apoptosis 

resulting in secondary necrosis, defective clearance of necrotic cells, and post-translational 

modifications during necrosis may play an important role in the development of LN.

Accelerated primary or secondary necrosis in LN

As previously mentioned, accelerated apoptosis leading to secondary necrosis has been 

observed in SLE patients and mice and promotes autoimmunity and renal damage (41, 46, 

47, 49, 53-55, 152, 153). Necrosis is frequently observed in subjects with LN and is 

associated with enhanced serological activity and proteinuria compared to LN patients that 

do not display necrosis (154). Nucleosomes can induce necrosis in lupus and control 
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lymphocytes both in vitro and in vivo (155). Due to the enhanced secondary necrosis 

observed in SLE, nucleosomes can accumulate and induce necrosis in neighboring cells, 

thereby resulting in an amplification loop of nucleosome release and immune dysregulation 

(155).

Defective clearance of necrotic cells in LN

Due to the inflammatory nature of cell death via necrosis, rapid clearance of dying cells is 

critical to prevent inflammation propagation and tissue damage (14). Necrotic cell clearance 

defects have been reported in SLE (132, 156). C1q and MBL are involved in 

macropinocytosis uptake of both apoptotic and necrotic cells and decreased C1q and MBL, 

reported in SLE, may lead to impaired macropinocytosis of necrotic cells, immune 

dysregulation and renal damage (86, 87, 89-91). Defects in expression and activity of CRP 

and SAP also contribute to defective clearance of necrotic cells (66, 68, 76). Some lupus 

patients have defective serum DNase I activity (157, 158) and they tend to have higher 

disease activity, and higher autoantibody levels when compared to SLE patients with normal 

enzyme activity (158). In mice, DNase I deficiency results in a lupus-like syndrome with 

glomerular immune complex deposition and glomerulonephritis (157). In summary, defects 

in the clearance of necrotic cells may potentiate immune dysregulation and organ damage in 

LN.

Post-translational modifications in necrosis

Little is known about the various post-translational modifications that occur during necrosis 

and their contribution to the development of LN. During programmed cell death, PARP is 

inactivated and cleaved by caspase-3 resulting in apoptosis (159). PARP is also cleaved in 

necrotic cells in a caspase-independent manner (160). Autoantibodies to PARP have been 

detected in SLE (161, 162) and they do not inhibit its catalytic activity but, rather, prevent 

caspase-3-mediated cleavage that results in decreased apoptosis (163). Collectively, the 

decreased clearance of apoptotic cells can result in cells undergoing secondary necrosis and 

the release of nucleosomes. Additionally, defects in the uptake of primary necrotic cells can 

also promote autoantigen externalization. Nucleosomes can induce primary necrosis in 

neighboring cells and this can result in enhanced autoantigen release, inflammation, and 

epitope spreading. Autoantibodies generated against nuclear components can inhibit PARP 

cleavage leading to prolonged survival of autoreactive cells that can mount an autoimmune 

response (163).

NETosis

An additional mechanism by which nuclear autoantigens may be modified and released to 

the extracellular space is through a specialized form of neutrophil cell death called NETosis 

(164). In response to microbial stimuli but also to a variety of sterile inflammatory signals 

(activated platelets, endothelial cells, crystals, autoantibodies, immune complexes and 

various proinflammatory cytokines), neutrophils can extrude a meshwork of nuclear material 

bound to neutrophil granular proteins (including LL-37, neutrophil elastase (NE), and 

myeloperoxidase (MPO)) (165-175). After recognition of a microbial insult, induction of 
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NETosis typically requires hydrogen peroxide production by nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase and superoxide dismutase (176). Hydrogen 

peroxide is consumed by MPO, which mediates the release of NE from azurophilic granules 

into the cytosol and its translocation to the nucleus (177), cleaving histones and promoting 

chromatin decondensation (174). Chromatin decondensation is also promoted by the 

activation and nuclear localization of peptidylarginine deiminase 4 (PAD4), an enzyme that 

citrullinates histones, leading to disruption in the electrostatic interactions of histones with 

DNA (178, 179). The nuclear and granular membranes become permeable and this allows 

for the formation of cytoplasmic complexes of granular proteins and chromatin (180). Once 

the plasma membrane ruptures, chromatin fibers decorated with granular proteins are 

extruded from the cell in the form of NETs (165). NETs can also be induced in a NADPH 

oxidase-independent manner dependent on calcium-activated small conductance potassium 

(SK) channel member SK3 and mitochondrial ROS (167). In fact, patients with chronic 

granulomatous disease lack NADPH oxidase activity but can still develop autoimmunity and 

have the ability to form immunogenic NETs through enhanced mitochondrial ROS 

production and promotion of interferogenic responses by extrusion of oxidized 

mitochondrial DNA (181). NETs can also induce IFN-α by activating TLRs on pDCs (182). 

DNase I is an important enzyme for the degradation of NETs and C1q also plays a key role 

in opsonizing NETs for clearance by macrophages (183, 184). NETs are considered dual-

edged swords in that NET induction and clearance may result in a protective antimicrobial 

effect but excessive NET formation and inefficient removal could lead to tissue damage and 

autoantigen modification and externalization (185). Excessive NET formation promoting 

tissue damage has been proposed in sepsis, psoriasis, diabetes, atherosclerosis, and SLE, 

among others (175, 186-189). This next section will discuss how enhanced NETosis, 

defective clearance of NETs, and post-translational modifications of proteins during 

NETosis may contribute to the development of lupus LN.

Enhanced NETosis in SLE may promote tissue damage

Neutrophils from SLE patients and lupus-prone mice are more prone to form NETs than 

neutrophils from healthy controls (175, 182, 190, 191). Neutrophils exposed to RNP 

immune complexes undergo enhanced NETosis through the induction of mitochondrial ROS 

(181). NET-derived self-DNA complexed with neutrophil-derived antimicrobial peptides 

such as LL-37 or human neutrophil peptide (HNP) activate pDC TLR9 and induce IFN-α 
(191). SLE patients generate autoantibodies that bind antimicrobial peptides and this can 

further enhance NET formation. These findings reveal a putative pathogenic amplification 

loop in SLE where neutrophils become primed to undergo NETosis after exposure to type I 

IFNs and other inflammatory stimuli, thereby releasing immunostimulatory nucleic acids 

that further activate type I IFN production.

SLE patients express a distinct subset of proinflammatory neutrophils, called low-density 

granulocytes (LDGs) (54, 192, 193) that have a heightened capacity to form NETs (175) and 

enhanced capacity to synthesize mitochondrial ROS (181). This leads to heightened 

externalization of immunostimulatory molecules (175, 181). Furthermore, LDG NETs are 

enriched in oxidized mitochondrial DNA that promotes type I IFN responses in target cells 

through a cGAS-STING-mediated pathway (181). Analysis of kidney biopsies from patients 
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with LN have revealed the presence of NETs and infiltrating netting neutrophils in the 

glomeruli (175), which positively correlates with higher levels of circulating autoantibodies 

and enhanced activity index in kidney biopsies. As such, LDGs’ enhanced ability to 

spontaneously form NETs leads to enhanced externalization of modified autoantigens and 

immunostimulatory molecules that may promote vascular and renal damage. NETs (and 

LL-37 expressed in NETs) can also induce inflammasome activation, pyroptosis, and release 

of IL-1β and IL-18 in human and murine macrophages, further amplifying NETosis (171).

Enhanced NETosis has also been observed in the NZM2328 and MRL/lpr murine models of 

lupus (190, 194). Given that PAD4 has been implicated in NET formation, lupus-prone mice 

have been treated with PAD chemical inhibitors (Cl-amidine or BB-Cl-amidine) and found 

to have improved vascular function, reduced type I IFN signatures, glomerular NETosis, 

renal inflammation and immune complex deposition (190, 194). These results suggest that 

enhanced NETosis in lupus mice promotes endothelial and renal damage and that targeting 

this cell death pathway may be explored as a potential therapeutic option for the treatment of 

kidney disease. In addition, inhibition of NETosis through mitochondrial ROS scavengers in 

vivo in lupus-prone mice also decreased renal inflammation and immune complex 

deposition (181). Overall, these observations implicate aberrant NET formation in the 

pathogenesis of LN.

Defective clearance of NETs contributes to renal disease

Previous studies have suggested that SLE patients have an impaired ability to degrade NETs 

and proposed that this impairment contributes to the development of LN (157, 158, 184, 

195). DNase I is the major endonuclease found in circulation involved in degrading NETs 

and, as mentioned above, impaired activity of this enzyme leads to lupus-like disease in 

mice and humans (157, 184, 196). The correlation between DNase I deficiency and 

increased prevalence of LN was also confirmed in humans as SLE subjects with renal 

involvement were reported to have significantly reduced DNase I activity (157). Impaired 

DNase I activity in humans can be linked to mutations and polymorphisms in DNase I, the 

presence of DNase I specific inhibitors and anti-NET antibodies, and binding of C1q, LL-37, 

and HMGB1 to NETs to prevent degradation (184, 191, 195-201). While a previous phase I 

study of DNase I in patients with LN revealed no change in serum markers of disease 

activity (202), it is possible that more effective preparations of the enzyme may prove 

efficacious in future trials.

Collectively, these data imply that impaired DNase I activity and enhanced externalization of 

autoantigens and antimicrobial peptides promotes IFN production, inflammasome activation/

pyroptosis, autoantibody formation, and prevents degradation of NETs that creates an 

amplification loop for inflammation and tissue damage.

NETosis-derived post-translational modifications in SLE

Various post-translational modifications of cellular proteins occur during NETosis and the 

enhanced externalization of these proteins, combined with defective clearance, may promote 

disruptions in adaptive immunity that further drive SLE pathogenesis (117, 119, 120, 203). 

Mistry and Kaplan Page 11

Clin Immunol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SLE NETs contain histone modifications that are also observed during apoptosis (203). SLE 

NETs express higher levels of acetylated H4-K8, 12, 16, acetylated H2B-K12, and tri-

methylated H3-K27 compared to NETs from healthy donors. These modified histones were 

targeted by autoantibodies in SLE and administration of a triacetylated histone H4 peptide in 

lupus-prone mice led to increased mortality and renal damage (117, 119, 120). 

Hypoacetylated H4-K8, K12, K16, and H2B-K12 and hypomethylated H3-K27 were found 

in unstimulated SLE neutrophils and induction of NETosis resulted in a significant 

enhancement in histone acetylation and methylation when compared to healthy control 

neutrophils. These results may indicate that SLE neutrophils are more susceptible to 

NETosis-induced histone modifications than healthy donor neutrophils (203). 

Hyperacetylated histones in NETs can upregulate the activation marker CD71 on 

macrophages (203). These results indicate that many histone modifications that occur during 

apoptosis are also observed during NETosis.

PAD4 mediates citrullination of histones H1, H2A, H3, and H4 during NETosis (204, 205). 

Citrullinated histone H1 is present in NETs and autoantibodies specific for citrullinated 

histone H1 are present in lupus sera (204). Autoantibodies targeting histone H1 appear to be 

specific for SLE and correlate with disease activity (206). In addition to histones, the 

antimicrobial peptide LL-37, which is externalized in NETs, was also reported to undergo 

citrullination in lung tissues from individuals with chronic obstructive pulmonary disorder 

(COPD) (207). Citrullinated LL-37 has an impaired ability to kill various bacteria (208) and 

this could potentially be implicated in the enhanced susceptibility of patients with 

autoimmunity to develop secondary bacterial infections (209). Whether citrullination of 

other proteins during NETosis impairs distinct immunogenicity or tissue damage potential in 

SLE remains to be determined. NETosis also results in the translocation of hypopolarized 

mitochondria to the cell surface that mediates the externalization of oxidized mitochondrial 

DNA, which is both proinflammatory and interferogenic (181). Collectively, enhanced 

NETosis and defective clearance of NETs occur in SLE patients and the enhanced 

externalization of modified autoantigens and antimicrobial peptides contributes to the 

production of type I IFN and autoantibodies specific for NET components that may promote 

the development of autoimmunity.

Pyroptosis

Pyroptosis is an inflammatory form of programmed cell death that occurs in response to 

danger signals and it is triggered by inflammasome activation, resulting in release of IL-1β 
and IL-18 and in externalization of cellular material (13). The canonical inflammasome is a 

multi-protein complex found in the cytosol that includes members of the nucleotide-binding 

domain and leucine-rich repeat-containing (NLR) family and AIM2 and is dependent on 

caspase 1. The noncanonical inflammasome is a cytosolic LPS sensor that signals through 

caspase 11. Inflammasome activation is completed in two steps with the first step being 

recognition of the pathogen-associated molecular pattern (PAMP) or DAMP by TLRs or 

RLRs, activation of NF-κB, synthesis of pro-IL-1β and pro-IL-18, and upregulation of 

inflammasome proteins (13). The second step involves the assembly of the inflammasome, 

conversion of procaspase-1 to caspase 1, and cleavage of pro-IL-1β and pro-IL-18 into their 

active secreted form that mediates inflammation (210). In addition, caspase 1 also triggers 
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DNA fragmentation, nuclear condensation, lysosome exocytosis, disappearance of 

organelles, pore formation in plasma membrane, cellular swelling, and disintegration of the 

plasma membrane, all characteristic of pyroptosis (13). IL-1β signals through the IL-1 

receptor and activates NF-κB that results in the production of proinflammatory mediators 

including cyclooxygenase-2 (COX-2) and IFN-γ (211). IL-18 signals mainly through the 

p38 MAPK pathway and mediates production of IL-1α, IL-6, and IL-8 (211). Additionally, 

IL-1β and IL-18 can induce NETosis to amplify the inflammatory response (171, 173). 

Pyroptosis can also result in the release of HMGB1 and this alarmin may induce 

inflammation by the production of proinflammatory cytokines, recruitment of immune cells 

through chemotaxis, and further induction of pyroptosis in macrophages (13, 212). 

Moreover, HMGB1 forms complexes with and increases the immunogenicity of DNA, 

histones, and LPS (213-215). Pyroptosis can lead to the release of undigested lysosomal 

contents that may include microbial products, previously phagocytosed autoantigens, and 

antimicrobial peptides (13). These factors may induce an inflammatory reaction that 

possibly could contribute to lupus flares. Pyroptosis also results in the release of intact 

nuclei that can potentially serve as source of autoantigens for the formation of anti-nuclear 

antibodies (13, 216, 217). Inflammasome activation also externalizes the adaptor ASC that 

displays ‘prionoid’-like activity and propagates the inflammatory response after 

internalization by neighboring cells. Moreover, patients and mice with autoimmune disease 

generate autoantibodies to ASC specks (218). These studies suggest that pyroptosis results 

in the externalization of various molecules that can potentiate the inflammatory response and 

potentially serve as a source of autoantigens.

Because pyroptosis is an inflammatory form of cell death involving release of self-antigens, 

rapid and efficient clearance of cells is crucial to prevent chronic inflammation and 

autoimmunity. Similar to apoptosis and necrosis, macrophages undergoing pyroptosis also 

expose phosphatidylserine on their surface for macrophage uptake (219). Pyroptotic cells 

release ATP as a “find-me” signal for recruitment of macrophages. Excess externalization of 

ATP can result in further activation of the NLRP3 inflammasome and lead to release of 

proinflammatory mediators (220).

NLRP3 is the best characterized inflammasome protein that recognizes various microbes 

and microbial products but also crystals, ATP and pore-forming toxins (210). Dysregulated 

NLRP3 inflammasome activation has been implicated in various diseases (221-230) 

including SLE (171, 231, 232). Given the inflammatory nature of this form of programmed 

cell death and the externalization of nuclear material, this next section will discuss how 

accelerated pyroptosis, defective clearance, post-translational modifications during 

pyroptosis could contribute to the break in tolerance and lead to renal damage in lupus.

Enhanced pyroptosis in lupus nephritis

Numerous studies have reported that enhanced pyroptosis of human and murine 

macrophages in SLE may contribute to the development of nephritis and other lupus 

manifestations (171, 231, 232). Kahlenberg et al demonstrated that both LL-37 and NETs 

containing LL-37 activate the NLRP3 inflammasome in both human and murine 

macrophages that results in the secretion of IL-1β and IL-18. LL-37 requires P2X7 receptor-
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induced potassium efflux to activate NLRP3. SLE LDGs with their heightened capacity to 

form NETs can externalize higher levels of LL-37 that can further activate the 

inflammasome (175). Importantly, macrophages derived from SLE patients have a lower 

threshold for activation, greater caspase-1 cleavage, and enhanced production of IL-1β and 

IL-18 compared to control macrophages once they are exposed to NETs (171). IL-18 can 

induce NET formation potentially providing a feed-forward inflammatory loop where NETs 

induce activation of the inflammasome and release of proinflammatory mediators that 

induce NETosis in neighboring neutrophils.

It has also been shown that the inflammasome is involved in the development of nephritis in 

murine models of lupus (231-233). Kidneys from MRL/lpr mice have enhanced protein 

expression of various inflammasome components compared to kidneys from control mice 

(234). Yuan et al demonstrated that MRL/lpr mice treated with isoflurane had reduced renal 

NLRP3 inflammasome expression and activation, proteinuria, autoantibodies, and renal 

inflammatory markers (231). P2X7 receptor plays a critical role in the activation of the 

NLRP3 inflammasome and release of IL-1β by binding extracellular ATP and inducing pore 

formation that results in the efflux of intracellular K+ (235). Zhao et al treated MRL/lpr mice 

and the accelerated model of IFN-adenovirus administration to NZM2328 mice with a P2X7 

inhibitor, brilliant blue G (BBG), and observed reduced renal injury and marked 

improvement in survival compared to untreated mice (232). Together, these data demonstrate 

P2X7-mediated NLRP3 inflammasome activation is enhanced in both MRL/lpr and 
NZM2328 AdIFN-α mouse models of glomerulonephritis and targeting P2X7 may 

ameliorate renal disease.

Mice lacking caspase-1 are protected from developing SLE and LN in the pristane-induced 

lupus model (233). In humans, microarray analysis from kidney biopsies from LN patients 

revealed upregulation of inflammasome-associated transcripts when compared to normal 

kidneys (236). Low levels of serum IL-1 receptor antagonist are associated with renal flares 

in SLE patients, suggesting that IL-1 signaling may play a pathogenic role in LN (237). 

Elevated levels of IL-18 have been described in sera and urine of SLE patients (238), 

particularly in patients with active LN (238, 239). Certain polymorphisms in the IL-18 gene 

are associated with SLE, increased expression, and development of kidney disease 

(238-243). Based on these data, heightened expression of IL-1β and IL-18, associated to 

inflammasome activation and death by pyroptosis, may play pathogenic roles in LN.

Defective clearance of pyroptotic cells

Impaired removal of pyroptotic cells can potentially lead to chronic exposure of potential 

autoantigens and break of self-tolerance in lupus. Wang et al provided some insight into 

pyroptotic cell clearance (219). Pyroptotic cells are efficiently internalized by human 

monocytic THP1-cell-derived macrophages and murine peritoneal macrophages and this 

process is also dependent on the expression of phosphatidylserine. In addition, pyroptotic 

cells release ATP as a “find-me” signal for macrophage recruitment. Since pyroptotic cells 

and apoptotic cells both externalize phosphatidylserine for recognition by phagocytes, 

defects in phagocytic removal of apoptotic cells could also play a role in the impaired 

removal of pyroptotic cells. C1q prevents procaspase-1 cleavage and caspase-1-mediated 
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cleavage of pro-IL-1β in human monocyte-derived macrophages suggesting an inhibitory 

effect on inflammasome activation (244). Although previous literature has not reported the 

role of C1q in removal of pyroptotic cells, it would be interesting to determine if impaired 

C1q activity in SLE contributes to the dysregulated inflammasome activity previously 

mentioned.

At this time, there is not sufficient literature available supporting a link between post-

translational modifications during pyroptosis and development of SLE and further work is 

needed.

Autophagy

Autophagy is a catabolic process that involves the recycling of aged cellular components and 

proteins into nutrients and amino acids to prolong survival and limit cellular stress (245, 

246). Autophagy also plays a critical role in lymphocyte homeostasis and the innate and 

adaptive immune response (247). Three types of autophagy have been characterized and 

they include macroautophagy (hereafter called autophagy), microautophagy, and chaperone-

mediated autophagy (CMA) (247). Macroautophagy is the best-understood autophagy 

pathway that involves the enclosure of a targeted portion of the cytoplasm into double-

membrane vesicles (autophagosomes) that fuse with lysosomes (autolysosomes) leading to 

degradation (248). Microautophagy is the engulfment of cytoplasmic material by lysosomes 

and CMA is the selective uptake of cytosolic proteins into lysosomes that is mediated by 

chaperone proteins (249, 250). Although autophagy plays a critical role in promoting 

cellular survival, constitutive activation of this pathway can kill the cell in a process known 

as type II programmed cell death (247). According to the guidelines established by the 

Nomenclature Committee on Cell Death, autophagic cell death is cell death that is inhibited 

by genetic manipulation of at least two components from the autophagy pathway and 

verified using clonogenicity assays (251). Autophagic cell death is characterized by the 

presence of autophagosomes/autolysosomes, upregulation of autophagy-related genes (Atg) 

genes, a compromised plasma membrane, and lack of phagocyte recruitment (248, 252). 

Autophagic cell death has been shown to be induced by certain cytotoxic agents in the 

absence of an intact apoptotic pathway, in cancer cells in response to chemotherapy/

radiation treatment, by dysregulated RAS oncogenic activity, and IFN-γ among others (138, 

251, 253-256). A novel form of autophagic cell death that is dependent on Na+, K+-ATPase 

pump called autosis has also been described (251).

Although it is relatively unknown how cells dying from autophagy are cleared, a 

noncanonical form of autophagy dependent on ATG5 and ATG7 called microtubule-

associated protein 1 light chain 3 alpha (L3C)-associated phagocytosis (LAP) is essential for 

efficient degradation of phagocytosed microbes and dead cells (245, 257, 258). LAP is 

induced after TIM4 recognizes phosphatidylserine on dead cells and this leads to the 

recruitment of the autophagy machinery (Beclin1, VPS34, and LC3) to the phagosome 

leading to lysosomal fusion, acidification, and subsequent degradation of the phagocytosed 

cargo (245, 257). Macrophages lacking ATG7 do not recruit autophagy machinery to the 

phagosomes and are unable to undergo acidification (257). This results in an inability to 

degrade the phagocytosed cargo and induction of proinflammatory cytokines. Previous 
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genetic studies have linked polymorphisms in autophagy and LAP genes ATG5 and ATG7, 

with SLE susceptibility (259-261). Given the critical role of LAP in processing and 

removing dead cell debris and defective removal of dying cells in SLE, this next section will 

examine how dysregulated autophagy and impaired LAP contribute to the development of 

nephritis.

Dysregulated autophagy may contribute to the development of SLE

Although previous literature has not reported the role of autophagic cell death in SLE, 

studies suggest that autophagy may be dysregulated in SLE (262-266). There are conflicting 

reports as to whether or not autophagy is defective or active in SLE (262-266). T cells from 

MRL/lpr and NZB/W mice display enhanced autophagy compared to control mice (266). In 

addition, autophagic vacuoles were elevated in specific subsets of T cells from SLE patients 

compared to healthy control and patients with other autoimmune diseases. Basal levels of 

autophagy are higher in CD4+ T cells from SLE patients compared to healthy donors (262). 

However, T cells from SLE patients are resistant to autophagy induction (262). T cells from 

lupus patients also have enhanced expression of genes that negatively regulate the autophagy 

pathway including α-synuclein. Under serum starvation conditions to induce autophagy, T 

cells from SLE patients fail to induce autophagy, and instead, form aggregates of α-

synuclein that have been shown to potentially serve a pathogenic role in other diseases (265, 

267, 268). Collectively, these results suggest that T cells from SLE mice and humans have 

higher basal levels of autophagy that may potentially result in increased autophagic cell 

death. In addition, the lack of response to autophagy-inducing stimuli in T cells from SLE 

patients may result in decreased cell survival and increased apoptosis that can lead to 

increased autoantigen release (262). B cells from SLE patients and NZB/W mice have 

activated autophagy and inhibition of autophagy abrogates plasma cell development in mice 

and humans (264). These results suggest that autophagy may play a vital role in 

autoantibody formation in SLE. A majority of SLE patients express autoantibodies targeting 

a small GTPase family inhibitor, D4GDI, and treatment of T cells from healthy donors and 

SLE patients with α-D4GDI Ab induces autophagy (263). Chronic exposure to autophagy 

stimuli may lead to enhanced cell death and these authors suggested that repeated exposure 

to autoantibodies may lead to the selection of a T cell population that is resistant to 

autophagy induction in SLE.

Defective removal of dead cells by noncanonical autophagy may lead to 

nephritis

Defects in the LAP pathway have been shown to result in SLE-like disease in mice (258). 

LAP-deficient mice develop lupus-like disease characterized by increased circulating anti-

dsDNA Ab, glomerular deposition of IgG and complement, glomerulonephritis, and IFN 

signature. LAP-deficient mice injected with apoptotic cells were capable of internalizing the 

dead cells but were unable to degrade the phagocytosed cargo resulting in induction of 

proinflammatory cytokines. LAP-sufficient mice generate IL-10 in response to 

administration of dying cells. TIM-4 deficient mice develop a similar phenotype 

characterized by the presence anti-dsDNA Ab, hyperactive lymphocytes, and impaired 
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uptake and clearance of apoptotic cells (269). Together, these results suggest that recognition 

of dying cells by TIM-4 and their clearance by LAP is critical for prevention of 

autoimmunity.

Post-translational modifications of histones in autophagy

Although previous literature has not examined the role of histone modifications during 

autophagy and their potential role in breaking tolerance in LN patients, post-translational 

modifications of histones plays a critical role in regulating autophagy (270). There are many 

histone modifications during autophagy that also occur during apoptosis but they serve 

opposing roles. H3K4 trimethylation, H3K9 dimethylation, H3K56 acetylation, and H4K16 

acetylation repress autophagy, while H4K20 trimethylation promotes autophagy (270-278). 

At this time, it has not been reported whether autoantibodies targeting histone modifications 

that occur during autophagy exist in SLE.

Conclusions

Glomerulonephritis is one of the most common and serious clinical manifestations in SLE 

patients. Dysregulation in cell death pathways and in clearance of death material may 

promote enhanced synthesis of modified autoantigens that could promote autoimmunity in 

SLE. Maintaining homeostasis requires programmed cell death without compromising 

membrane integrity and their timely removal by scavenger cells. In SLE, accelerated cell 

death combined with the defective clearance of these dying cells leads to the externalization 

and accumulation of nuclear and cytoplasmic autoantigens (Figures 1 and 2). In addition, 

post-translational modification of histones and other proteins increases their immunogenicity 

and may lead to autoantibody formation, induction of type I IFN responses and tissue 

damage (Figure 3). Interestingly, the byproducts of one cell death pathway can induce 

activation of a different cell death pathway in a neighboring cell resulting in an amplification 

loop that exacerbates disease (Figures 1 and 3). Moving forward, genetic and genomic 

analyses may further clarify the host’s predisposition to mount dysregulated immune 

responses to death cells, to promote enhanced cell death or impaired clearance. Given the 

critical role that inflammatory cell death processes play in the pathogenesis of SLE, 

therapeutics that inhibit inflammatory forms of cell death, that enhance clearance or that 

limit certain deleterious posttranslational modifications may prove to be efficacious in the 

treatment of SLE. Previous groups have successfully inhibited NETosis and reduced disease 

activity by using molecules that scavenge ROS, inhibit PAD activation, modulate 

intracellular and extracellular calcium pools, block MPO activation, and disrupt the 

stabilization of the actin cytoskeleton (170). Given the critical role of DNASE1L3 in the 

degradation of DNA in circulating apoptotic microparticles and prevention of autoimmunity 

in mice (126), examining the effect of DNASE1L3 in SLE patients should be explored. 

Finally, HDAC inhibitors have been shown to modulate renal disease in various mouse 

models of lupus and should be further investigated in SLE patients (279-281).

List of Abbreviations

AIM2 absent in melanoma 2
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APC antigen presenting cell

Atg autophagy-related gene

BAFF B cell-activating factor

Bcl-2 B cell lymphoma 2

CRP C-reactive protein

DAMP damage-associated molecular pattern

dsDNA double stranded deoxyribonucleic acid

H2B-K12 histone H2B at lysine 12

HAT histone acetyltransferase

HDAC histone deacetylase

HMGB1 high mobility group box 1 protein

IL-1• interleukin 1 beta

IFN interferon

LAP LC3 (light chain 3)-associated phagocytosis

LL-37 cathelicidin

LN lupus glomerulonephritis

MARCO macrophage receptor with collagenous structure

MBL mannose binding lectin

MPO myeloperoxidase

NADPH nicotinamide adenine dinucleotide phosphate

NE neutrophil elastase

NET neutrophil extracellular trap

NLR nucleotide-binding domain and leucine-rich repeat-containing

PAD4 peptidylarginine deiminase 4

PARP poly(ADP-ribose) polymerase

pDC plasmacytoid dendritic cell

PTEN phosphatase and tensin homolog

PTX3 pentraxin-related protein

RIP1 receptor-interacting serine/threonine-protein kinase 1
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ROS reactive oxygen species

SAP serum amyloid protein

SLE systemic lupus erythematosus

SR-A scavenger receptor A

TACI cyclophilin ligand interactor

TLR toll-like receptor
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Highlights

* An imbalance in cell death and cell death clearance may promote autoantigen 

modification and availability to activate the innate and adaptive immune 

systems.

* Byproducts of one cell death pathway can induce other cell death 

mechanisms in adjacent cells.

* Aberrant cell death pathways have been implicated in the development of 

lupus nephritis.

Mistry and Kaplan Page 35

Clin Immunol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Potential role of apoptosis and necrosis in the development of lupus nephritis
In healthy patients, apoptotic cells are phagocytosed by macrophages after recognition of 

phosphatidylserine (PS) on the outer membrane leading to clearance and induction of anti-

inflammatory mediators. Necrotic cells also expose PS on their membrane and are 

internalized by macrophages using macropinocytosis. In certain SLE patients, increased 

apoptosis and defective clearance of dying cells leads to secondary necrosis and release of 

nucleosomes (red oval structures). Circulating nucleosomes can induce primary necrosis in 

neighboring cells and can be internalized and presented by dendritic cells to autoreactive 

helper T cells that mediate autoantibody production by autoreactive B cells. Autoantibodies 

can form immune complexes with nucleosomes and bind to heparan sulfate (HS) on the 

glomerular basement membrane to induce glomerulonephritis.
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Figure 2. Putative role of LC3-associated phagocytosis (LAP) in the development of lupus 
nephritis
In healthy patients, engagement of the TIM-4 receptor leads to activation of LAP, 

recruitment of autophagy machinery (LC3) to autophagosomes (AP), fusion with lysosomes 

(L) and degradation of intracellular contents. In SLE patients, LAP can be defective leading 

to internalization of dying cells but impaired clearance that results in the release of 

nucleosomes and induction of proinflammatory cytokines, autoantibody formation, and 

kidney damage.
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Figure 3. Putative role of NETosis and pyroptosis in the development of lupus nephritis
In healthy patients, NETs generated in response to sterile/microbial stimuli become 

opsonized by C1q and processed by DNase I leading to clearance by macrophages in the 

absence of inflammation. In SLE, neutrophils or low-density granulocytes (LDGs) have 

enhanced spontaneous NET formation that is driven by mitochondrial ROS. Due to DNase I 

or C1q deficiency, macrophages are unable to clear the NETs leading to activation of 

plasmacytoid dendritic cells (pDCs) and type I IFN, induction of pyroptosis in macrophages, 

autoantibody formation specific for modified NET proteins, and immune complex 

deposition in the glomerular basement membrane.
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Table 1

Cell death genes and autoimmunity

Gene Encoded Protein Cell Death Pathway Mutant Phenotype

FAS or FASLG Fas or FasL Apoptosis Lymphadenopathy, splenomegaly, autoantibody, 
hypergammaglobulinemia, glomerulonephritis

BCL2 Bcl-2 Apoptosis Prolonged antibody response, ANA, immune complex 
deposition, renal disease

BCL2L11 Bim Apoptosis Splenomegaly, lymphadenopathy, glomerular damage, 
interglomerular proliferation

TNFSF13B BAFF Apoptosis Expansion of mature B cells and effector T cells, anti-
DNA, glomerular deposition

TNFRSF13B TACI Apoptosis Deleting TACI in B cells prevents BAFF-induced 
kidney disease but TACI−/− mice develop fatal 
glomerulonephritis

PTEN PTEN Apoptosis Anti-DNA, ANA, glomerular IgG deposition

TP53 P53 Apoptosis Glomerulonephritis with depletion of splenic Treg cells

TYR03/AXL/MERTK (TAM) Tyro3, Axl, Mer Apoptosis Hyperproliferation of B and T cells, anti-DNA, kidney 
infiltrates of B and T cells, glomerular IgG deposition

SR-A/MARCO SR-A/MARCO Apoptosis Anti-DNA and ANA

SAA1 SAP Apoptosis and necrosis Anti-DNA, inefficient degradation of long chromatin, 
glomerulonephritis

PTX3 PTX3 Apoptosis Autoimmune lung disease

DNASE1L3 DNASE1L3 Apoptosis Anti-DNA, ANA. splenomegaly, glomerular IgG 
deposition, glomerulonephritis

MBL2 MBL Apoptosis and necrosis Nephritis

C1QA C1q Apoptosis and necrosis Decreased survival, autoantibody formation, 
glomerulonephritis, glomerular apoptotic cell bodies

CYBB NOX2 NETosis, LAP Splenomegaly, ANA, proteinuria, renal pathology

DNASE1 DNase 1 Apoptosis, necrosis and 
NETosis

ANA, glomerular immune complex deposition, 
glomerulonephritis

CYBB and RUBCN NOX2 and rubicon LAP Proinflammatory cytokines, IFN signature, ANA, anti-
DNA, immune complex deposition, renal damage

TIM4 TIM4 LAP Anti-DNA, hyper-active lymphocytes, impaired uptake 
and clearance of dying cells
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