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Abstract

Graphlet analysis is an approach to network analysis that is particularly popular in bioinfor-

matics. We show how to set up a system of linear equations that relate the orbit counts and

can be used in an algorithm that is significantly faster than the existing approaches based

on direct enumeration of graphlets. The approach presented in this paper presents a gener-

alization of the currently fastest method for counting 5-node graphlets in bioinformatics. The

algorithm requires existence of a vertex with certain properties; we show that such vertex

exists for graphlets of arbitrary size, except for complete graphs and a cycle with four nodes,

which are treated separately. Empirical analysis of running time agrees with the theoretical

results.

Introduction

Analysis of networks plays a prominent role in various fields, from learning patterns [1] and

predicting new links in social networks [2, 3], inferring gene functions from protein-protein

interaction networks [4] in bioinformatics, to predicting various properties of chemical com-

pounds (mutagenicity, boiling point, anti-cancer activity) [5] from their molecular structure in

chemoinformatics. Many methods rely on the concept of node similarity, which is typically

defined in a local sense, e.g. two nodes are similar if they share a large number of neighbours.

Such definitions are insufficient for detecting the role of the node. A typical social structure

includes hubs, followers, adversaries and intermediaries between groups. While local similarity

definitions treat the hub and its adjacent nodes as similar, a role-based similarity would con-

sider the hubs as similar disregarding their distance in the graph.

A popular approach in bioinformatics extracts the node’s local topology by counting the

small connected induced subgraphs (called graphlets) [6], which the node touches, and, when

a more detailed picture is required, the node’s position (orbit) [7] in those graphs. See the fol-

lowing paragraphs for a more formal definition. Fig 1 illustrates all four-node graphlets and

orbits of their nodes. Most applications of graphlet and orbit counts are based on the assump-

tion that the node’s local network topology is somehow related to the functionality or some

other property of the observed node in the network. Therefore, we can assume that nodes with

similar signatures will have similar observed properties. This is the foundation for methods

such as clustering of nodes, inference of certain node’s properties etc. The nodes often
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correspond to proteins in the protein-protein interaction networks. However, the networks

can model an arbitrary process. With the development of new technologies, these networks

are becoming larger, which motivates the development of efficient subgraph counting

algorithms.

Let Gk be a set of all non-isomorphic connected simple graphs (graphlets) on k nodes, and

let G 2 Gk. The orbit of a vertex v 2 G is a set of all vertices a(v), a 2 Aut(G). Let Ok be a set of

orbits for all v 2 G and for all G 2 Gk. Pržulj [7] numbered the 30 graphs in G2, G3, G4 and G5

and the corresponding 73 orbits; we will use her enumeration in the examples in this paper.

Let H = (V, E) be the host graph (network) and let x 2 H. Vertex x participates in a number

of subgraphs G 2 Gk induced inH, in which it appears in different orbits Oi 2 Ok. Let oi be the

number of times x appears in orbit Oi in induced subgraphs from Gk.

An example is shown in Fig 2. The orbit count o17 of vertex x is 9 since x appears in nine

paths G9 as the central vertex (note that the paths must be induced). Other orbit counts for G9,

o15 and o16, are 0 and 4, respectively: x does not appear as the end vertex (O15) of G9 in H, but

it appears four times in the role of the node between the center and the end (O16). For a few

more examples, o44 = 1, o47 = 4, and o59 = 2; all other orbit counts of 4-node graphlets are 0.

The orbit count distribution is a jOkj-dimensional vector of oi for all Oi 2 Ok. The orbit

count distribution represents a signature of the node: it contains a description of the node’s

neighborhood and the node’s position (“role”) within it. As such, this distribution is a useful

feature vector for various network analysis tasks.

We will describe an algorithm for computation of orbit count distributions for all vertices x
2 V for subgraphs of arbitrary size k. The efficient implementation of the algorithm requires

setting up a system of equations that relate subgraph nodes with specific properties; we will

prove that such nodes exist for all k� 3 except complete graphs and the cycle on 4 nodes,

which can be treated specifically. We will show—both theoretically as well as empirically—that

Fig 1. Four-node graphlets (G4). Vertices marked by the same color belong to the same orbit within a

graphlet.

doi:10.1371/journal.pone.0171428.g001

Fig 2. A host graph H and graphs G9, G18, G19 and G24 from G5. Graphs and orbits are numbered as in [7].

doi:10.1371/journal.pone.0171428.g002
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the algorithm’s time complexity on sparse graphs is lower by an order of magnitude in com-

parison with enumeration-based approaches.

Preliminaries

Referring to graphlets, orbits, neighbours, etc., requires some notation which we summarize in

Table 1 and use throughout this paper.

Let K = (VK, EK) be a subgraph of J = (VJ, EJ), and let v 2 VK. We will denote J’s vertex that

corresponds to v by vJ. If there are multiple isomorphic embeddings of K in J, vJ refers to one

of them. Similarly, if S� VK, then the corresponding vertices in J are denoted by SJ.

Related work

The most basic case of counting induced patterns in graphs is that of counting triangles. Itai

and Rodeh [8] showed that this can be done faster than by exhaustive enumeration in O(n3)

time. Raising the graph’s adjacency matrix A to the third power gives the number of paths of

length 3 between pairs of nodes. Element A3
x;x represents the number of paths of length 3 that

start and finish in the node x, which corresponds to the number of triangles that include x.

The total number of triangles is then 1

6

P
x2GA

3
x;x . Note that the same triangle is counted twice

for each of its three nodes. The time complexity of this procedure equals that of multiplying

two matrices, which is faster than exhaustive enumeration of triangles in dense graphs. A natu-

ral extension of this result is to larger cliques. Nesetril and Poljak [9] studied the problem of

detecting a clique of size k in a graph with n nodes. They showed that this problem can be

solved faster than with the straight-forward O(nk) solution. Their approach reduces the origi-

nal problem to detection of triangles in a graph with O(nk/3) nodes. Since we can detect trian-

gles faster than in O(n3) with fast matrix multiplication algorithms, we can also detect cliques

of size k faster than O(nk).
Counting all non-induced subgraphs is as hard as counting all induced subgraphs because

they are connected through a system of linear equations. Despite this it is sometimes beneficial

to compute induced counts from non-induced ones. Rapid Graphlet Enumerator (RAGE) [10]

Table 1. Notation.

H = (V, E) host graph within which we count the graphlets and orbits

n number of nodes of H; n = |V|

e number of H’s edges; e = |E|

d(v) degree of node v

d maximal node degree in H; d = maxv 2 V d(v)

N(v) set of neighbours of vertex v 2 V

N(v1, v2, . . ., vj) set of common neighbours of v1, v2, . . ., vj; N(v1, v2, . . ., vj) = N(v1)\N(v2)\. . .\N(vj)

NðSÞ common neighbours of nodes in the set S � V; NðSÞ ¼ \v2SNðvÞ

c(v), c(v1, v2, . . ., vj),

cðSÞ
number of common neighbours of vertex v, of vertices v1, v2, . . ., vj, and of vertices

from set S, respectively; that is, c(v) = |N(v)|, c(v1, v2, . . ., vj) = |N(v1, v2, . . ., vj)|,

cðSÞ ¼ jNðSÞj

Gk set of all graphlets with k nodes

Ga graphlet a, according to some enumeration

Oi orbit i, according to some enumeration

oi(v), oi the number of times the node v appears in an induced subgraph in orbit i; since v will

be obvious, we will use the shorter notation oi

m(i) index of the graphlet containing the orbit Oi, e.g. m(16) = 9

doi:10.1371/journal.pone.0171428.t001
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takes this approach for counting four-node graphlets. Instead of counting induced subgraphs

directly, it reconstructs them from counts of non-induced subgraphs. For computing the latter,

it uses specifically crafted methods for each of the 6 possible subgraphs (P4, claw, C4, paw, dia-

mond and K4). The time complexity of counting non-induced cycles and complete graphs is O
(e � d + e2), while counting other subgraphs runs inO(e � d). However, the run-time of counting

cycles and cliques in real-world networks is usually much lower.

Some approaches exploit the relations between the numbers of occurrences of induced sub-

graphs in a graph. Kloks et al. [11] showed how to construct a system of equations that allows

computing the number of occurrences of all six possible induced four-node subgraphs if we

know the count of any of them. The time complexity of setting up the system equals the time

complexity of multiplying two square matrices of size n. Kowaluk et al. [12] generalized the

result by Kloks to counting subgraph patterns of arbitrary size. Their solution depends on the

size of the independent set in the pattern graph and relies on fast matrix multiplication tech-

niques. They also provide an analysis of their approach on sparse graphs, where they avoid

matrix multiplications and derive the time bounds in terms of the number of edges in the

graph.

Floderus et al. [13] researched whether some induced subgraphs are easier to count than

others as is the case with non-induced subgraphs. For example, we can count non-induced

stars with k nodes,
P

x2V
cðxÞ
k� 1

� �
, in linear time. They conjectured that all induced subgraphs are

equally hard to count. They showed that the time complexity in terms of the size of G for

counting any pattern graphH on k nodes in graph G is at least as high as counting independent

sets on k nodes in terms of the size of G.

Vassilevska and Williams [14] studied the problem of finding and counting individual non-

induced subgraphs. Their results depend on the size s of the independent set in the pattern

graph and rely on efficient computations of matrix permanents and not on fast matrix multi-

plication techniques like some other approaches. If we restrict the problem to counting small

patterns and therefore treat k and s as small constants, their approach counts a non-induced

pattern in O(nk−s+2) time. This is an improvement over a simple enumeration when s� 3.

Kowaluk et al. [12] also improved on the result of Vassilevska and Williams when s = 2. Alon

et al. [15] developed algorithms for counting non-induced cycles with 3 to 7 nodes in O(nω),

where ω represents the exponent of matrix multiplication algorithms.

Alon et al. [16] introduced the color-coding technique for finding simple paths and cycles

in graphs. Their technique is applicable not just to paths and cycles but also to other patterns

with a small treewidth. The authors of [17] used such color-coding approach to approximate a

‘treelet’ distribution (frequency of non-induced trees) for trees with up to 10 nodes.

Recently, Melckenbeeck et al. [18] published a paper that describes how to generate systems

of equations similar to those used in the ORCA algorithm [19] for arbitrarily large graphlets.

However, the resulting equations do not satisfy the requirements needed for an efficient count-

ing algorithm. Consider for example the equation o50 + o55 = ∑P7(x,a,b,c)(c(a, b, c) − 1). There

can be as many asO(ed2) sets of nodes {a, b, c} with a nonzero number of common neighbours,

which makes the computation of common neighbours the limiting factor in terms of space

and time requirements. The method we present in this paper and the related proofs show how

to avoid this issue and construct an efficient algorithm for arbitraty graphlet sizes.

Outline of the proposed algorithm

We will derive a system of linear equations that relate the orbit counts of a fixed node for

graphlets with k vertices. The coefficients on the left-hand sides reflect the symmetries in the

graphlets and do not depend on the host graph, so they are derived in advance. The right-hand

Counting small induced graphs and orbits
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sides are computed as sums over graphlets with k − 1 vertices induced in the host graph H, and

the sums include terms that represent the number of common neighbours of certain vertices

in the embeddings of graphlets in H.

The resulting system of equations will be triangular and have a rank of jOkj � 1. We can effi-

ciently enumerate the complete graphlet, after which the system of equations for the remaining

orbit counts can be solved using integer arithmetic, thus avoiding any numerical errors.

Original contributions

We already presented the original idea of the algorithm in a recent article in Bioinformatics

[19], in which we focused on its use in genetics and avoided formal descriptions and analysis.

In this paper we

1. present the algorithm more formally;

2. describe a general method for derivation of the system of equations relating the orbit

counts;

3. generalize it to induced subgraphs of arbitrary size; in particular, we prove that the system

of equations with the properties required for the efficient implementation of the algorithm

exists for any k� 4;

4. provide worst time-complexity analysis and the analysis of the expected time complexity on

random graphs;

5. empirically explore the efficiency of the orbit counting algorithm and compare it with the

theoretical results.

The remainder of the paper is composed of two parts. In the next section we show a tech-

nique for building the system of equations with desired properties, and in the following section

we present an algorithm based on them and analyze its time- and space-complexity.

Relations between orbit counts

We will show how to construct linear relations between a chosen orbit count oi and some

orbits belonging to graphlets with a larger number of edges. We will illustrate the procedure

on figures showing the derivation of the following Eq (1) that relates the count for orbit 59 and

counts for orbits 65, 68 and 70.

o59 þ 4o65 þ 2o68 þ 6o70 ¼
X

x1; x2; x3 :

x1 < x2 ^ x3=2NðxÞ;
H½fx; x1; x2; x3g� ffi G7

½ðcðx1; x3Þ � 1Þ þ ðcðx2; x3Þ � 1Þ�

ð1Þ

Derivation of general relations between orbit counts

Let orbit Oi appear in a connected simple k-node graphlet Ga = (VG, EG) (a =m(i)). We denote

the Ga’s node that is in orbit Oi by x; if there are multiple such nodes, we pick one. Next, we

choose a node y 6¼ x, such that G0 = Ga\{y} is still a connected graph; we will impose additional

constraints on y later to ensure an efficient implementation of the algorithm. According to our

notation, xG
0

is the node in G0 that corresponds to x in Ga; let Om be its orbit. We label the

remaining k − 2 nodes with x1, x2, . . ., xk−2 (Fig 3).

Counting small induced graphs and orbits
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We now go in the opposite direction: starting with G0, we consider its possible extensions to

Ga. Let E� VG0 be a set of nodes such that adding a new vertex y connected to all vertices in E
yields Ga with x in orbit Oi (Fig 4). Let E be a set of all such subsets E.

Let G0H be some particular occurrence of G0 in H. To count oi for the node xH (the node in

H to which xmaps), we need to explore the extensions of G0H to GH
a . A necessary (but insuffi-

cient) condition to put xH into Oi is that the additional node y is a common neighbour of all

vertices EH for one of EH 2 EH
(with respect to the particular occurrence of G0 inH). There are

at most

X

E2E

ðcðEHÞ � cðEG0 ÞÞ ð2Þ

candidate nodes y; c(EG
0
) represents the number of neighbours of E that are already in G0 (i.e.

xi) and cannot be mapped to y. Eq (2) represents the term in the sum in the right side of the

Fig 3. Reducing the k-node graphlet Ga to a k − 1 node graphlet G0. O59 appears in Ga = G24; the node in

O59 is labelled x. Removal of node y results in G0 = G7. The node in G0 that corresponds to x, xG0, belongs to

O12. We assigned labels x1, x2 and x3 to the remaining nodes of G0. Embeddings of Ga and G0 in H are

referred to asGHa and G0H, respectively. The nodes corresponding to x and y are marked by xH and yH.

doi:10.1371/journal.pone.0171428.g003

Fig 4. Extensions of the k − 1-node graphlet G0 to Ga. G7 can be extended to G24 by attaching y to either x1

and x3 or to x2 and x3, hence E ¼ ffx1; x3g; fx2; x3gg. With respect to Eq (2), x1 and x3 (as well as x2 and x3)

have one common neighbour in G0, so c(EG0) = 1 and
P

E2EðcðE
HÞ � cðEG0 ÞÞ ¼ ðcðx1; x3Þ � 1Þ þ ðcðx2; x3Þ � 1Þ.

The right side in Eq (1) sums this over all unique occurrences of G0 = G7 with x in O12 within H.

doi:10.1371/journal.pone.0171428.g004
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relation. To compute the total orbit count oi for x, we sum Eq (2) over all occurences of G0 in

H (Fig 4).

Condition y 2 N(EH) (for some EH 2 EH
) is not sufficient. Node y can also be connected to

any of the other k − 1 − |E| (E 2 E) nodes in G0H, resulting in 2k−1−|E| possible graphlets and

orbits for x. The counts for these orbits are summed on the left side of the relation (Fig 5).

While adding the orbit counts on the left-hand side, we need to account for the over-counts,

that is, the number of times that Eq (2) counts the same occurrence of G� = Gm(p) (the graphlet

containing the orbit p) within H. G� is obtained by extending G0 with y 2 N(E). The coeffi-

cients on the left-hand side thus equals the number of ways in which G0 can be extended to G�

with a fixed node x (Fig 6).

In general, we have to consider all induced occurrences of G0 in G� (with a fixed point x),

which is the same as considering nodes z 2 VG� whose removal results in G0 with xG
0

in orbit

Op. For every such case we increase the coefficient by the number of extensions E 2 E such

that node z is connected to the extension nodes, i.e. N(z)� EG
�

.

The general procedure for relating the orbit count oi with counts of orbits with higher indi-

ces is outlined in Algorithm 1.

Algorithm 1 Derive an equation for orbit Oi.

functionEQUATION(Oi)
Ga Gm(i) . Let Ga be the graphletthat containsOi
x 2 Oi . and x one of the nodes in Oi.
y SELECTY(x) . Alg. 2—Picknode y such that y 6¼ x
G0  Ga\y . and G0 is a connectedgraph.
r  

P

G0H : xH2Oi

(Eq (2)) . The rightside of equationsums over.

. all occurrencesof G0 in the host graph.
for p 2 O . Constructleft side of the equation.
G� = Gm(p) . GraphletcontainingorbitOp.
fp 0 . Overcountcoefficientof orbitOp.
for z 2 G�: (G�\z)ffi G0 . Is z in the same orbit as y

. givena fixed pointx?
fp  fp þ jfE 2 E : NðzÞ � Egj . By how many extensions?

endfor
endfor
l ∑p fp � op . Left side is a weightedsum of orbit counts.
returnequationl = r

end function

Fig 5. Extended graphlets with extra edges. Dashed lines represent edges required by condition y 2 N(x1,

x3). Dotted lines represent possible extra edges that make the resulting induced graph isomorphic to G26, G68

or G70 instead of G24, with x in orbits o65, o68 or o70 instead of o59; these orbits appear on the left-hand side of

Eq (1).

doi:10.1371/journal.pone.0171428.g005
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Additional constraints on selection of y

In the preceding derivation, the only limitation on selection of vertex y was that the remaining

graphlet is still connected. Different choices of y yield different equations. With the coefficients

independent of the host graph and known in advance, the time consuming part of using these

equations to calculate orbit counts is the computation of the right-hand side terms. To speed it

up, we impose some additional constraints on the choice of the node y: the restraints will be

such that the right-hand sides will contain only the counts c(S) in which either |S|< k − 2, or

equal |S| = k − 2 with the nodes in S forming a connected subgraph of Gk. This will allow pre-

calculation and caching of all c(S) needed for computation of right-hand sides.

For efficient precomputation, vertex y 6¼ xmust meet the following criteria:

1. d(y)� k − 2,

2. G\{y} is a connected graph,

3. if d(y) = k − 2, the neighbours of y induce a connected graph,

where d(y) represents the degree of y.
We will prove that such a vertex exists in any graphlet k� 4 and all possible x, except for

complete graphlets (all vertices violate the first condition) and for the cycle on four points, C4

(all vertices violate the last condition).

Let Li represent the set of vertices at a distance i from x (see Fig 7). Let li be the vertex in Li
with the smallest degree. Let Lu be the last non-empty set, and, accordingly, lu the vertex with

the smallest degree among the vertices farthest from x. We will show that lu fulfils the condi-

tions in most cases, except in some for which we can use lu−1.

Algorithm 2 Selection of node y.
functionSELECTY(x)
u distanceto the furthestnode from x
Lu set of nodesat distanceu
Lu−1 set of nodes at distanceu − 1
if lu satisfiesthe criteriathen
y lowestdegreenode from Lu

else
y lowestdegreenode from Lu−1

endif
returny

end function
Each node v 2 Li (i> 0) has at least one neighbour in Li−1, since the first node in the short-

est path from v to x belongs to Li−1. Consequently, all Li for i� u are non-empty. Note also

Fig 6. Symmetries and coefficients. The coefficient at o70 in Eq (1) is 6 because each induced embedding

of G* = Gm(70) = G28 in H is counted six times. First, there are three different choices for y (the white node),

therefore each embedding of G28 results in three corresponding appearances of graphlet G7 (solid edges)

with x in orbit O12. For each occurrence, both extensions (dashed edges) lead to x in orbit O70.

doi:10.1371/journal.pone.0171428.g006
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that vertices from Li are adjacent only to vertices Li−1, Li and Li+1 since any edge from Li to Lj
with j< i − 1 would imply a shorter path from the node in Li to x.

Lemma 1 A vertex v 2 Li can have a degree of at most k−i.
The vertex v is not adjacent to any vertex in Lj, where 0� j< i − 1. Since Lj are non-empty,

there are at least i − 1 non-adjacent vertices, so the degree of v is at most k − 1 − (i − 1) = k − i.
As a consequence, if d(lu) = k − 2, then u� 2.

Lemma 2 If d(v) = k − 2 and v 2 L2, then v is adjacent to all vertices except x.

A vertex in L2 is not adjacent to x by definition of L2, and there are no loops, so to have a

degree of k − 2 it must be adjacent to all other vertices.

Lemma 3 If G is not a complete graph, then d(lu)� k − 2

For u> 1, the lemma follows directly from Lemma 1, so we only need to prove it for u = 1.

For contrapositive, assume that d(l1) = k − 1. Since l1 has the smallest degree in L1, all vertices

in L1 have a degree of k − 1. Furthermore, x has a degree of k − 1 since all vertices in L1 are

adjacent to it by definition of L1. Hence, G is a complete graph.

The last lemma ensures that the farthest vertex with the lowest degree, lu, fulfills the first

condition. It also fulfills the second one: all vertices are connected to x with the shortest paths

of lengths at most u, which cannot include lu, thus the removal of lu keeps them connected (at

least) via x.

We will prove that lu also fulfills the third condition, except for one special case (d(lu) = k
− 2 and u = 2 and |L2| = 1 and k� 5 and d(l1)� k − 2), in which we choose another suitable

vertex. We will consider six different cases, which are (except for the trivial first case) illus-

trated in Fig 7.

1. d(lu)< k − 2: Condition (iii) does not apply.

2. d(lu) = k − 2 and u = 1: Since all vertices except x are in L1, they are adjacent to x (Fig 7a). x
itself is among the neighbours of l1, hence neighbours of l1 are connected through x.

Fig 7. Illustrations of different cases. Node at the bottom level L0 represents node x. The selected node y is

colored black and its neighbours are indicated with a gray color. (a) u = 1. (b) u = 2 ^ |L2| > 1. (c) u = 2 ^ |L2| =

1 ^ k = 4. (d) u = 2 ^ |L2| = 1 ^ k� 5 ^ d(l1) = k − 1. (e) u = 2 ^ |L2| = 1 ^ k� 5 ^ d(l1) < k − 2. (f) u = 2 ^ |L2| =

1 ^ k� 5 ^ d(l1) = k − 2.

doi:10.1371/journal.pone.0171428.g007
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3. d(lu) = k − 2 and u = 2 and |L2|> 1: Since l2 is the vertex with the smallest degree in L2, all

vertices in L2 must have a degree of k − 2 and are adjacent to all vertices except x by Lemma

2 (Fig 7b). The neighbour set of l2 is L1 [ L2\l2. Since |L2|> 1, there exists a vertex v 2 L2 s.t.

v 6¼ l2. v is adjacent to all nodes from L2 [ L1, therefore L1 [ L2\l2 is connected.

4. d(lu) = k − 2 and u = 2 and |L2| = 1 and k = 4: L1 contains two vertices; both are adjacent to

x by definition of L1 and to l2 since d(l2) = k − 2 = 2. l2 is not adjacent to x by definition of

L2. This leaves only two possible graphs, the cycle C4 and a diamond (Fig 7c). For the for-

mer, the vertex with the required properties does not exist. For the diamond, lu fulfills all

three conditions.

5. d(lu) = k − 2 and u = 2 and |L2| = 1 and k� 5 and d(l1) = k − 1: The neighbour set of l2 is

the entire L1 (Fig 7d). Since the smallest degree in L1 is k − 1, L1 is a complete graph and

therefore connected.

6. d(lu) = k − 2 and u = 2 and |L2| = 1 and k� 5 and d(l1)� k − 2: The graph consists of L0 =

{x}, L2 = {l2}, and of L1 with at least 3 vertices since k� 5 (Fig 7e). All nodes in L1 are adjacent

to x by definition of L1 and to l2 by Lemma 2 since we assume d(l2) = k − 2.

In this case, lu does not always fulfil the conditions, so we choose the lowest degree vertex

from L1, l1. It fulfils the condition (i) by assumptions of this special case. As for condition

(ii), the graph G\l1 is still connected since all points in L1 are adjacent to x. Since |L1|� 3 and

d(lu) = d(l2) = k − 2, vertices x and l2 are connected through the remaining vertices in L1\l1.

Condition (iii) needs to be verified just for the case when d(l1) = k − 2 (Fig 7f). The neigh-

bours of l1 include x, l2 and all vertices from L1 except one. Since |L1|� 3, L1 must include at

least one other neighbour of l1, which thus connects x and lu.

We have covered all possible cases: the degree of lu cannot exceed k − 2 due to Lemma 3

(assuming the graph is not complete), and when d(lu) = k − 2, u cannot exceed 2 due to

Lemma 1.

We have proven that the vertex with the smallest degree in Lu, lu, fulfills the given condi-

tions in all cases except when d(lu) = k − 2 and u = 2 and |L2| = 1 and k� 5 and d(l1)� k − 2.

In the latter case, the conditions are fulfilled by l1. Complete graphlets and C4 are handled

differently.

Equation for a cycle on 4 nodes

A cycle on 4 nodes, C4, is treated separately since there is no suitable node y with the required

properties. For C4 (O8) we choose one of the nodes adjacent to x for the role of y, resulting in

2o8 þ 2o12 ¼
X

x1; x2 :

x; x2 2 Nðx1Þ;

H½fx; x1; x2g� ffi G1

½cðx; x2Þ � 1�:

ð3Þ

Note that this choice violates the third condition that the neighbours of y should induce a

connected graph. The Eq (3) contains a term on the right side that corresponds to the number

of common neighbours of node x and some other node x2 at distance 2 from x. The algorithm

stores precomputed values for all such pairs x and x2, which would require O(nd2) space and

increase the algorithm’s space complexity. However, we can still handle this case without con-

sequences for the time and space complexity. We achieve this by reusing O(n) space and

recomputing the number of common neighbours every time the algorithm starts a
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computation of orbit counts for a different node of interest x. This optimization is necessary to

keep the space requirement at O(nd) for counting four-node graphlets and does not impact

the time complexity.

System of equations

In the constructed system of equations, each orbit is related to orbits from graphlets with

higher number of edges. This yields a triangular system of equations: we have one equation for

every orbit O and these equations include as terms only the orbit O and other orbits belonging

to graphlets with a larger number of edges (e.g., the orbit 59 in Eq (1) is related to orbits 65, 68

and 70).

The system has Ok � 1 linear equations for Ok orbit counts. To solve it, one orbit count

must be enumerated directly. The networks that we encounter in practical applications are

usually sparse, which makes the complete graphlet (clique) a good candidate. Because of its

rarity and symmetricity, we can efficiently restrict the enumeration.

Enumerating the orbit in the graph with the largest number of edges also simplifies solving

the given triangular system of equations.

Extension to edge orbits

Edge orbits (Fig 8) can be defined in a similar way as node orbits. We can use the same

approach for setting up the corresponding system of equations. Since the system does not refer

to a single x but to an edge (xa, xb), the selected node ymust not coincide with either of these

endpoints. We can set x = xa and show that we can always choose a node y 6¼ xb with the

required properties.

Since xb is always in L1, we have to analyze only the cases where we choose y from L1. This

happens in cases 1, 2, and 6 from the proof in section about additional constraints on y. We

need to check that there at least two suitable vertices for y, so if one of them is xb, the other is

chosen as y.

1. d(lu)< k − 2: We need to consider only the case when u = 1. Since d(lu)< k − 2, all verti-

ces in L1 satisfy condition (i). The remaining graph is connected through x (condition

(ii)), and condition (iii) does not apply.

2. d(lu) = k − 2 and u = 1: Recall that the graph is not complete. Since all vertices in L1 are

connected to x, there must be at least one pair in L1 that is not connected and thus has a

degree of k − 2. These two vertices satisfy condition (i). Conditions (ii) and (iii) again

hold since all vertices are connected through x.

6. d(lu) = k − 2 and u = 2 and |L2| = 1 and k� 5 and d(l1)� k − 2: Since the vertex in L2 has

a degree of k − 2, it is connected to all vertices in L1; nodes in L1 are connected to x. The

Fig 8. Edge orbits in four-node graphlets. Different styles of lines within a graphlet indicate edge orbits.

doi:10.1371/journal.pone.0171428.g008
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nodes in L1 do not induce a complete graph (d(l1)� k − 2), so there must again exist a dis-

connected pair in L1, which satisfies all conditions like in above case 2.

For C4, one of the nodes in L1 is xb and the other is y.

Algorithm

Coefficients on the left-hand side of the relations are related to symmetry properties of the

graphlets and not to the graph H. The terms on the right sides of equations depend on the host

graph H. Their computation requires enumeration of all graphlets of size k − 1 and adding up

their possible extensions.

The first step is pre-computation and storing of cðSÞ for all subsets S with up to k − 3 verti-

ces and for all connected subsets of k − 2 vertices. These conditions match the criteria for selec-

tion of y, so the precomputed values cðSÞ represent the terms in the sum on the right-hand

sides of equations.

This is followed by direct enumeration of cliques with k vertices. This enumeration does

not have to be extremely fast, but just fast enough not to dominate the time complexity of the

entire graphlet counting algorithm. For this purpose we can employ some of the approaches to

listing cliques [20, 21].

Following this precomputation, the next two steps are repeated for each vertex x 2 V.

Computation of sums on the right-hand sides of equations. Computation is implemented as

enumeration of (k − 1)-node graphlets touching x, as specified by the conditions under the

sums. For each graphlet, the terms in the sum consist of the counts cðSÞ precomputed in

the previous step.

For k� 5, the number of graphlets with k − 1 nodes is small, so it is feasible to design effi-

cient individual procedures for enumerating them. These procedures involve early pruning

of non-viable candidates and completely avoiding any isomorphism testing. Medium-sized

graphlets (k = 5 or 6) require graphlet recognition of enumerated connected subgraphs,

however these patterns can be efficiently distinguished with the use of some trivial invari-

ants such as a degree sequence. Enumeration of larger graphlets would benefit from efficient

methods for isomorphism testing.

Solving the system of equations. The system is triangular, with each equation relating one

orbit to those with larger number of edges, Since the count for the highest orbit, which

belongs to the clique, is computed by direct enumeration, the system can be solved by

decreasing orbit indices.

All orbit counts, coefficients and free terms are integers, thus the computation is numeri-

cally stable.

Time- and space-complexity

We will analyze the worst-case complexity and the expected complexity on random Erdős-

Rényi graphs, followed by empirical verification.

Worst-case complexity. We will evaluate the worst-case time complexity of the algorithm

in terms of the number of nodes (n) and the maximum degree of a node (d) in the host graph.

We treat the size of the graphlets, k, as a constant. We assume that the graph is stored as a list

of adjacent nodes together with a hash table for checking whether two nodes are connected in

constant time. The algorithm consists of four steps.

Precomputation of common neighbours. We need to precompute the number of common

neighbours of sets of k − 3 or fewer nodes and of connected sets of k − 2 nodes to efficiently
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construct right sides of our equations. To achieve this we enumerate all subsets of k − 2 or

fewer neighbours for every node. This results in time complexity O(ndk−2). Storing the

number of common neighbours of sets of at most k − 3 nodes with the above method

requires O(ndk−3) space. Because we request that in the case of k − 2 nodes, these nodes

induce a connected subgraph, we can limit their number to the number of (k − 2)-node

induced connected subgraphs, which is also O(ndk−3).

Enumeration of cliques. We will refer to the time complexity of counting k-node cliques in

this step as O(Tk). A worst-case time complexity is O(ndk−1) and requires constant space.

However, this enumeration can be implemented very efficiently in practical applications on

sparse networks that contain few cliques.

Enumerating all (k − 1)-node graphlets and counting their extensions. This step computes

the right sides of the system of equations. It requires constant space, since the space is

reused for each vertex, and runs in O(ndk−2) time needed for enumeration of k − 1-node

graphlets.

Solving the system of equations. The system of equations is independent of the host graph

and requires constant time and space.

Overall, the algorithm has a O(ndk−2 + Tk) time complexity while requiring O(ndk−3) space.

In the worst case, the time complexity is the same as that of a simple exhaustive enumeration

method, O(Tk) = O(ndk−1). However, the term Tk is much smaller in practice.

Expected time complexity in random graphs. Although the worst-case time complexity

of the algorithm is equal to that of brute-force enumeration, the actual performance on real-

world networks and on random graphs is much better. We analyzed the expected time com-

plexity on random Erdős-Rényi graphs with n nodes and edge probability p. Throughout this

analysis we will assume that np> 1, otherwise the graph is likely to have more than one com-

ponent which can be processed independently.

The precomputation consists of iterating over central nodes, enumerating all sets of l� k
− 2 neighbours and incrementing the number of common neighbours of the leaf nodes. The l
nodes have to be connected to the central node, which happens with probability pl. The

expected time complexity of this step is Oðn
Pk� 2

l¼1
nlplÞ. Assuming np> 1, we can simplify it to

O(nk−1 pk−2).

In the second step, the algorithm enumerates all subgraphs with k − 1 nodes. It does so

incrementally by first enumerating smaller connected subgraphs of size l and extending them

to larger connected subgraphs. The expected time complexity is therefore proportional to the

expected number of connected subgraphs with l� k − 1 nodes. We need to estimate the proba-

bility that a set of l nodes induces a connected subgraph. We can view the process of building

every such subgraph by consecutively attaching a new node to at least one of the existing

nodes. This of course will overestimate the number of connected subgraphs by some constant

because every such subgraph can be built in several different orders of attaching nodes. The

probability that an edge exists from some newly added node to at least one of the i existing

nodes is 1 − (1 − p)i. The expected number of enumerated subgraphs is therefore

Oð
Pk� 1

l¼1
nl
Ql� 1

i¼1
ð1 � ð1 � pÞiÞÞ ¼ Oð

Pk� 1

l¼1
nlpl� 1Þ. Assuming np> 1, the expected time com-

plexity is O(nk−1 pk−2).

The total expected time complexity for setting-up the system of equations in Erdős-Rényi

graphs with n nodes and edge probability p is thus O(nk−1 pk−2). In practice, we observe graph-

lets with 4 and 5 nodes. The expected time complexities for these cases are O(n3 p2) and O(n4

p3), respectively.
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Empirical evaluation of time complexity. We evaluated the performance of our algo-

rithm for counting 4- and 5-node graphlets on random Erdős-Rényi graphs.

We measured the time needed for counting node- and edge-orbits with the Orca algorithm

and compared it to a bruteforce enumeration. For the latter we used an implementation from

GraphCrunch. Orca outperforms exhaustive enumeration by an order of magnitude (Tables 2

and 3). The running times for counting node-orbits and edge-orbits are practically the same in

the case of counting 4- or 5-node graphlets in random graphs with 1 000 nodes and of increas-

ing density. The size of the graphs (n = 1000) was chosen arbitrarily to put the run times in the

range of a couple of seconds. In the remainder of this section we focus on counting node-

orbits.

Second, we compare the running times of counting orbits of 4-node and 5-node graphlets

on random graphs with 10 000 nodes and up to 800 000 edges. These graphs are sparse as the

number of edges represents only about 1.6% of all possible edges; as such they represent a real-

istic case of large network analysis. A logarithmic plot of execution times in Fig 9 shows a poly-

nomial dependence on the size of graphlets. Dotted lines correspond to a bruteforce

enumeration method and solid lines to our Orca algorithm. The line corresponding to brute-

force counting of 4-node graphlets aligns nicely with counting 5-node graphlets using Orca.

This reflects the enumeration of 4-node graphlets used to compute 5-node graphlet counts.

The only difference is by a constant factor.

The slope of the Orca’s lines should be 2 and 3, respectively, according to the expected time

complexities (O(n3 p2), O(n4 p3)). However, this is clearly not the case in Fig 9. Further experi-

ments show that this is the result of CPU cache misses when accessing the precomputed

lookup tables. We performed a similar experiment with disabled CPU cache. Because of the

slowdown, we decreased the number of nodes to 1 000 and maintained average degree of

nodes. The measurements with disabled CPU cache in Fig 10 line up with the expected slopes

of 2 and 3.

Finally, we probed for the region in which the enumeration of cliques begins dominating

the time complexity. We performed the experiment for counting 4-node graphlets in graphs

with 1 000 nodes and increasing edge probabilities p. In Fig 11 the plot follows a straight line

up to around p = 0.07 and another steeper line from p = 0.3 onwards. This is consistent with

Table 2. Comparison of run times for counting node- and edge-orbits of 4-node graphlets.

four-node graphlets

edges [thousands] 50 100 150 200

bruteforce [s] 27.24 236.83 811.52 1876.98

node-orbits [s] 0.70 2.40 6.16 14.01

edge-orbits [s] 0.69 2.33 6.12 14.21

doi:10.1371/journal.pone.0171428.t002

Table 3. Comparison of run times for counting node- and edge-orbits of 5-node graphlets.

five-node graphlets

edges [thousands] 5 10 15 20 25

bruteforce [s] 0.87 12.75 61.57 191.94 461.53

node-orbits [s] 0.23 1.03 2.93 6.85 13.88

edge-orbits [s] 0.22 0.91 2.54 5.90 11.78

doi:10.1371/journal.pone.0171428.t003
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the contribution of the step of enumerating cliques. Random sparse graphs contain fewer cli-

ques whose enumeration is efficient and does not significantly affect the running time. How-

ever, as the graphs become denser, this becomes the bottleneck of the algorithm.

Final remarks

The source code of the algorithm in C++, which computes the node and edge orbits for k = 4

and k = 5, along with the randomly generated data used in experiments is available at https://

github.com/thocevar/orca. The corresponding R package orca is also available on CRAN.

Parts of this algorithm that have been presented previously are also already included in the

GraphCrunch package [22].

Fig 9. Polynomial time complexity. Comparison of counting times for orbits of 4- and 5-node graphlets on

sparse graphs with 10000 nodes and varying densities.

doi:10.1371/journal.pone.0171428.g009

Fig 10. Running times with disabled CPU cache.

doi:10.1371/journal.pone.0171428.g010
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