Chiba and Uchiyama BMC Bioinformatics (2017) 18:93
DOI 10.1186/512859-017-1531-1

SPANG: a SPARQL client supporting

BMC Bioinformatics

@ CrossMark

generation and reuse of queries for
distributed RDF databases

Hirokazu Chiba ® and Ikuo Uchiyama

Abstract

Background: Toward improved interoperability of distributed biological databases, an increasing number of
datasets have been published in the standardized Resource Description Framework (RDF). Although the powerful
SPARQL Protocol and RDF Query Language (SPARQL) provides a basis for exploiting RDF databases, writing SPARQL
code is burdensome for users including bioinformaticians. Thus, an easy-to-use interface is necessary.

Results: We developed SPANG, a SPARQL client that has unique features for querying RDF datasets. SPANG
dynamically generates typical SPARQL queries according to specified arguments. It can also call SPARQL template
libraries constructed in a local system or published on the Web. Further, it enables combinatorial execution of
multiple queries, each with a distinct target database. These features facilitate easy and effective access to RDF

datasets and integrative analysis of distributed data.

Conclusions: SPANG helps users to exploit RDF datasets by generation and reuse of SPARQL queries through a
simple interface. This client will enhance integrative exploitation of biological RDF datasets distributed across the
Web. This software package is freely available at http://purl.org/net/spang.

Keywords: Semantic Web, SPARQL, RDF, Database integration, Unix command

Background

Because of advances in biotechnologies, various types of
biological data have drastically increased in the past dec-
ade. Because of the volume, heterogeneity, and continual
growth of biological data, it has become increasingly dif-
ficult for individual researchers to manage an entire
dataset in a single repository. In this context, Semantic
Web technology [1] has attracted attention as a promis-
ing approach of knowledge management [2]. In the Se-
mantic Web, all information is described in the
Resource Description Framework (RDF) [3], in which
every piece of information is in the form of a triple con-
taining a subject, predicate, and object and each re-
source is represented by a Uniform Resource Identifier
(URI). The RDF works as a general framework of know-
ledge representation and the URI assures valid integra-

tion of data collected from different sources.

* Correspondence: chiba@nibb.ac.jp
National Institute for Basic Biology, National Institutes of Natural Sciences,
Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan

(BioMed Central

Furthermore, knowledge extraction from the RDF can
be implemented using a powerful query language called
the SPARQL Protocol and RDF Query Language
(SPARQL) [4]. SPARQL specifications include federated
query functionality [5], by which distributed databases
can be queried in an integrative manner. Thus, Semantic
Web technology provides a basis for flexible integration
of the increasing amount of heterogeneous data. In fact,
many biological databases have already adopted the Se-
mantic Web [6-9].

Despite the well-designed basis of Semantic Web tech-
nologies, several obstacles that prevent users including
bioinformaticians from utilizing RDF databases still re-
main. The main hurdle for most users is writing
SPARQL, which often includes cumbersome coding
tasks. For example, SPARQL permits inclusion of subqu-
eries for distinct endpoints in a federated query; how-
ever, writing such a nested query is a complicated task
and can be a technical obstacle for most users. Several
approaches for supporting SPARQL coding currently
exist. Examples include SPARQL editors with useful

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1531-1&domain=pdf
http://orcid.org/0000-0003-4062-8903
http://purl.org/net/spang
mailto:chiba@nibb.ac.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Chiba and Uchiyama BMC Bioinformatics (2017) 18:93

functionalities such as URI autocompletion [10], and
graphical support for step-by-step construction of
SPARQL queries [11, 12]. Despite these approaches,
constructing executable SPARQL code, even for a simple
query, still remains a time-consuming task; thus, a
mechanism that saves time of preparing SPARQL code
is necessary to maximize the use of available RDF data-
sets. As an alternative approach to this issue, a wiki-
based portal for sharing SPARQL queries was con-
structed [13], which can bypass the burdensome coding
task. Although the queries registered on this service can
be executed on the portal site, a mechanism for reusing
these queries in other environments would maximize
the usefulness of the accumulated queries.

Here, we developed SPANG, a client that supports
querying by generation and reuse of SPARQL codes
through a simple interface. Taking advantage of the
common “triple” form of RDF data, SPANG generates
typical queries without the need for SPARQL coding.
Even in complicated queries, SPANG can construct run-
time queries using predefined templates. Regarding the
federated query, SPANG realizes a similar functionality
by combining multiple queries through a Unix pipe.
SPANG, with its unique features, minimizes the burden
of coding SPARQL, thereby enhancing integrative ex-
ploitation of distributed databases.

Implementation

The SPANG package includes the main spang com-
mand, which can be used in the Unix command-line en-
vironment. In general, the spang command helps users
to query RDF databases by dynamically generating
SPARQL queries according to the supplied command-
line options or arguments. More specifically, spang has
two execution modes:

1) Shortcut mode, in which users need only specify
command-line options to generate a simple query.
Specific command-line options, including -S SUB-
JECT, =P PREDICATE, -O OBJECT, =L LIMIT,
and other modifiers, are interpreted as shortcuts for gen-
erating typical SPARQL queries (see Additional file 1).

2) Template mode, in which users can generate a query
using a SPARQL template and parameters. The
template can be either a local file or a remote file
published on the Web. The specified parameters
replace the placeholders included in the template to
generate a runtime query.

Although each spang process submits a query to a
specified database, the spang process can be combined
with other Unix processes through a Unix pipe. Notably,
multiple spang commands, each with distinct target
database, can be combined through a Unix pipe by

Page 2 of 6

transferring variable bindings between queries, thereby
realizing federated use of multiple databases.

The SPANG package is implemented in Perl. Specific-
ally, the spang command accesses remote SPARQL
endpoints using the Perl LWP module. To lower the ini-
tial hurdle of querying with SPARQL, the SPANG pack-
age provides predefined configurations, including i)
nicknames for SPARQL endpoints, ii) frequently used
prefix declarations for URIs, and iii) SPARQL template
libraries. Furthermore, users can extend the configura-
tions by preparing user-defined configuration files.

Results

Simple queries using SPARQL shortcuts

SPANG can generate and execute simple queries by spe-
cifying a set of SPARQL shortcuts and additional op-
tions. An example of such queries is,

spang uniprot -S uniprot:P02649 -a

where the first argument is the target SPARQL end-
point and the ensuing arguments are SPARQL shortcuts
and an option. The uniprot in the first argument is a
predefined nickname for the UniProt SPARQL endpoint
[14]. The SPARQL endpoint can be specified in a URL
or in a nickname for simplicity. The uniprot: in the
third argument is a prefix for URIs of UniProt entries.
This example command line searches the UniProt data-
base for statements that have the specified entry ID as a
subject (Fig. 1). Using the -a option transforms the
URIs in the search result into abbreviated forms using
predefined prefix declarations. For example, a URI
<http://www.w3.0rg/2000/01/rdf-schema#-
label> is transformed into rdfs:label. The result
is output to the standard output in the form of tab-
separated values by default, as it is suitable for

SPARQL endpoint (http://sparql.uniprot.org)

> spang—s uniprot:P02649 -a

SPARQL shortcut

W SPARQL for retrieving triples with uniprot:P02649 as a subject

‘PREFIX uniprot: <http://purl.uniprot.org/uniprot/>

SELECT ?p 20 Prefix declarations are automatically added.

WHERE {
uniprot:P02649 ?p 2o
}

v Search results

rdf:type
rdfs:label

up:Protein
"Apolipoprotein E”

Fig. 1 Example usage of SPANG with SPARQL shortcuts. The
command line accesses the UniProt SPARQL endpoint and searches

for triples that have uniprot:P02649 as a subject

http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label

Chiba and Uchiyama BMC Bioinformatics (2017) 18:93

processing by line-oriented Unix programs. In addition,
a combination of subject, predicate, and object is pos-
sible according to the following:

spang uniprot -S uniprot:P02649 -P
up:organism

where the predicate up:organism is specified to
confine the results to organism information. Instead of
specifying a predicate, a property path can be used as
follows:

spang uniprot -S uniprot:P02649 -P
up:organism/up:scientificName

which retrieves the scientific name of the organism.
Thus, the shortcut mode can be typically used to re-
trieve resources that are associated with a specific
subject via arbitrary predicates. More generally, the
shortcut mode can generate a SPARQL code contain-
ing a certain triple pattern (see Additional file 1).
Adding -gq option to the command line outputs the
generated SPARQL query without executing i,
thereby allowing inspection of the internal operation.
For the full list of available command-line options,
simply type the command spang.

Using SPARQL templates with parameters

Although the SPARQL shortcuts are useful for generat-
ing simple queries, they do not cover a complicated
query that contains combinations of triple patterns.
Thus, SPANG provides a mechanism to generate arbi-
trary query patterns using SPARQL templates. An ex-
ample of such is,

spang uniprot uniprot_annot P02649

where the first argument is the target SPARQL end-
point, the second argument is the name of the SPARQL
template, and the ensuing argument is the parameter of
the template. The specified parameter replaces the place-
holder (represented as $1) included in the template be-
fore execution (Fig. 2). uniprot_annot is the name of
a SPARQL template included in the predefined SPARQL
library and P02649 is a parameter. This example query
retrieves annotation for a protein P02649 from the Uni-
Prot database.

Whereas the templates usually assume specific target
databases, some templates are generally applicable to
any SPARQL endpoint; for example,

spang uniprot
regex_class’“apolipoprotein’

Page 3 of 6

SPARQL endpoint (http://sparql.uniprot.org)

> spang | uniprot|uniprot_annot (P02649
’SPARQLtempIate parameter

!SPARQL q)»eénstructed from the template and the parameter

SELECT ?gene ?9fganism ?function
WHERE {
uniprot

up:encodedBy/skos:prefLabel ?gene ;
up:organism/up:scientificName ?organism ;
up:annotation ?annot .
?annot a up:Function_Annotation;
rdfs:comment ?function .

, Search results

"APOE" "Homo sapiens" "Mediates the binding, internalization,
and catabolism of lipoprotein particles. It can serve as a
ligand for the LDL (apo B/E) receptor and for the specific apo-
E receptor (chylomicron remnant) of hepatic tissues."

Fig. 2 Example usage of SPANG with SPARQL template and
parameter. The specified parameter replaces the placeholder
included in the template before execution. This query retrieves
annotation for the protein P02649 from the UniProt database

J

where regex_class is a SPARQL template to search
for specific classes matching a given pattern of regular
expression (see Additional file 2 for the SPARQL code).
Although this query is submitted to the UniProt data-
base in the example command line, the template can
also be used to search other databases (see the practical
use case of SPANG given below).

Available SPARQL templates are not limited to the
local library. When SPARQL libraries are published on
the Web, users can call the templates by means of URIs
across the Web. We have prepared a SPARQL template
library for the Microbial Genome Database (MBGD)
[15], which is available at http://mbgd.genome.ad.jp/
sparql/library/. This library can be utilized in a com-
mand line such as

spang mbgd mbgdl:get_ortholog K97723

where mbgd is the MBGD SPARQL endpoint [9]
and mbgdl: is a prefix for abbreviating the URI of
the template get _ortholog in the MBGD SPARQL
library (see Additional file 2 for the code). The tem-
plate can be specified in the full URI or in abbrevi-
ated form using the predefined prefix declarations.
This example query searches the MBGD database for
the orthologs of the specified protein K9Z723
(Photosystem II lipoprotein Psb27).

Combinatorial execution of multiple queries

In federated use of multiple databases, SPANG can con-
nect queries for distinct target databases through a Unix
pipe. Combining a spang command in shortcut mode
and another one in template mode is also possible. An
example of such a combination is,

http://mbgd.genome.ad.jp/sparql/library/
http://mbgd.genome.ad.jp/sparql/library/

Chiba and Uchiyama BMC Bioinformatics (2017) 18:93

spang mbgd mbgdl:get ortholog K92723 |
spang uniprot -S 1 -P rdfs:1label

where the first spang command is the same as the
one presented in the previous subsection to search the
MBGD database for orthologs of the protein K92723;
the obtained list of proteins are used in the second com-
mand to search the UniProt database for annotations of
the given list of proteins (Fig. 3). The option -S 1 is
used to specify the values in the first column of the
standard input as subject. This combinatorial query en-
ables integrative use of two databases distributed across
the Web. Note that the output of the first command can
also be used in a different query by altering the second
command; for example,

spang mbgd mbgdl:get ortholog K92723 |
spang uniprot uniprot xref PDB

where uniprot xref is a SPARQL template (see
Additional file 2 for the code), which retrieves cross-
references from the UniProt IDs given in the standard

Page 4 of 6

input to the database specified as the parameter (in this
example, PDB). This example command line searches for
entries in the Protein Data Bank (PDB) [16] among
orthologs of K92723.

Practical use case of SPANG

A series of queries that represents a practical use case of
SPANG is described below. Suppose that we are examin-
ing Alzheimer’s disease by exploring genes associated
with it. An important task would be to search for differ-
entially expressed genes in Alzheimer’s disease patients.
Differential gene expression data are available from the
Gene Expression Atlas [17] constructed on the basis of a
variety of samples that are curated and annotated with
the Experimental Factor Ontology (EFO) [18]. Given
that we do not know specific resource IDs in advance,
we would begin the search with a specific keyword. The
following query is available to search for relevant re-
sources using a regular expression:

spang atlas regex class’”alzheimer’

Nickname (or URL) of MBGD SPARQL endpoint
|

Nickname (or URL) of UniProt SPARQL endpoint
]

Unix
command line

> spang| mbgd mbgdl:get_ortholog | spang|uniprot|-s 1 -P rdfs:label

SPARQL
template

SPARQL query to
obtain orthologs

4

parameter

RDF
databases

MBGD RDF

as subject

PREFIX .. <> Adding prefix
SELECT ?uniprot il
SPANG WHERE {

processes List of proteins

. ?uniprot; | | -

I A P74367...
A N e
submit
Distributed héE7/sparqlnibb.ac.jp/spasl

Fig. 3 Example command line for executing combinatorial query using SPANG. The command line accesses two databases: MBGD and UniProt.
Combinatorial querying against multiple databases is achieved by connecting queries through a Unix pipe. The specified commands first search
MBGD for orthologs of K92723 and then search UniProt for their protein annotations. mbgdl:get ortholog is a SPARQL template to
obtain ortholog members of a given UniProt ID (see Additional file 2 for the code). The placeholder $1 in the SPARQL template is dynamically
replaced by the specified parameter. The command-line option =S 1 is used to set the values from the first column of the standard input

SPARQL
shortcuts

SPARQL query to
obtain labels

4 PREFIX rdfs: <.... >

List of
proteins and
their labels

SELECT ?vl1l 2o

WHERE {
VALUES (?v1) {{..) (...) }
?vl rdfs;

Values from
standard input

submit

http://sparql.uniprot.org

UniProt RDF

Chiba and Uchiyama BMC Bioinformatics (2017) 18:93

where atlas represents the SPARQL endpoint for
Gene Expression Atlas [7]. This example query gives us
a term, EFO_0000249 (Alzheimer’s disease) that is de-
fined in the EFO. The following command line can be
used to obtain detailed information about the term:

spang atlas -S efo:EFO_0000249 -a

which retrieves statements that have efo:EFO_0000249
as a subject. Figure 4 illustrates the following stepwise execu-
tion of SPANG. The command line shown below retrieves
differentially expressed genes in samples of Alzheimer’s dis-
ease and saves the result as a file:

spang atlas diff expr EFO_0000249 >
result

where diff expr is a SPARQL template to search
for differentially expressed genes specifying a condition
of samples (in this example, Alzheimer’s disease). The
result includes microarray probes showing signals of dif-
ferential gene expression, cross-references from these
probes to UniProt IDs, and the PubMed entries describ-
ing these experiments. In this particular example, the re-
sult is derived from a specific microarray experiment
[19]. The obtained result can be further processed by
other commands; the next command line extracts the
first column (protein IDs) and filters them by Gene
Ontology annotation [20] to select those related to “syn-
apse” (GO_0045202):

SPANG process RDF store
) SPARQL
Template: diff expr > Gene Expression
Parameter: EFO 0000249 [® Atlas
) Result

experiment pubmed

pmid:19714246 ...
pmid:19714246

206358

u
uniprot:096A58

y
SPANG process

(" . ") sparaL
Template: filter by gO |

RDF store

UniProt
Parameter:

GO_0045202
- Result
.

y
uniprot:Q9Y2J0

Fig. 4 Stepwise execution of SPANG commands for integrative use

of RDF databases. The first SPANG command retrieves differentially

expressed genes in samples of “Alzheimer’s disease” (EFO_0000249).
The second command filters resulting proteins by GO annotation of
"synapse” (GO_0045202)

Page 5 of 6

cut —f1 result | spang uniprot
filter by go GO 0045202 -a

The result includes the protein Q9Y2J0 (Rabphilin-3A;
RPH3A). Recently, it was experimentally shown that re-
duction of rabphilin-3A in Alzheimer’s disease correlates
with dementia severity and amyloid beta accumulation
[21]. Thus, stepwise execution of SPANG commands is
a useful approach for RDF data integration and know-
ledge discovery.

All examples of SPANG commands used in this
paper are summarized in a table, where they are
compared with the corresponding plain SPARQL
queries (Additional file 3). It shows that the burden
of querying with SPARQL can be reduced by using
SPANG commands.

Discussion

In this paper, we presented SPANG, a SPARQL querying
client that has several unique features. First, SPANG
provides a shortcut mode that can generate a simple
query containing a certain triple pattern. This mode aids
querying with SPARQL and is helpful for beginners to
start exploring RDF datasets. It is also useful for experi-
enced users of SPARQL, as useful information can often
be obtained by retrieving adjacent nodes in RDF graphs
using the shortcut mode and efficiently submitting such
simple queries is crucial in data mining. Second, for
more complicated queries, SPANG provides a template
mode, by which existing SPARQL codes can be reused
among users. This mode enhances the usage of SPARQL
through development of SPARQL template libraries that
represent reusable query patterns. The template libraries
constructed by experienced users can help other users to
efficiently utilize RDF databases. Third, the queries in ei-
ther shortcut or template mode can be combined in the
Unix command line to realize a more complex query.
This modular structure of queries has several merits: it
reduces complexity of each SPARQL query, leading to
easier implementation and debugging of the query; and
it extends potential application of each query through
combination with other queries or Unix commands.

The predefined SPARQL templates included in the
SPANG package are available to help users query some
biological RDF databases. However, the range of queries
included in the package is limited to rather common
ones. The potential use of SPANG can be further ex-
tended by database users or database providers through
development of SPARQL template libraries. Although a
service for sharing SPARQL queries exists [13], it is diffi-
cult to execute them directly for instant reuse by users.
In SPANG, users can directly call SPARQL templates
across the Web. Thus, if an RDF database provider,
who knows best the manner in which the database

Chiba and Uchiyama BMC Bioinformatics (2017) 18:93

should be used, publishes SPARQL template libraries,
database usage can be considerably enhanced. This
study suggests the possibility of an open framework
of sharing query in a reusable form. Future work may
include the standardized use of the query templates,
which will further facilitate the sharing of useful quer-
ies. Sharing not only data but also queries (i.e., means
of interpreting data) on the Semantic Web platform
will help the biological research community collabor-
ate in knowledge integration and discovery.

Conclusions

SPANG enables easy generation of typical queries,
thereby reducing the burden of writing SPARQL.
SPANG also provides a framework for reusing and shar-
ing arbitrary queries across the Web. Moreover, it en-
ables users to execute complex queries by combining
existing query templates. SPANG, with these unique fea-
tures, facilitates integrative exploitation of published
RDF datasets and supports knowledge discovery.

Additional files

Additional file 1: List of SPARQL shortcuts with example usages. (PDF 71 kb)

Additional file 2: Codes of the SPARQL templates used as examples.
(PDF 78 kb)

Additional file 3: Example SPANG commands compared with the
corresponding plain SPARQL queries. (PDF 70 kb)

Abbreviations

EFO: Experimental Factor Ontology; MBGD: Microbial Genome Database for
Comparative Analysis; PDB: Protein Data Bank; RDF: Resource Description
Framework; SPARQL: SPARQL Protocol and RDF Query Language;

URI: Uniform Resource Identifier

Acknowledgements

Computational environments were supported by the Data Integration and
Analysis Facility, National Institute for Basic Biology. We thank the advisers to
the Tool Prototype for Integrated Database Analysis, the Database
Integration Coordination Program of the National Bioscience Database
Center, Japan Science Technology Agency.

Funding

This work was supported by the Database Integration Coordination
Program of the National Bioscience Database Center, Japan Science
Technology Agency (to I.U.) and the Tool Prototype for Integrated

Database Analysis (to H.C.).

Availability of data and materials

Project name: SPANG

Project home page: http://purl.org/net/spang
Operating systems: Linux, Mac OS X, Unix
Programming language: Perl

License: MIT

Authors’ contributions

HC performed the study and drafted the manuscript. U participated in its
design, and helped to draft the manuscript. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Page 6 of 6

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 21 July 2016 Accepted: 6 February 2017
Published online: 08 February 2017

References

1. Berners-Lee T, Hendler J, Lassila O. The Semantic Web. Sci Am. 2001,284:28-37.

2. Antezana E, Kuiper M, Mironov V. Biological knowledge management: the
emerging role of the Semantic Web technologies. Brief Bioinform. 2009;
10(4):392-407.

3. RDF 1.1 Concepts and Abstract Syntax. http://www.w3.0rg/TR/rdf11-
concepts/. Accessed 7 Feb 2017.

4. SPARQL 1.1 Query Language. http://www.w3.0rg/TR/sparql11-query/.
Accessed 7 Feb 2017.

5. SPARQL 1.1 Federated Query. http//www.w3.0rg/TR/spargl11-federated-
query/. Accessed 7 Feb 2017.

6. Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J. Bio2RDF: towards a
mashup to build bioinformatics knowledge systems. J Biomed Inform. 2008;
41(5):706-16.

7. Jupp S, Malone J, Bolleman J, Brandizi M, Davies M, Garcia L, Gaulton A,
Gehant S, Laibe C, Redaschi N, et al. The EBI RDF platform: linked open data
for the life sciences. Bioinformatics. 2014;30(9):1338-9.

8. Katayama T, Wilkinson MD, Aoki-Kinoshita KF, Kawashima S, Yamamoto Y,
Yamaguchi A, Okamoto S, Kawano S, Kim JD, Wang Y, et al. BioHackathon
series in 2011 and 2012: penetration of ontology and linked data in life
science domains. J Biomed Semantics. 2014:5(1):5.

9. Chiba H, Nishide H, Uchiyama I. Construction of an ortholog database using
the semantic web technology for integrative analysis of genomic data. PLoS
One. 2015;10(4):e0122802.

10. Rietveld L, Hoekstra R. YASGUI: not just another SPARQL client. In: The
Semantic Web: ESWC 2013 Satellite Events. 2013. p. 78-86.

11, Schweiger D, Trajanoski Z, Pabinger S. SPARQLGraph: a web-based platform
for graphically querying biological Semantic Web databases. BMC
Bioinformatics. 2014;15:279.

12. Yamaguchi A, Kozaki K, Lenz K, Wu H, Kobayashi N. An intelligent SPARQL query
builder for exploration of various life-science databases. In: The 3rd International
Conference on Intelligent Exploration of Semantic Data (IESD). 2014.

13. Garcia Godoy MJ, Lopez-Camacho E, Navas-Delgado I, Aldana-Montes JF.
Sharing and executing linked data queries in a collaborative environment.
Bioinformatics. 2013;29(13):1663-70.

4. Uniprot Consortium. Activities at the Universal Protein Resource (UniProt).
Nucleic Acids Res. 2014:42(Database issue):D191-8.

15. Uchiyama I, Mihara M, Nishide H, Chiba H. MBGD update 2015: microbial
genome database for flexible ortholog analysis utilizing a diverse set of
genomic data. Nucleic Acids Res. 2015;43(Database issue):D270-6.

16. Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data
Bank. Nat Struct Biol. 2003;10(12):980.

17. Kapushesky M, Emam |, Holloway E, Kurnosov P, Zorin A, Malone J, Rustici G,
Williams E, Parkinson H, Brazma A. Gene expression atlas at the European
bioinformatics institute. Nucleic Acids Res. 2010;38(Database issue):D690-8.

18. Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov N,
Zhukova A, Brazma A, Parkinson H. Modeling sample variables with an
Experimental Factor Ontology. Bioinformatics. 2010,26(8):1112-8.

19. Bronner IF, Bochdanovits Z, Rizzu P, Kamphorst W, Ravid R, van Swieten JC,
Heutink P. Comprehensive mRNA expression profiling distinguishes tauopathies
and identifies shared molecular pathways. PLoS One. 2009:4(8):e6826.

20. Blake JA, Dolan M, Drabkin H, Hill DP, Li N, Sitnikov D, Bridges S, Burgess S,
Buza T, McCarthy F, et al. Gene Ontology annotations and resources.
Nucleic Acids Res. 2013;41(Database issue).D530-5.

21. Tan MG, Lee C, Lee JH, Francis PT, Williams RJ, Ramirez MJ, Chen CP, Wong
PT, Lai MK Decreased rabphilin 3A immunoreactivity in Alzheimer's disease
is associated with AR burden. Neurochem Int. 2014;,64:29-36.

dx.doi.org/10.1186/s12859-017-1531-1
dx.doi.org/10.1186/s12859-017-1531-1
dx.doi.org/10.1186/s12859-017-1531-1
http://purl.org/net/spang
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results
	Simple queries using SPARQL shortcuts
	Using SPARQL templates with parameters
	Combinatorial execution of multiple queries
	Practical use case of SPANG

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

