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Abstract

Recent studies have shown how volumetric imaging and morphometrics can add significantly to 

our understanding of morphogenesis, the developmental basis for variation and the etiology of 

structural birth defects. On the other hand, the complex questions and diverse imaging data in 

developmental biology present morphometrics with more complex challenges than applications in 

virtually any other field. Meeting these challenges is necessary in order to understand the 

mechanistic basis for variation in complex morphologies. This chapter reviews the methods and 

theory that enable the application of modern landmark-based morphometrics to developmental 

biology and craniofacial development, in particular. We discuss the theoretical foundations of 

morphometrics as applied to development and review the basic approaches to the quantification of 

morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods 

for quantifying and comparing morphological variation and covariation structure within and 

among groups. Finally, we discuss the future directions for morphometrics in developmental 

biology that will be required for approaches that enable quantitative integration across the 

genotype-phenotype map.

Introduction

Answering the question of how developmental mechanisms result in morphogenesis is a key 

goal of developmental biology. The study of molecular mechanisms underlying 
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morphogenesis has become increasingly quantitative and integrative with the development of 

genomic technologies. Yet, the quantitative study of morphology has been fairly peripheral 

to the mechanistic study of morphogenesis (Hallgrímsson et al. 2009). In recent years, 

quantitative analysis of morphology has become more prevalent in the study of 

morphogenesis. New imaging techniques provide increasingly accessible and higher 

throughput imaging of embryonic morphology. Combined with novel quantitative 

approaches, this allows for analyses and visualizations that are increasingly intuitive and 

accessible to developmental biologists and geneticists. Further, studies of the developmental 

basis for morphogenesis involve increasingly complex analyses of multiple genetic factors or 

treatments. Finally, there is increased interest in the relationship between the determinants of 

normal variation and the genetics of structural birth defects, especially in the field of 

craniofacial biology (Cooper and Albertson 2008; Hallgrímsson et al. 2009; Heuze et al. 

2014; Houle 2010; Houle et al. 2010; Young et al. 2010a). Such studies demand more 

refined quantitative phenotypic assessment than might have sufficed in the past. This chapter 

reviews the use of 3D imaging and morphometrics for the study of craniofacial development.

Developmental biology is focused on revealing the processes and the interactions among 

processes that result in embryogenesis and growth (Love 2014). Processes and mechanisms 

underlying organismal development are the focus of study for developmental biologists and 

the field assembles approaches and techniques that tackle this basic question and its various 

components (Burian 2005). As such, processes and mechanisms are the focus of study for 

developmental biologists. Although morphology is, ultimately, the phenomenon that the 

field seeks to explain, it is far distant from most developmental biology research that seeks 

to reveal molecular and cellular mechanisms. Accordingly, phenotypic variation often takes 

the role of a predicted outcome of an experimental perturbation, and an observation showing 

morphological difference represents an abnormality that points towards a mechanism of 

interest. For these reasons, developmental biologists have not generally been interested in 

phenotypic variation per se. Phenotypic outcomes are usually seen as discrete. Mutants are 

described as having a phenotype and variation in experimental outcomes at the phenotypic 

level is more often a nuisance than an object of study as it is thought to obscure the 

phenotype of interest.

In contrast, phenotypic variation has a central epistemological position within evolutionary 

biology. Although its coherence can be debated, evolutionary biology has a unifying theory 

(Sober 1994), within which selection acts on phenotypic variation and evolution occurs 

through particulate inheritance of genes. Therefore, the quantitative study of morphological 

variation has been much more prominent within evolutionary biology than within 

developmental biology (Bookstein et al. 1985). Much of the theory of geometric 

morphometrics, for example, was developed to answer evolutionary questions. Within this 

chapter, we discuss some of the ways that the resulting morphometric concepts and methods 

can be applied to answer questions of development.. However, development also presents 

huge challenges to morphometrics. Chief among these is the need to integrate quantification 

across levels from genetic to cellular to morphological. In particular, the need to 

quantitatively integrate molecular and morphological imaging is a major challenge. Current 

efforts are being made to meet these challenges. Further, the quantification of morphology 

across developmental stages often spans ranges of morphological variation that challenge 
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existing techniques, particularly when some attempt is made to identify and preserve 

homologies, defined as the biological correspondence of structures or location across 

individuals and ontogeny. Finally, innovation in imaging techniques has led to increasingly 

rich image datasets that challenge both existing theory and computational power. We discuss 

these challenges their potential solutions and progress on their development below.

Morphometrics and Morphospaces

Morphometrics is the quantification and statistical analysis of form. Form is the combination 

of size and shape of a geometric object in an arbitrary orientation and location. Shape is 

what remains of the geometry of such an object once you standardize for size. Note that in 

morphometrics, unlike in common parlance, form and shape do not mean the same thing.

A key concept underlying much of the quantitative analysis of form is the idea that 

morphology can be mapped in a systematic way, often within a “morphospace”. 

Morphospaces are maps showing how shapes are defined by quantitative traits. Although the 

basic idea arguably derives from the deformation grids of D’Arcy Thompson (1942; 1961; 

1917), the idea of a quantitative morphospace was first operationalized by David Raup 

(1966). While the concept of a phenotypic distance between specimens or groups of 

specimens, based on the measures of multiple traits, was used in numerical taxonomy at that 

time (Sneath and Sokal 1973; Sokal and Rohlf 1995b), Raup created the visual metaphor of 

the morphospace. He created a model composed of three parameters that could be used to 

describe the potential diversity of shell form (Figure 1a), his phenotype of interest. He then 

plotted the evolutionary diversity of coiled shell animals within the three dimensional 

morphospace defined by these parameters and found that large areas of potential 

morphospace were not occupied. This raised the interesting question of why there are not 

naturally occurring shells that represent all possible regions of morphospace. The proposed 

explanations included shell function and constraints imposed by developmental processes. In 

this way, Raup’s morphospace concept was foundational for evolutionary developmental 

biology because early concepts of developmental constraint were used to explain gaps in the 

space of possible morphologies (Alberch 1982; Maynard Smith et al. 1985)

Raup’s elegantly simple morphospace provides a surprisingly complete description of shell 

coiling, but it belies the arbitrariness of such spaces more generally. Morphospaces are 

defined by their axes. Often such axes are multivariate summaries of form data as in Figure 

1B and C. In very few circumstances is it possible to construct a morphospace based on 

developmental parameters, such as the expression or diffusion gradients of particular 

morphogens, because developmental systems are rarely understood at that level of 

granularity. This means that while it is possible to plot measured morphology and quantify 

morphological variation in accordance with the axes (ie. chosen parameters) of a 

morphospace, it is rarely possible to capture the all options for potential variation within a 

plot or single shape-space. Depending on how a morphospace is defined, developmental 

changes can occur in ways that are not captured. Further, for axes defined on the basis of 

covariation structure, it must be borne in mind that developmental perturbations can alter 

covariation structure in ways that can be hard to predict (Hallgrimsson et al. 2009; 

Jamniczky and Hallgrimsson 2009; Mitteroecker 2009). Morphospaces are generally 
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arbitrary with respect to development, as they are not usually defined by direct 

developmental parameters. Morphospaces are, nonetheless, essential tools in that they can be 

used to quantitatively compare and situate morphologies relative to each other. As 

phenomics gains traction and intersects more meaningfully with developmental biology, 

careful thought will need to be devoted to the construction of the morphospaces within 

which phenomic analyses are conducted.

As with all morphometric tools, care must be taken to interpret morphospaces within the 

context in which they are constructed. To be useful, morphospaces must have a few key 

properties. The first is that relative locations and distances in such spaces must have 

biological meaning (Mitteroecker and Huttegger 2009). This means that forms that are 

similar should cluster together and those that are dissimilar should be far apart and that the 

distances among them should be proportional to some underlying biological difference. This 

is critical if a measure of dispersion of a sample within a space is to have any relation to the 

distance between the mean of two samples or if the distances among various mutant 

phenotypes are to be compared. Second, directions within the morphospace should have 

biological meaning. Without biological meaning, it becomes impossible to use the 

morphospace to predict morphologies based on a continuous relationship or determine 

whether a group of related mutations or treatments produce effects in the same direction. 

Closely related to this is the requirement of co-linearity, meaning that parallel trajectories in 

morphospace should represent comparable axes of phenotypic change. For example, in two 

samples that differ in mean shape, one should be able to compare the effect of a continuous 

variable such as age, size or some treatment under the expectation that these effect would 

produce a displacement in the same direction for both shapes even though they are at 

different locations in morphospace. Finally, the axes of a morphospace should be 

independent and consist of commensurate units. For a more fulsome discussion of these 

properties, see Mitteroecker and Hutteger (2009).

Often, however, morphospaces fail to meet these criteria (Mitteroecker and Hutteger 2009), 

making the data contained within them difficult to interpret. Raup’s shell coiling space, for 

instance, uses the parameters of a mathematical model of coiling to create the axes of the 

space. The problem with this is that there is not a natural scale relationship among the axes. 

Further, the axes are not all independent as some involve overlapping sets of input 

parameters. The lack of a natural scale means that angles or directions in Raup’s 

morphospace are arbitrary. When two phenotypic measures are dependent on one another, 

then using both measures can lead to a morphospace within which there are regions that 

cannot be occupied simply because some combination of values is not possible, rather than 

because of some biological, developmental, or evolutionary constraint. Spaces defined by 

ratios among traits such as limb proportions or size ratios within structures often produce 

such artifacts.

Approches to Morphometrics

There are several approaches to doing morphometrics. All of these approaches have 

advantages and limitations. There is no single correct approach to morphometrics that 

applies to all problems. Approaches are more or less correct or appropriate only in the 
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context of the question being asked. For this reason, it is critical to understand what different 

morphometric techniques do and their respective limitations. Much effort has been devoted 

in morphometrics to debates over the use of one approach or another. Too often such debates 

are framed within the assumption that there is a single correct approach to the quantification 

of form. Under this assumption, such debates have sometimes taken on a religious fervor. 

However, the quantification of form is not an end in itself. Rather, it is a means of answering 

biological questions. All methods will result in something less than a perfect quantification 

of the phenomena of interest. One must always ask whether the method used generates 

useful quantifications and there are occasions when using more than one approach and 

interpreting the differences among them leads to greater insight into the biological question 

at hand.

In the age of omics, debates over methods have practical implications because of the 

increasing need to compare and integrate data or results across studies. This is a good reason 

to favour some methods over others. On the other hand, maintaining a diversity of 

approaches in a field can lead to innovation that might otherwise be missed. Balancing these 

two considerations is important both for reviewers of grants and papers and those who 

design “omic” resources involving morphometric data.

Landmark based methods

Traditional morphometrics relied on the phenotypic measurements such as linear distances, 

angles, weights and areas. Most modern morphometric approaches, however, are based on 

analysis of landmarks. Not all landmarks are equally useful. Bookstein classified landmarks 

into three types based on their information content and utility (Bookstein 1991). Type 1 

landmarks represent discrete identifiable points that usually occur at the intersection of 

distinct anatomical structures. Intersections of sutures in bones, foramina, vascular 

branching points are examples of such landmarks. Type 2 landmarks represent points of 

maximal curvature along definable features. The tip of facial prominence or the inflection 

point of a cleft would be examples of such points. Type 3 landmarks are defined along 

extremes that are often defined by other points. These types of landmarks contain 

progressively less biological information. Type 3 landmarks, specifically, are deficient 

because they rely on information from other landmarks.

Semi-landmarks are a special case of Type 3 landmarks that are constructed by distributing 

points across a surface defined by other landmarks (Gunz et al. 2005). Usually, semi-

landmarks are placed in an equidistant grid across a surface and then they are “slid” to 

optimize their position relative to the average shape for the sample. This sliding step is 

important as it places the landmarks in positions where they correspond better to each other 

across individuals (Gunz and Mitteroecker 2013). Skipping this step results in artifacts 

caused by the arbitrary assumption of equidistance among landmarks (Gunz and 

Mitteroecker 2013).

Mention that some methods for dense landmark quantification of surfaces are semilandmark 

techniques taken to the extreme?

Hallgrimsson et al. Page 5

Curr Top Dev Biol. Author manuscript; available in PMC 2017 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Geometric Morphometrics

Geometric morphometrics (GMM) is the most established body of morphometric theory for 

handling landmark-based data.. Paraphrasing Rohlf’s definition of the field (http://

life.bio.sunysb.edu/morph/), GMM is the multivariate statistical analysis of form as 

represented by Cartesian coordinate data. There are many excellent introductions to 

geometric morphometrics (Mitteroecker and Gunz 2009) and its use in developmental 

biology (Cooper and Albertson 2008; Hallgrímsson et al. 2009). We will not attempt a 

thorough review here. GMM methods rely on superimposition of landmark coordinate data 

in order to place individuals into a common morphospace. In the earliest example of this, 

Bookstein proposed using two fixed landmarks to register a larger landmark set. After 

scaling and superimposition of these two landmarks, the locations of the remaining 

landmarks represent variation in shape between specimens (Bookstein 1986; Bookstein 

1991). Currently, the most commonly used form of superimposition is the Generalized 

Procrustes method (GPA). (Mitteroecker and Gunz 2009). Developed in its more general 

form for multivariate statistics by Gower (Gower 1975) GPA was adapted to morphometric 

data by Rohlf and Slice (Rohlf and Bookstein 1990; Rohlf and Slice 1990).

GPA places multiple individual specimens into the same shape space by scaling, translating 

and rotating the landmark coordinates (Figure 2). To scale the landmark coordinates GPA 

uses the Centroid Size (CS), a measure of scale representing the overall spread of a 

specimen’s landmark configuration from its centroid. CS is calculated as the square root of 

the summed squared deviations from the center (arithmetic mean) of each landmark 

configuration (Rohlf and Slice 1990). The arithmetic mean of each landmark configuration 

is the centroid. Each specimen’s landmark configuration is then translated so they share a 

centroid. Finally, each landmark configuration is rotated around the common centroid such 

that the deviation of each landmark from the average position for that landmark is 

minimized. This involves an iterative process. In the first step, the configurations are fitted to 

an arbitrary rotational angle for which each specimen is rotated to the angle that minimizes 

the sum of the squared distances from each landmark to its mean. From this first least-

squares fit step, an average landmark configuration is generated and the least squares fit is 

repeated. The GPA process does this repeatedly until further steps produce no improvement 

in the fit (Dryden and Mardia 1998; Mitteroecker and Gunz 2009; Rohlf and Slice 1990). 

The result of the superimposition process is a set of modified landmark coordinates, termed 

Procrustes coordinates, for each specimen. These coordinates preserve the geometric 

relationship among a specimen’s landmarks and express each specimen as a set of 

departures from each landmark mean. Preservation of geometry throughout the analysis 

generates much of the power of geometric morphometric methods.

Although Procrustes superimposed data correspond to a definable morphospace, that space 

is not linear (Kendall 1984). For this reason, analyses are often conducted on data in which 

the Procrustes coordinates have been projected to a tangent space that is approximately 

linear (Dryden and Mardia 1998; Rohlf 1999). Most commonly, Procrustes coordinates are 

transformed to partial warp scores. Partial warp scores are based on Bookstein’s thin-plate 

spline method which uses a bending energy metaphor to calculate the continuous 

deformation of surfaces (Bookstein 1989; Bookstein 1991). This method is fundamental in 
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computer graphics and image informatics, and is widely used in engineering. Whether to use 

Procrustes coordinates or partial warp scores does not matter for most morphometric 

analyses as they tend to involve fairly small amounts of shape variation (Rohlf 1999). In 

developmental biology, however, analyses often span large shape distances produced by 

morphogenesis where this choice may well matter for the results of an analysis. In general, it 

is critical for users of morphometric methods to know and understand the precise form of 

superimposition to which their data has been subjected, particularly when using 

comprehensive morphometric analysis software instead of custom-made programs.

There are several important advantages of geometric morphometric methods over more 

traditional morphometrics that rely principally on linear distances, ratios or angles. The fact 

that GMM methods preserve geometry throughout an analysis means that variation within 

and between groups or the variation that corresponds to covariates of interest can be 

visualized as displacements of individual landmarks. These displacements can be used to 

generate 2- or 3-dimensional deformations of an anatomical object, showing how the object 

changes across the morphospace. Figure 3 shows examples of such analyses applied to 

microCT scan data for mouse embryos. Here, wireframes show the 3D deformations that 

correspond to ontogenetic variation in craniofacial shape. A related advantage is that the 

Procrustes superimposition based methods generate useful morphospaces in which multiple 

groups can be meaningfully compared. Such spaces have all of the desired properties listed 

above (Mitteroecker and Huttegger 2009).

Variation in size and shape and be successfully quantified using GMM methods because 

they are based on a rigorous definition of shape (Kendall’s shape space and its 

linearizations). Shape variation can be decomposed into components that relate to biological 

factors of interest and that can be visualized as deformations of landmark configurations and 

surfaces, a key advantage in terms of biological relevance. Figure 3B shows an example of 

this in which the shape variation related to stage and to size are quantified separately within 

a sample of mouse embryos and this is explained in more detail in the next section.

As with all good methods, GMM approaches also have limitations. The most important of 

these is that superimposition distributes some fraction of variation across landmarks 

(Marquez et al. 2012). This is known as the Pinocchio effect (Figure 4). The Pinocchio effect 

is simply a consequence of the GMM definition of shape. Once Pinocchio’s nose has 

elongated, the shape of his profile has changed and those changes are accurately described 

by the small differences in landmark positions across the head as well as the point of the 

nose even if only the nose has actually changed. However, As Klingenberg (Klingenberg 

2013) points out, from a GMM perspective there is no a priori reason why this difference in 

shape should be described in terms of the nose moving forward rather than the head moving 

backwards. The profile has simple changed in shape. Further, as the Pinocchio’s nose grows, 

centroid size increases. In a longitudinal analysis of Pinocchio profiles that capture the 

growth of the nose, the combination of centroid size and shape using GMM does accurately 

portray what is happening to Pinocchio (Figure 4). Even if you add a second localized shape 

change such as elongation of the ears, it is still theoretically possible to quantify and remove 

the artifactual variation. This can be hard in practice, however. The Pinocchio effect does not 

mean that Procrustes superimposed data contain no information about local variation. 
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However, the fact that variation gets distributed to some degree across landmarks means that 

care must be taken to ensure that what appears to be local variation isn’t driven by variation 

somewhere else in a landmark configuration, particularly when dealing with subtle changes 

in shape.

Various methods have been proposed to minimize the distorting effects of variation at 

particular landmarks. Rohlf and Slice (1990), for example, proposed a resistant fit 

superimposition for such cases while Marquez et al. (2012) suggest an interpolation based 

method. There is, however, little agreement on the use of such methods (Klingenberg 2013) 

and this remains an active area of investigation (Marquez et al. 2012). Although the choice 

of superimposition method may in practice default to GPA (Richtsmeier 2005), this need not 

be so. If one suspects that particular landmarks are introducing large amounts of variation 

that obscures other signals of interest, it is perfectly reasonable to try an alternative 

superimposition, such as the resistant fit version (Rohlf and Slice 1990), to determine 

whether this significantly alters the results of an analysis.

Scaling is necessary for superimposition of each specimen’s landmark coordinates into the 

same shape space. This makes direct comparisons of form across ontogeny impossible. 

Since variation in size and the associated allometric (age-shape) changes are critical 

components of phenotypic change across development, researchers may find it useful to add 

CS or a component of age to a GMM analysis as a covariate (ref to size-shape space analysis 

and geomorph) or to use a different set of morphometric methods. In general, size and size-

related change in shape are important components of any analysis. These are rarely features 

of shape variation that should simply be removed. Rather, these aspects of form variation 

need to be quantified carefully and analyzed either separately or conjointly with shape 

variation (see below).

Euclidean Distance Matrix Analysis

The other major body of landmark-based morphometric methods is Euclidean Distance 

Matrix Analysis or EDMA (Lele and Richtsmeier 2001). EDMA is a method of 

morphometric analysis that avoids superimposition and its drawbacks altogether. Instead of 

comparing variation of superimposed landmark coordinates, EDMA techniques first 

represent each specimen as a matrix of linear distances between all possible pairs of 

landmarks (Lele and Richtsmeier 1991), which can be scaled by a chosen scaling factor 

(Lele and Cole III 1996). Morphological differences between groups can be pinpointed to 

specific linear distances on an object through pairwise comparisons of mean form or shape 

matrices, followed by bootstrapping to estimate the significance of these differences (Figure 

5) (Lele and Richtsmeier 1991). The ability to conclusively identify specific regions of an 

object that differ between two samples is not always possible with commonly used 

multivariate data exploration techniques, including PCA; where a given landmark might be 

highly weighted on multiple PCs and each PC is associated with many moderately weighted 

landmarks of potential interest. Additionally, scaling phenotypic values by a measure of size 

is not automatically performed for EDMA analysis, allowing for comparisons of ontogenetic 

growth trajectories between groups (Richtsmeier et al. 1993a; Richtsmeier et al. 1993b), 

without having to reintroduce a previously removed measure of scale. Growth analysis 
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methods can also be applied to other situations, including comparisons of the morphological 

effects of a specific mutation on two different genetic backgrounds (Percival et al. In Prep)

The major advantage of EDMA is that it avoids the superimposition step yet allows analysis 

of morphological variation throughout a morphologically complex object. This is important 

if an analysis depends critically on the ability to precisely localize variation within a 

structure. The major disadvantage of EDMA is that since it is based on the analysis of linear 

distances it does not deal overtly with shape. Methods exist within EDMA to quantify 

allometry and ontogenetic change in form but they are more difficult to implement within a 

complex multivariate analysis. Further development of EDMA methods and software may 

well address these limitations. It is not necessarily the case that one must make a choice 

between using EDMA or GMM. Similar results from multiple, relatively independent 

methods of analysis can provide stronger support for subsequent interpretations and 

conclusions (Martínez-Abadías et al., 2010). Although not currently as popular as GMM 

methods, EDMA methods continue to be adapted to answer new research questions (Hill et 

al. 2013; Motch Perrine et al. 2014).

Image Analysis Based Methods

Finally, there is a growing body of methods that are designed to extract morphometric 

information directly from 2D and 3D image data, without the use of sparse landmarks. Some 

rely on automated landmarking of a few key features, then evenly distributing landmarks 

across the remainder of the surface(Heimann and Meinzer 2009). Others rely on analysis of 

deformation data on a voxel-by-voxel basis (Chakravarty et al. 2011; Heimann and Meinzer 

2009; Joshi et al. 2005; Srivastava et al. 2005; Wong et al. 2014). Most applications of such 

methods have been in neuroimaging but there are examples of applications to craniofacial 

morphology (Chakravarty et al. 2011; Chinthapalli et al. 2012; Hopman et al. 2014) and 

embryonic development (Kristensen et al. 2008). For voxel-based methods, thresholding and 

registration can produce a large amount of error that must be minimized or considered in 

analyses (Bookstein 2001). Voxel based and dense landmark-based methods involve a 

superimposition step of some sort and so share the pitfalls of GMM approaches. On the 

other hand, statistical shape models and voxel based morphometry make use of much more 

of the image data that is contained in a 2D (eg. photograph) or 3D image (eg. microCT or 

optical projection tomography image) than approaches based on sparse landmark sets. With 

further methods development, such approaches may be adaptable to the full range of 

applications currently available through GMM methods.

Landmarks and Homology

An assumption of most morphometric methods is that landmarks are homologous across 

individuals, samples and within individuals across ages or stages in the case of longitudinal 

data (Bookstein 1991; Oxnard and O’Higgins 2009). A particular landmark should 

effectively correspond to the same point across these situations, but what does landmark 

homology mean in practice? Leaving aside the debate over homology as representations of 

discrete, biologically defined, developmental entities versus resemblance caused by 

continuity of information (Hall 2007; Jamniczky 2008; Roth 1984; Roth 1991; Van Valen 
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1982; Wagner 2007), homology is a difficult problem for morphometrics (Klingenberg 

2008). This is particularly the case for applications of morphometrics to morphogenesis in 

embryos (Percival et al. 2014). Figure 6 shows a standard landmark set that we use for 

mouse embryonic craniofacial morphology from E10 to E12.5. While these landmarks are 

chosen with care, the meaning of homology even within this ontogenetic range is sometimes 

unclear. The point defined at the caudal extreme of the cleft between the maxillary 

prominence and the lateral nasal prominence is a good example (Figure 7). This location 

gives rise eventually to lacrimal duct and so it should be a good homologous point across 

stages. Yet, as morphogenesis proceeds, this initially obvious anatomical feature moves in 

relation to the position of the eye, while descendants of the cells found at this landmark at 

E9.5 are probably buried as the prominences fuse and the whisker field develops by E12.5. 

Since our landmarking scheme is intended to track the growth and movement of the facial 

prominences, we define this landmark such that it remains at the border between cells 

derived from the maxillary and lateral nasal prominences rather than maintaining a standard 

geometric relationship with other cranial features like the eye (Percival et al. 2014). In this 

case we have made a conscious choice to attempt to follow the specific cell population rather 

a point defined by its geometric relationship with other features. Unfortunately, this may not 

always be possible, particularly across a wide range of developmental stages.

The homology issue becomes much more difficult when one needs to assemble samples 

across wider ranges of developmental stages. Here there are two issues. The first is that 

structures come and go. For the quantitative study of face formation, we have used soft 

tissue landmarks that are mostly located on the epithelial surface. For later fetal craniofacial 

development, while it is possible to rely on surface features, one is usually interested in other 

structures such as the skeletal features that are forming at that time. For analysis of post-

natal morphology, one may be interested in features of the skull or the brain. Combining 

such analyses in a coherent way is an unresolved challenge. In practice, we have approached 

this issue by defining standard landmark sets that are particular to a range of stages and 

structures. Figure 8 shows standard craniofacial landmark sets for late stage fetuses, 

neonates and adult mice.

These issues underline the importance of taking care in the definition of landmark sets. 

Poorly, or improperly defined landmarks can lead to false conclusions. Phenomic analyses 

that rely on large datasets are particularly vulnerable to drift in landmark position. Reliance 

on manual landmarking is a significant barrier to the use of image data for phenomic 

analyses. Manual landmarks vary among and can drift over time for landmarkers. 

Landmarking protocols are also exceedingly difficult to standardize across labs (Percival et 

al. 2014). For this reason, development of automated methods that can handle the 

complexity of real datasets is crucial. Methods exist for 3D landmarking from image data 

(Brett and Taylor 1999; Douglas 2004) and there are examples of their application in 

particular contexts (Chakravarty et al. 2011; Subburaj et al. 2009). Due to the complexity 

and noisiness of most image datasets, however, the majority of morphometric work still 

relies heavily on manual landmarking.
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Quantifying Variation

Comparing Shape and Size Among Groups

Morphometric analyses that address questions in developmental biology seek to quantify 

variation within samples and to compare variation among samples. Morphometric data based 

on 3D landmarks are multivariate. The statistical techniques for describing variation within 

groups and comparing that across groups rely heavily on matrix algebra. A fundamental 

element of any morphometric analysis is the variance-covariance matrix (VCM). Such 

matrices consist of the set of landmark by coordinate variances along their diagonal and all 

of the pairwise covariances in the off-diagonal cells of the matrix. An intuitive way to 

express the variation in such matrices is to use a multivariate data reduction technique such 

as Principal Components Analysis (PCA). A PCA uses the variance-covariance matrix to 

create new variables that correspond to progressively smaller proportions of the total 

variance in the sample. Imagine a bivariate dataset in which x and y are partially correlated 

(Figure 9). In this case, one could construct a new variable that captures the covariation 

among x and y. This would be the first principal component (PC). Every individual point in 

that dataset can be projected onto this variable, resulting in a set of principal component 

scores for each individual. In PCA, the second component is defined in the direction that is 

orthogonal to the first component but contains the second largest amount of covariance. In a 

two-dimensional dataset, there is only such one such option (Figure 9a), but in a 

multidimensional dataset, PC2 describes the second largest direction of variation. The 

variance of all phenotypic measures explained by a PC is its eigenvalue while its direction is 

its eigenvector. Within GMM, the eigenvector of each PC is its orientation with respect to 

the original variables. These orientations allow the visualization of the shape transformations 

that correspond to variation along each PC. Figure 9B–E illustrates this using PCA plots for 

a mouse embryo craniofacial dataset.

Although PCA is a useful way to approach a multivariate morphometric data, it is important 

to note that the assumption of orthogonality is one made for convenience and not because it 

corresponds to biology in any way. Real covariance structures can be very complex, 

determined by the variances of multiple interacting and overlaid developmental factors 

(Hallgrimsson et al. 2009; Mitteroecker 2009). This can easily create situations where a 

biological effect gets distributed across multiple PCs in real datasets. The orthogonility 

assumption also means that every PC is uncorrelated with every other; each PC is dependent 

on the definition of the PCs that precede it. PCs capture axes of covariance in the VCM, but 

they estimate those axes with error (Zelditch 2004). If the identity of a particular PC is 

important to an interpretation of biological differences, resampling approaches can be used 

to determine whether that PC is significantly different from its neighbours (Zelditch 2004).

PCA plots are a useful first step to take when examining variation among groups such as 

genotypes or treatments. Subtle differences among groups, however, may not be readily 

evident on such plots or the differences may be distributed across several PCs. Canonical 

Variates Analysis (CVA) orients that data along axes that maximally distinguish groups that 

are defined a priori (Marcus et al. 2013). CVA is best used as a data exploration technique 

rather than as a definitive test of the hypothesis that two groups are different. For landmark 
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data, the large numbers of variables and the covariance structure or Procrustes superimposed 

landmark data produces a situation where CVA may separate groups that actually have the 

same mean shape when the number of variables is close to the number of specimens 

(Mitteroecker and Gunz 2009). To put this more simply, use of CVA is not advised when the 

number of specimens under study is comparable to the number of variables in the analysis 

(eg. number of landmarks multiplied by number of dimensions), particularly when there are 

a large number of groups to separate. For the same reason, the Mahalanobis permutation test 

should not be used to test for differences in mean shape when sample sizes are small. In 

most cases, tests of significance for differences among groups should rely on permutation 

tests that are not affected by the ratio of variables to sample size, such as the Procrustes 

distance permutation test (Gunz and Mitteroecker 2013; Gunz et al. 2005; Mitteroecker and 

Gunz 2009). The Procrustes distance is also the basis for the parametric Goodall’s F-test, 

which performs well under most GMM conditions (Rohlf 2000). Finally, there are also 

EDMA based tests for matrices of linear distances that can be used to test for differences in 

form before and after scaling for size (Lele and Richtsmeier 1995; Lele and Richtsmeier 

2001).

For many analyses, one may wish to quantify the phenotypic variance of a sample and 

compare it to others. For example, mutations can affect both the phenotypic mean as well the 

variance about the mean, a phenomenon known as canalization (Wagner et al. 1997). For 

landmark data, phenotypic variance can be quantified in several ways. The distribution of 

shape variation at the individual level can be quantified using the Procrustes distance of each 

individual from the mean. The variance of these distances can also serve as a sample 

variance for shape (Zelditch et al. 2004). This measure is equivalent to the trace of the 

variance covariance matrix, or the sum of the diagonal elements in the VCM.

Comparing Covariation Structures

Although covariation structures may seem arcane to most developmental biologists, this is 

actually fundamental to most advanced morphometrics. The rich datasets that we obtain 

from 3D images require that we apply data reduction techniques in order to extract meaning 

from them. Such data reductions techniques (e.g. PCA) are all based on analysis of 

covariance structure. To compare relationships among complex datasets, we also need to use 

methods that relate different covariance structures to one another. To study how brain 

morphology affects the face during face formation, for example, we have used such methods 

(Parsons et al. 2011). Similarly, if we want to relate variation in cellular dynamics to 

measures of morphogenesis over time, such analyses are also based on quantification and 

comparisons of covariance structures. For example, one might wish to determine how a 

mutation influences morphogenesis via spatially structured changes in gene expression, and 

cellular dynamics (proliferation, hypertrophy, polarity etc.). To test this, one could obtain 

external shape data along with data on cellular parameters and gene expression for multiple 

individuals. The resulting dataset would be large and heterogeneous. Relating such datasets 

to each other requires sophisticated multivariate approaches, most of which rely on analysis 

of covariance structure.
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In most datasets, PCA reveals a salient feature of morphological variation: multivariate 

morphological variation tends be structured such that the majority of the variance is captured 

by the first few PCs. This can be visualized using a histogram of the eigenvalues from a 

PCA (Figure 9B). This phenomenon, morphological integration (Olson and Miller 1958), 

reflects the influence of developmental processes that vary during development and produce 

patterns of coordinated variation among phenotypic traits (Cheverud 1996b; Hallgrimsson et 

al. 2009; Wagner 1990). The strength of morphological integration can be compared using 

the tendency for variation to concentrate in the first we PCs. The more variance is biased 

towards the first few PCs, the higher the variance of the eigenvalues for each PC. Therefore, 

the variance of eigenvalues (VE) can be used to measure the strength of integration (Wagner 

1990). Variation tends to concentrate in the first we PCs and decreases across each 

subsequent PC. An alteration in the rate of this decrease demonstrates integration. VE can be 

derived from a covariance matrix and scaled to the mean eigenvalue or simply derived from 

the correlation matrix.. VE estimates integration more reliably than the older and more 

intuitive metric of simply using correlation coefficients (Fisher-z transformed for normality), 

particularly in the case of heterogeneous matrices such as those we usually encounter in 

biology (Pavlicev et al. 2009). VE is dependent on the number of traits and, for this reason, 

Pavlicev et al recommend using the relative eigenvalue variance (Pavlicev et al. 2009). Here, 

VE is scaled to the maximum eigenvalue of a correlation matrix. In some datasets, even with 

scaling to the mean eigenvalue, there is a persistent correlation between VE and overall 

variance with the absolute scale of the eigenvalues as demonstrated by resampling the VE 

and the sample variance (Hallgrimsson et al. 2009; Young et al. 2010b). This artifact is 

usually small but it is a concern when comparing samples that vary dramatically in 

phenotypic variance. VE can be compared among groups by resampling.

Covariation structure can be quantified and compared in a multitude of ways. See Steppan et 
al. (2002) for a high-level review. The simplest and most direct way to compare correlation 

of covariance matrices is by using the matrix correlation, which is simply the correlation 

among the corresponding cells in two matrices. Matrix correlations can also be adjusted for 

matrix repeatability (Cheverud 1996a). To determine the significance of a matrix correlation, 

one can use a Mantel’s test which permutes the matrices by randomly shuffling their cells, 

calculating a matrix correlation at each iteration (Sokal and Rohlf 1995a). Klingenberg 

modified the Mantel’s test for landmark data by shuffling the coordinates for each landmark 

as a unit rather than treating them as independent cells (Klingenberg and McIntyre 1998). 

Random skewers is a method that provides for a more flexible analysis of the differences 

and similarities in covariance structure (Cheverud 1996a). This method has been used 

successfully for GMM data (Jamniczky and Hallgrimsson 2009).

Covariation among parts of a structure defined by landmarks or among distinct structures 

defined by landmarks can be analyzed by means of partial least squares (Rohlf and Corti 

2000). This approach can provide evidence for interaction between structures during 

development. This is useful, for instance, if one suspects that a perturbation that directly 

affects one structure influences the development of another. This approach is preferable to 

multivariate approaches that have been frequently used in the past, including canonical 

correlation analysis (Rohlf and Corti 2000). Importantly, the blocks of landmarks that are 

compared must have independent Procrustes fits so as to remove the possibility that variance 
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from one set of landmarks affects the other. Many studies apply and develop the application 

of this methods to landmark data (Bastir and Rosas 2005; Bookstein et al. 2003; 

Klingenberg et al. 2001; Klingenberg et al. 2003; Mitteroecker 2009; Mitteroecker and 

Bookstein 2007; Mitteroecker et al. 2012) including analysis of embryonic craniofacial 

structures (Parsons et al. 2011). Bookstein refers to partial least squares as singular warp 

analysis when applied in GMM (Bookstein et al. 2003).

Allometry - the shape correlates of size and stage

Allometry is a salient feature of the covariance structures of most complex morphologies. 

Traits are said to exhibit allometric variation when they do not scale isometrically to some 

measure of size (Gould 1966). Shape and size are inextricably linked in most organisms. 

Allometry is also a prominent feature of shape variation for complex morphological traits 

such as craniofacial shape (Figure 10a). For example, allometry represents roughly a third of 

the total shape variation in baboon skulls and in mice (Frost et al. 2003; Hallgrimsson et al. 

2009). In GMM, Procrustes superimposition scales the landmark sets that describe a 

structure to centroid size, leaving the shape component that is correlated with size. This 

component represents allometric variation or the tendency for structures of different sizes to 

be differently shaped. Allometry is often divided into ontogenetic, static or evolutionary 

(Klingenberg and Zimmermann 1992). Ontogenetic allometry refers to shape changes with 

ontogenetic stage or age. This is the most important type of allometry for most studies of 

development. Static allometry refers to the shape correlates of size independently of age. 

Evolutionary allometry refers to the shape correlates of size among species. The 

relationships among these three types of allometry has been a significant area of inquiry 

within evolutionary biology (Lande 1979).

In some cases, most of the allometric variation is captured by the first component in a PCA 

(Klingenberg 1998). In others, allometry can be more complex. In such cases, multivariate 

regression can be used to regress shape on centroid size, age or other relevant measure 

(Monteiro 1999). Figure 10b shows this in a sample of mouse embryos that vary in age and 

centroid size. Here, regression of shape on stage quantifies ontogenetic allometry while 

regression of shape on centroid size quantifies static allometry. This analysis was based on 

multiple multivariate regression. As there is co-linearity between the effects of stage and 

size, it is difficult to estimate the independent shape effects of each. These regression based 

methods can be used more generally to quantify or standardize for the effect of other 

covariates.

Allometry can complicate comparisons among genotypes or treatments when they vary in 

size as well as shape. In such cases, it can be necessary to determine what the static 

allometric shape variation is independent of the treatment or mutation of interest. As an 

example of this, we have used mice that have reduced growth due to a mutation in the 

growth hormone releasing hormone receptor to quantify the allometric component of a 

mutational effect (Boughner et al. 2008). This is a common problem as many mutations 

affect size with most resulting in a reduction in size. A further complication is that many 

mutations may be associated with a reduction in developmental rate. For these reasons, 

quantification of both ontogenetic and static allometry is a critical component of the 
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phenotypic analysis of any mutant. A useful tool in such analyses is to do a combined 

analysis of shape and size, or form space, by adding centroid size back into a morphometric 

analysis (Mitteroecker and Bookstein 2008; Smith et al. 2015).

3D Imaging for Morphometrics

A variety of imaging techniques exist for generating data for morphometric analysis and 

morphometric techniques are broadly applicable across these techniques (Norris et al. 2013). 

A full review of these methods is beyond the scope of this chapter. Instead, we will briefly 

describe the three imaging techniques that have been most widely used to create 3D image 

data for embryos and describe their chief advantages and limitations.

Computed Microtomography

Computed microtomography (μCT) is the technique that has most commonly been used in 

the quantitative study of craniofacial morphogenesis (Billington et al. 2015; Boughner et al. 

2008; Chong et al. 2011; Green et al. 2015; Hu et al. 2015b; Parsons et al. 2008; Percival et 

al. 2014; Schmidt et al. 2010a; Young et al. 2010a; Young et al. 2014). Although μCT was 

initially used mostly for visualizing skeletal tissues, it has proven to be an effective modality 

for 3D volumetric imaging of embryonic soft tissues (Boughner et al. 2008; Metscher 2009; 

Parsons et al. 2008; Wong et al. 2014). The major issue for μCT imaging of embryos is the 

distortions that are produced by fixation or dessication (Schmidt et al. 2010b). Scanning in a 

liquid medium is also problematic because of the low contrast between embryonic tissues 

and water in a CT scan. We have experimented with a variety of techniques and have found 

that a 4% formaldehyde + 5% biological grade glutaraldehyde buffered fix produces scans 

with the least amount of fixation related shrinkage and shape distortion (Schmidt et al. 

2010b) (Figure 11). Embryos are scanned in air but carefully positioned for scanning so as to 

avoid compression or damage that can alter facial morphology.

Optical Projection Tomography

Optical projection tomography (OPT) is a form of optical computed tomography scanning 

that is based on visible light rather than X-rays (Sharpe 2009; Sharpe et al. 2002). The 

principal advantage of this technique is one can use optical molecular markers, such as 

fluorescent tags to image different tissues or regions expressing particular proteins, protein 

modifications or mRNAs. Current instrumentation allows visualization in several UV or 

white light channels, allowing simultaneous visualization of several markers as well as 

generation of 3D morphology in a single scan session (Figure 12). This combination of 

molecular and morphological imaging makes OPT a very powerful technique for 

morphometrics in developmental biology. The principal drawback of the technique is that 

the need to partially clear tissues increases processing artifacts that affect morphology. 

Further, processing and imaging is more time-consuming than microCT. Finally, the fact that 

OPT relies on lenses to focus images limits the depth of focus and thus the size of tissue that 

can be imaged in this way (Sharpe 2009).
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High-Resolution Magnetic Resonance Imaging

High-resolution magnetic resonance imaging (μMRI) has been used to image embryos for 

over two decades (Smith 1999; Smith et al. 1992; Smith et al. 1994; Smith et al. 1996). 

μMRI offers tremendous advantages over other volumetric imaging modalities in terms of 

soft tissue contrast (Baghdadi et al. 2011). Advances in molecular imaging based on MRI 

also have tremendous potential to advance the abilities of this imaging technique. μMRI can 

be performed in unfixed tissues in a liquid medium, which means that specimen distortion is 

minimal. The drawbacks of μMRI are the availability and cost of scanning time and the 

specialized expertise required to optimize scanning protocols. Further, the spatial resolution 

and signal to noise are determined by the strength of the magnet and so high-resolution 

imaging studies of embryos require powerful and expensive magnets. Even so, μMRI 

scanning resolutions are generally between 20 and 40 microns, compared to 5 micron or 

higher for μCT. Although the soft tissue differentiation is much better than with μCT, the 

large voxel size results in significant pixilation error for small embryos. At higher 

resolutions, scan times on a per specimen basis can be prohibitively long (Powell and Wilson 

2012). For these reasons, morphometric analysis of craniofacial morphogenesis have not to 

date employed μMRI. Instead, efforts have focused on atlas construction or (Petiet et al. 

2008) or automated organism-wide detection of abnormalities (Nieman et al. 2011).

Future Directions - Integrating Molecular and Anatomical Imaging

Recent studies have used morphometrics and 3D imaging to quantify variation in 

craniofacial morphogenesis (Billington et al. 2015; Green et al. 2015; Hu et al. 2015a; Hu et 

al. 2015c; Smith et al. 2015; Young et al. 2014). These studies have shown that 

morphometric analyses can significantly add to mechanistic studies of development and thus 

that morphometrics and 3D imaging of embryos have significant potential for developmental 

biology. However, these current studies fall far short of realizing the full potential of the 

quantitative study of variation.

The questions of developmental biology are multilayered and increasingly complex. The 

broader opportunity for the combination of imaging and morphometrics lies in the challenge 

of quantitative integration across the genotype-phenotype map; that is, the development of 

techniques and statistical methods that quantify morphology in combination with molecular 

and cellular-level data. We are now in the very early stages of realizing this goal using a 

combination of innovative imaging technology, molecular methods and quantitative 

methods. OPT imaging allows us to step toward this goal. Using OPT we have been able to, 

for example, relate variation in the 3D shape of a gene expression domain to morphogenesis 

(Hu et al. 2015c; Mio et al. 2015). OPT allowed the simultaneous imaging of a 3D gene 

expression pattern and external embryonic morphology. Quantifying the shape of the gene 

expression pattern required a novel morphometric method for the analysis of fuzzy shapes. 

In collaboration with Washington Mio, we solved this problem by applying spherical 

harmonics analysis to the Shh gene expression domains in chick embryos (Figure 13a). OPT 

is currently limited in that it can only image expression for 3 genes in the same embryos.

Combining data on cellular dynamics and morphology offers tremendous potential to study 

mechanisms of morphogenesis and their relation to structural birth defects. This is also a 
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difficult problem. MicroCT and OPT are both potential avenues towards this goal. It is 

possible to successfully perform whole mount immunohistochemistry on mouse embryos to 

obtain both scans and sections (Figure 13b). This is very labour intensive, however, and the 

partial digestion of the embryo that is required for the whole mount immunohistochemistry 

step greatly complicates the μCT scanning. OPT offers the ability to obtain such data 

simultaneously from the same embryo. The challenge here is spatial resolution which at a 

nominal level of 5 microns is currently insufficient to make out signals in individual cells. 

However, spatial variation in staining intensity may be provide useful cellular level data 

(Figure 13c).

At a methodological level, developmental biology presents morphometrics with a massive 

challenge. 3D imaging modalities offer rich datasets and we lack methods to make effective 

use of the information contained in these images. Conducting statistical tests on 

quantifications derived from the full complexity of such image sets will likely run into 

computational power issues. Integrating this information across modalities and across levels 

poses an additional challenge in terms of both methods and computational power. These 

challenges are well worth investing in. Integrating 3D imaging based on a firm foundation of 

morphometric theory will be key if developmental biology is to move towards quantitative 

frameworks that allow for predictive modeling of morphogenesis (Boehm et al. 2010). 

Personalized or precision medicine is unlikely to make significant inroads for structural birth 

defects based on genomics alone (Hallgrimsson et al. 2014). Developmental processes are 

simply too complex for prediction to bypass quantitative understanding the role of 

development in the genotype-phenotype map. That can only be realized through significant 

investment in imaging and morphometrics as applied to development.
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Figure 1. 
A) Raup’s morphospace for shell coiling (Raup, 1966). B) Morphology for amniote 

embryos, including humans, is shown in a space constructed using Principal Components 

Analysis from 3D landmark data (Young et al. 2014). C) Analysis of mouse mutants with in 

a Canonical Variates Analysis based space. This plots shows craniofacial effects for 

mutations affecting chondrocanial growth and brain size forming two distinct common axes 

of covariation.
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Figure 2. 
General Procrustes Superimposition. A shows a 2D view of a 3D adult mouse landmark set. 

B. shows the full scatter for the raw landmarks in this dataset. In this particular datasets, the 

two sides of each specimen are treated as separate individuals. B) The scatter for all 

individuals (left and right sides) after scaling the LM coordinates for centroid size. C) The 

scatter after translation so as to center the centroids of each individual. D). The distribution 

of Procrustes residuals after rotation and, where appropriate, reflection superimposed on a 

ventral view of a mouse.
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Figure 3. 
Multivariate regression on Procrustes superimposed landmark data allows calculation of the 

shape changes that correspond to that regression. Here, tail somite stage is regressed on 

landmark coordinates that capture craniofacial shape variation during face formation. The 

wireframes show the deformations that correspond to the regression in frontal and lateral 

views while the scatter plot shows the regression scores plotted against tail somite stage.
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Figure 4. 
Illustration of the Pinocchio effect. In A, a dataset is generated in which a profile of 

Pinocchio’s head varies only in that the nose gets longer. This only displaces the three 

landmarks on the nose. However, a PCA based on a Procrustes fit of those data shows small 

displacements of landmarks that were not actually displaced although the largest 

displacements involve the nose (B). However, the increase in nose length is perfectly 

correlated with centroid size and so regressing on CS completely removes both the nose 

length variation and its associated artifacts (C, D). In D, shape is standardized to the sample 

average and so shows an intermediate length nose. If we add an additional shape component, 

ear shape (E) that is uncorrelated with nose length, the Pinocchio effect is complicated 

slightly. Here, variation is spread across two PCs (F), one which captures nose length and 

another that captures ear length. These effects and all their associated changes in can be 

removed from the data as shown in G and H, either by regressing out centroid size and PC2 

or PC1 and PC2. The artifactual shape changes, however, are preserved in the shape 

variation associated with these regressions.

Hallgrimsson et al. Page 26

Curr Top Dev Biol. Author manuscript; available in PMC 2017 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The strongest (> 5% difference in means) significantly (α=0.05) different linear dimensions 

identified in a EDMA SHAPE comparison of skulls from 129 and C57 mouse strains, 

viewed from the lateral (top) and superior (bottom) aspects. Measurements were 

standardized by centroid size before analysis. Red lines are dimensions for which C57 is 

relatively longer than 129, while blue lines are relatively longer in 129 than C57.
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Figure 6. 
Standard embryo craniofacial landmark set (Percival et al., 2014).
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Figure 7. 
Right lateral view of the surface craniofacial morphology of E10.5, E11.5, and E12.5 mouse 

specimens in a standard orientation. As previously defined (Percival et al., 2014) the 

homologous location of a landmark between the maxillary and the lateral nasal prominences 

is shown. We consciously defined it so that it landmark such that it remains at the border 

between these cell populations rather than maintaining a standard geometric relationship 

with other cranial features like the eye.
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Figure 8. 
Late fetal (Gonzalez et al. 2014), Neonatal (Boughner et al. 2008)), and adult mouse 

landmark sets used in recent studies by our group.
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Figure 9. 
Principal Components Analysis in Geometric Morphometrics. A) Explanation of PCA (from 

Zeldicth, (2004)). The 2D plots illustrate PC1 and the projection of points (individuals) on to 

PC1 to create PC scores. The 3D plot shows how the scatter among three variables would 

correspond to principal components.
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Figure 10. 
Allometry in adult mice and in mouse embryos (E1.0–12.5). A shows the allometric 

component of shape variation in the Parental strains and F1 crosses for the Collaborative 

Cross Mice. B and C show the results of multiple multivariate regression of shape on both 

tail somite stage (B) and size (C). B shows the component of shape variation that is related 

to tail somite stage while C shows the static allometry component that is perpendicular to the 

variation in C. A challenge in such analyses is the co-linearity among the effects of stage and 

size.
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Figure 11. 
MicroCT scans of embryos fixed using different protocols shown at the same scale. 

Illustrating the effect of different fixation and scanning procedures on morphology. A) 4% 

formaldehyde + Bouin’s. B) 4% formaldehyde + 1% glutaraldehyde with Iothalamate 

meglumine for contrast. C) 4% formaldehyde + 5% glutaraldehyde plus contrast agent 

(Schmidt et al. 2010b).
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Figure 12. 
Examples of Optical Projection Tomography Images. A) E10.5 mouse embryo stained with 

Sytox Green B) E12.5 mouse embryo stained with Sytox Green (blue) and Ser10 

phosphohistone H3 (green). C) Hamburger Hamilton Stage 23 chick embryo showing Shh 

expression in the Frontonasal ectodermal zone (FEZ) highlighted in red.
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Figure 13. 
A) Analysis of Shape of Gene Expression. i. OPT scan of whole mount in situ showing Shh 

expression (red). The green plane indicates the slices in i and ii. ii. Section of FEZ parallel to 

sagittal plane. iii. Surface spline extracted from raw FEZ. B) MicroCT renderings and cell 

proliferation data from the same specimens. i and ii) 3D reconstruction of μCT taken after 

processing but before sectioning. iii and iv) Hoescht 33342 staining to visualize cell nuclei 

(blue) with cells in S phase visualized using EdU + Alexa Fluor® 488 labeling (green) at 5X 

and 200X. v) Specimen processed wholemount for anti-PHH3 primary antibody to identify 

M-phase cells. vi) MicroCT rendering of the same specimen after treatment. C) Images 

derived from OPT imaging of EdU stained embryo counterstained with Sytox Green. B) 

Volume view of Sytox Green channel showing regional difference in cell density. C) Volume 

view of EdU channel showing regional difference in cell proliferation. D) Heat map of 

virtual section of lateral nasal prominence of (C) showing local proliferation differences. E) 

EdU incorporation as viewed in a traditional confocal section EdU stain (red), DAPI (blue).
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