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Abstract

The idiopathic inflammatory myopathies (IIM) are a heterogeneous group of rare autoimmune 

diseases characterized by muscle weakness and extramuscular manifestations such as skin rashes 

and interstitial lung disease. We genotyped 2,566 IIM cases of Caucasian descent using the 

Immunochip; a custom array covering 186 established autoimmune susceptibility loci. The cohort 

was predominantly comprised of dermatomyositis (DM, n=879), juvenile dermatomyositis (JDM, 

n=481), polymyositis (PM, n=931) and inclusion body myositis (IBM, n=252) patients collected 

from 14 countries through the Myositis Genetics Consortium. The human leukocyte antigen 

(HLA) and PTPN22 regions reached genome-wide significance (p<5×10−8). Nine regions were 

associated at a significance level of p<2.25×10−5, including UBE2L3, CD28 and TRAF6, with 

evidence of independent effects within STAT4. Analysis of clinical subgroups revealed distinct 

differences between PM, and DM and JDM. PTPN22 was associated at genome-wide significance 

with PM, but not DM and JDM, suggesting this effect is driven by PM. Additional suggestive 

associations including IL18R1 and RGS1 in PM and GSDMB in DM were identified. HLA 

imputation confirmed that alleles HLA-DRB1*03:01 and HLA-B*08:01 of the 8.1 ancestral 

haplotype (8.1AH) are most strongly associated with IIM, and provides evidence that amino acids 

within the HLA, such as HLA-DQB1 position 57 in DM, may explain part of the risk in this locus. 

Associations with alleles outside the 8.1AH reveal differences between PM, DM, and JDM. This 

work represents the largest IIM genetic study to date, reveals new insights into the genetic 

architecture of these rare diseases and suggests different predominating pathophysiology in 

different clinical subgroups.
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Introduction

The idiopathic inflammatory myopathies (IIM) are a heterogeneous group of rare 

autoimmune diseases, the major phenotypes of which are dermatomyositis (DM), 

polymyositis (PM), inclusion body myositis (IBM) and DM/PM overlapping with other 

connective tissue diseases.[1] IIM are primarily characterised by the presence of proximal 

muscle weakness, elevated levels of skeletal muscle enzymes and inflammatory infiltrates in 

skeletal muscle, but may also present with extramuscular manifestations including skin 

rashes, interstitial lung disease and malignancy that often correlate with serum antibody 

status.[2]

IIM are thought to be complex genetic diseases, initiated by immune activation following 

specific environmental events in genetically predisposed individuals. The strongest genetic 

association in the IIM has been consistently within the major histocompatibility complex 

(MHC),[3] specifically with the 8.1 ancestral haplotype (8.1 AH). A recent genome-wide 

association study (GWAS) in DM, and a candidate gene study, also indicate overlap of genes 

implicated in other autoimmune diseases.[4, 5] The Immunochip is a custom-designed array 

containing coverage of 186 established autoimmune susceptibility loci and extended 

coverage across the MHC.[6] In this study, we report an Immunochip analysis of 2,566 

global IIM cases and 15,651 controls, representing the largest genetic association study to 

date in IIM.

Methods

Samples

2,954 samples from 14 countries were collected through the Myositis Genetics Consortium 

(MYOGEN), and written informed consent was obtained from all cases with approval from 

research ethics boards at each participating centre. There is overlap between these samples 

and previous IIM genetic studies.[3–5] IIM cases were included if they fulfilled probable or 

definite Bohan and Peter classification criteria for PM, juvenile PM (JPM), DM or Juvenile 

DM (JDM),[7, 8] and Griggs or European Neuromuscular Centre (ENMC) or Medical 

Research Council (MRC) criteria for IBM.[9–11] Eleven samples met the criteria for anti-

synthetase syndrome,[12] however available clinical data was not able to differentiate 

between PM or DM. These were included in the combined IIM analysis, but removed from 

the clinical subgroup analysis.

Immunochip control data from 12 countries was provided by four disease consortia (online 

supplementary methods).

Genotyping and quality control

Genotyping was performed in accordance with Illumina’s protocols in the UK (Centre for 

Genetics and Genomics Arthritis Research UK, University of Manchester, UK) and the US 

(Feinstein Institute, New York, USA). Standard sample and SNP QC was performed in 

PLINK v1.07 (online supplementary methods).
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Statistical Analysis

Statistical analysis was performed in PLINK v1.07 using a logistic regression applying an 

additive model, including the top ten principal components as covariates to control for 

population stratification. Evidence for additional independent effects was investigated using 

a stepwise logistic regression including the most associated variants as covariates in 

subsequent conditional analyses.

Functional annotation

Associated loci were interrogated for potentially causative variants using eQTL databases, 

and the functional prediction tools PolyPhen-2,[13] SIFT,[14] and phastCons17-way[15] 

(online supplementary methods).

MHC imputation and association analysis

Classical human leukocyte antigen (HLA) alleles and corresponding amino acid sequences 

were imputed using SNP2HLA. A logistic regression assuming an additive model was used 

to test for association, and forward stepwise logistic regression was used to test for 

independent effects (online supplementary methods). Classical 4-digit HLA alleles were 

preferentially reported, unless an amino acid association explained more risk than HLA 

alleles alone.

Results

Genotyping quality control

After stringent SNP and sample quality control we analysed 90,536 genetic variants in 2,566 

IIM cases and 15,651 controls of Caucasian descent (Table 1). A breakdown of this cohort 

by clinical subgroup is reported in Table S1. Australia, Denmark and Switzerland did not 

have an ethnically matched control group; however, these were adequately matched by 

existing cohorts (UK, Sweden, and Germany respectively). By including the top ten 

principal components as covariates and calculating the genomic inflation on a set of null 

SNPs (from a study investigating the genetic basis for reading and writing ability)[16] on the 

Immunochip gave a λGC1000 = 1.05, indicating that cases and controls are well matched for 

ethnicity (online supplementary Figure S1).

HLA and PTPN22 are the most strongly associated regions in IIM

Two regions in this study reached genome-wide significance (p<5×10−8) (Figure 1A and 

Table 2). As expected, the most strongly associated region was within the MHC 

(p=9×10−133) (online supplementary Figure S2). HLA-imputation was performed separately 

on this locus.

The other region reaching genome-wide significance was within the PTPN22 locus 

(rs2476601; p=7.22×10−9), an established autoimmune risk locus. This SNP/locus has been 

previously associated in an IIM candidate gene study,[3] but was not associated in a GWAS 

in DM.[4]
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A further nine regions were associated at a suggestive level of significance

We next investigated associations reaching our suggestive tier of association (p=2.25×10−5) 

calculated using the genetic Type 1 Error Calculator.[31] This estimates the effective number 

of independent tests based on the LD between SNPs contained on the genotyping array. 

Here, we found evidence of a further nine associated loci (Table 2).

The third most strongly associated SNP in this analysis was in the YDJC gene (rs5754467) 

on chromosome 22 (4.67×10−7). This SNP tags a large haplotype block containing UBE2L3, 

an established autoimmune risk locus.

STAT4 is a susceptibility locus for many autoimmune diseases. The lead SNP in this region 

was protective, which is a novel finding in IIM (rs4853540, p=1.57×10−6). Stepwise logistic 

regression analysis in this region suggested an independent risk effect of rs10174238 

(p=1.08×10−5, OR=1.17, 95% CI=1.09–1.26) (online supplementary Figure S3) and a 

further potential independent effect was seen at rs932169 (p=2.88×10−5, OR=1.25, 95% 

CI=1.13–1.39).

Further variants reaching our suggestive significance threshold reveal loci of interest that 

have been previously associated with autoimmune disease, including DGKQ, EOMES, 

CD28 and PRR5L/TRAF6. Associated SNPs that tag risk haplotypes (r2 >0.7) in other 

autoimmune diseases are reported in Table 2, and the direction of effect is reported in online 

supplementary Table S2.

Subgroup analysis reveals unique associations within PM and DM

We stratified our cohort by the two largest subgroups within IIM, consisting of 931 adult PM 

cases (Figure 1B, Table 2) and 1,360 DM cases (Figure 1C, Table 2). JDM cases were 

included in the DM analysis both to increase power, and on previous evidence that there is 

not extensive genetic heterogeneity between the subgroups.[4] The only non-HLA region to 

reach genome-wide significance in either subgroup was PTPN22 in PM (rs2476601, 

p=7.9×10−11). Interestingly, with a smaller sample size, the association in PM with PTPN22 
was stronger than in the combined IIM analysis. There was no evidence of association in 

DM (p=0.19), therefore the stronger effect in PM appears to be driving the association in the 

combined IIM analysis. Other interesting regions reaching a suggestive level of significance 

were SL26A1/IDUA and RGS1 in PM, and GSDMB in DM (online supplementary Table 

S3).

Exonic and eQTL SNPs suggest potential causal variants

Potential functionally relevant variants were investigated for non-synonymous SNPs (Table 

3) or eQTLs (Table 4) that are tagged by the lead SNP (r2 > 0.9). Two variants within the 

GSDMB gene, suggestively associated in DM, are ‘potentially damaging’ as predicted by 

PolyPhen-2. The PTPN22 variant is confirmed to be conserved across vertebrates, as well as 

a SNP in UBE3B. Evidence for eQTLs in cells with immune function (lymphoblastoid cell 

lines and monocytes) was found in six loci and may help annotate our associations, for 

example, the association with NAB1 in PM may be due to an eQTL affecting the expression 

of STAT1, 275Kb upstream.
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HLA Imputation confirms alleles of the 8.1 ancestral haplotype as the strongest 
association in IIM

Due to the complex linkage disequilibrium/haplotype structure in the MHC, interpretation of 

causal associations and independent effects using SNPs may be inadequate. We used 

SNP2HLA to impute classical HLA alleles and amino acids from SNP genotyping 

information. For each analysis, all variants reaching statistical significance (p<6.8×10−6) 

after each round of conditioning are included in online supplementary Table S4–S15. For 

many associations, amino acids unique to classical HLA risk alleles were associated at 

similar levels of significance to the HLA allele. For consistency, 4-digit HLA alleles are 

reported, unless an amino acid is significantly more associated than individual HLA alleles. 

In the combined IIM analysis (n=2,566), the most associated variants were classical HLA 

alleles, with HLA-DRB1*03:01 being the most significant 4-digit allele (p=2.58×10−135, 

OR=1.88, 95% CI=1.68–2.11). HLA-DRB1*03:01 forms part of the 8.1 AH which has been 

consistently associated with IIM. After conditioning on the effects of HLA-DRB1*03:01, a 

strong association was found with HLA-B*08:01 (p=3.23×10−14, OR=1.58, 95% CI=1.41–

1.78) suggesting that there is an independent effect within this locus. Further residual 

associations highlight the heterogeneity within this cohort, so analysis was then conducted 

on clinical subgroups. Similar associations were found with PM (n=931), HLA-
DRB1*03:01 being the most significant 4-digit allele (p=6.11×10−80, OR=1.99, 95% 

CI=1.67–2.36) and an independent effect with HLA-B*08:01 (p=4.17×10−9, OR=1.71, 95% 

CI=1.43–2.05). As the effect size of the HLA is strong in IIM, we hypothesised that we may 

be able to detect any potential differences between adult and juvenile DM, even with a 

reduced sample size. In adult DM (n=879), HLA-B*08:01 was the most significant allele 

(p=2.46×10−42, OR=1.90, 95% CI=1.66–2.17). Conditioning on HLA-B*08:01, there was 

evidence of multiple independent effects within the HLA-DQB1 locus, therefore we 

analysed imputed amino acid residues. Amino acid position 57 of HLA-DQB1 was more 

significantly associated with DM than individual HLA-DQB1 alleles (p=8.95×10−14), with 

alanine (p=1.29×10−12 OR=1.62, 95% CI=1.44–1.83) and serine (p=9.28×10−7, OR=2.15, 

95% CI=1.60–2.84) conferring the greatest risk. Further association with HLA-DQB1 
remains after conditioning, notably an independent effect of HLA-DQB1*04:02 

(p=2.01×10−6, OR=1.99, 95% CI=1.52–2.58). In the JDM subgroup (n=481), HLA-
DRB1*03:01 was the most associated allele (p=7.91×1014, OR=1.90, 95% CI=1.61–2.22) 

and an independent association was observed with HLA-C*02:02 (p=3.28×10−7, OR=1.99, 

95% CI=1.55–2.52) which is not a part of the 8.1 ancestral haplotype.

Discussion

This is the largest genetic study to date in IIM, and has revealed several novel suggestive 

associations in adult and juvenile IIM emphasising the autoimmune architecture of these 

diseases. We have confirmed HLA and PTPN22 as the most strongly associated regions in 

IIM, and identified nine additional associations at a suggestive level of significance. 

Subgroup analysis has identified distinct differences between PM and DM. Identification of 

exonic and eQTL SNPs has localised association signals to several potential causal variants.
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It is reassuring that associations such as PTPN22, STAT4 and UBE2L3 follow a similar 

genetic profile as reported in other autoimmune diseases. The most significantly associated 

SNP in the PTPN22 region is the rs2476601 variant, a C>T polymorphism that results in a 

non-synonymous arginine (R) to tryptophan (W) amino acid change at position 620. 

Although this SNP has been extensively studied in the context of autoimmunity, there is no 

consensus regarding the functional consequences of this SNP. Some studies report a gain of 

function mutation by enhancing the inhibitory effect on TCR signalling,[39] while others 

report a loss of function by increased degradation of the protein and a diminished inhibitory 

effect on T-cell activation.[40]

STAT4 is an important transcription factor for many genes involved in T-cell differentiation 

and has previously been associated with DM in the Japanese population.[41] Stepwise 

logistic regression analysis was conducted on all regions in this study; however STAT4 is the 

only locus with evidence of independent associations. The three independent SNPs are in 

LD with associations in different diseases. The lead SNP in STAT4 is protective, and in 

moderate LD with protective SNPs in STAT4 reported in inflammatory bowel disease (IBD), 

Crohn’s and ulcerative colitis.[16] The independent risk effect of rs10174238 is the same 

SNP reported in juvenile idiopathic arthritis,[18] and is in strong LD with disease-associated 

SNPs in RA and SLE.[19, 42] A SNP in high LD with rs932169 has been reported to be 

associated with primary biliary cirrhosis.[25]

The most significantly associated SNP in the YDJC gene tags an established autoimmune 

susceptibility locus where UBE2L3 is thought to be the causal gene.[43] This risk haplotype 

is thought to increase UBE2L3 expression in B cells and monocytes and amplify NF-κB 

activation.[43]

Stratification by clinical subgroup revealed further novel suggestive associations. These 

distinct differences between PM and DM suggest different autoimmune pathways in these 

subsets of IIM. For example, when splitting the total IIM cohort into PM and DM, we have 

shown that the association with PTPN22 is predominantly driven by a strong association 

with PM. For all associations, we have stratified by clinical subgroup and reported the 

summary statistics in online supplementary Table S3. IBM patients were included in the 

combined IIM analysis on the basis of their diagnosis as an inflammatory autoimmune 

myopathy, however we did not analyse this subgroup separately due to a lack of power 

(n=252). Removing this group from our analyses did not make any substantial difference in 

associated regions, however the strength of the signals were attenuated in most instances. 

With eight non-HLA loci reaching our level of suggestive significance in PM, and only 3 in 

DM, it may be that the Immunochip is explaining less of the genetic risk to DM. This may 

be due to lack of power, the selected content of the Immunochip, heterogeneity of 

phenotypes within DM, or a weaker genetic influence compared to other autoimmune 

diseases. Some previous reported associations with DM failed to replicate in this study. We 

looked for evidence of association with loci that have previously been associated with IIM 

that did not reach our suggestive level of significance. For example, in the DM and JDM 

subgroup analysis, an association was found with rs2618476 (p=3.2×10−5, OR=1.2, 95% 

CI=1.1–1.32), a SNP in B Lymphoid Tyrosine Kinase (BLK). rs2618476 is a proxy for a 

SNP that was associated with DM in the Japanese population,[44] and is also highly 

Rothwell et al. Page 7

Ann Rheum Dis. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlated (r2>0.8) with associations found in SLE and RA.[20, 29] With this knowledge, 

this association becomes more convincing, whereas the single association in the FAM167A-
BLK region in the PM subgroup (rs17799348) that is independent of the established risk 

haplotype, is less so.

It is important to note that this study was conducted on Caucasian IIM individuals. While 

there is evidence that risk loci may be shared across populations, such as STAT4 and BLK in 

the Japanese population, the association between PTPN22 and autoimmune disease is 

unique to Caucasians as the R620W variant is rarely seen in Asian populations. There is 

therefore a need to conduct further genetic studies on different IIM populations.

The Immunochip contains a dense set of SNPs covering 186 loci based on evidence of 

association with 12 different autoimmune and inflammatory diseases.[18] IIM was not one 

of these diseases, so this study can be seen as an exploratory investigation to assess genetic 

overlap with other autoimmune diseases, rather than the identification of genes novel to IIM. 

With 2,566 samples, Immunochip studies of similar size have revealed multiple non-HLA 

associations reaching genome-wide significance.[18, 45] The fact that only a single locus 

reached this threshold may due to low statistical power owing to phenotypic heterogeneity 

within IIM. A more conservative level of significance (p<2.25×10−5) revealed suggestive 

associations of interest. SNPs that are the same, or in high LD with established autoimmune 

variants, along with biological knowledge and/or evidence of functionality may lead us to 

pursue these associations with more confidence. Indeed, a recent Immunochip study in T1D 

calculated a Bayesian posterior probability of disease association >0.9 of SNPs reaching a 

suggestive level of significance (p<1×10−5) when there is evidence of genome-wide 

significance in other Immunochip studies.[30]

Due to the extended haplotypes that are present in the HLA region, for many associations, 

alleles carried on the same haplotype reached an equivalent significance level. For 

consistency, the most associated allele was used in the stepwise conditional analysis; 

however, this is not to say that the allele is causative. Interestingly in PM, two alleles 

frequently inherited together on the 8.1 AH (HLA-DRB1*03:01 and HLA-B*08:01) show 

evidence of having independent effects. This may also be the case in DM, however, after 

conditioning on HLA-B*08:01, the association with other alleles of the 8.1 AH did not reach 

genome-wide significance. In DM, the independent association with amino acid position 57 

in HLA-DQB1 may explain part of the risk within this gene. Indeed, this position is an 

established risk factor for T1D.[46] In this study, classical 4-digit HLA alleles were 

preferentially reported, unless an amino acid association explained more risk than HLA 

alleles alone. However looking at amino acids may give insight into functionality. For 

example, the association with HLA-DRB1*03:01 may be explained by the presence of 

amino acids that are unique to that allele. An asparagine at position 77, and an arginine at 

position 74 also were highly associated with IIM (online supplementary Table S4), and these 

residues are predominantly found on DRB1*03 alleles. As there are multiple residues unique 

to this allele, it is hard to tease out which positions may be functionally important; however 

the location of these amino acids in the HLA-DRB1 molecule may give insight (online 

supplementary Figure S4). Amino acid position 74 of HLA-DRB1 lies within the peptide 

binding groove, and almost all of the risk at this position can be explained by the presence of 
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an arginine (p=3.1×10−72, OR=2.83, 95% CI=2.53–3.17). The location of Arg-74 may 

change the structure of the peptide binding groove in such a way as to accommodate 

autoantigenic peptides. Indeed Arg-74 is an established risk factor for the development of 

autoimmune diseases.[47] A similar phenomenon is seen with HLA-B*08:01 and the 

occurrence of Phe-67 and Asp-9 (online supplementary Figure S5).

Alleles of the 8.1 AH have frequently been associated with the presence of myositis 

autoantibodies such as anti-Jo-1 and anti-PM-Scl. It may be that the association with the 8.1 

AH and IIM is due to the prevalence of these antibodies, and weak associations with other 

HLA-alleles may be due to associations with autoantibodies that are less frequent in the 

disease subgroup. Further work is planned to stratify patients by serotype to clarify these 

differences.

This study has revealed new suggestive associations with IIM in the Caucasian population, 

and independent associations with PM and DM. and has shown that subgrouping patients 

into clinical subgroups is important to expand our knowledge of IIM. This international 

collaboration has made it possible to perform the largest study to date in IIM and it has 

considerably expanded our knowledge about the genetic architecture of this rare disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plots of the IIM, PM and DM+JDM analyses, with the MHC region 
removed
The red and blue lines represent genome-wide level of significance (p=5×10−8) and 

suggestive significance (p=2.25×10−5) respectively. A) Analysis of 2,566 IIM cases and 

15,651 controls. B) Analysis of 931PM cases and 15,651 controls. C) Analysis of 1,360 DM

+JDM cases and 15,651 controls.
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Table 1

Number of IIM cases included in the analysis.

Number of Cases Number of Controls

Australia 120 -

Belgium 12 Belgium 351

Czech Republic 236 Poland 526

Denmark 53 -

France 37 France 497

Hungary 209 Hungary
Germany

257
1029

Italy 37 Italy
Italy (RAF cohort)

969
813

Netherlands 38 Netherlands 2020

Norway 63 Norway 730

Sweden 269 Sweden 1938

Spain 73 Spain 409

Switzerland 3 -

United Kingdom 993 United Kingdom 4332

United States 423 United States 1780

Total 2,566 Total 15,651

Number of IIM cases after QC, by country of origin. Control samples shared from Immunochip consortia matched by closest ethnicity.
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Table 4

Evidence of expression quantitative trait loci (eQTL)

Subgroup Mapped Genes Immunochip lead SNP eQTL within r2 >0.9 References

IIM UBE2L3 | YDJC rs11089637 UBE2L3, RIMBP3 [32] [33]

PM UBE3B | MMAB rs7956536 KCTD10, MMAB [32] [33] [34]

PM RGS1 rs7535818 RGS1 [32]

PM NAB1 rs2286896 STAT1 [35]

DM+JDM GSDMB rs1008723 ORMDL3, MED24, KRT222, NR1D1, GSDMB [34] [35] [36] [33]

eQTLs for the expression of a gene in cells with an immune function (Lymphoblastoid and Monocytes). RegulomeDB,[37] Genevar,[38] and the 

Pritchard lab eQTL browser (http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) were interrogated. The most significant SNP or any SNP with r2 ≥0.9 
with most significant SNP was used. Genes are indicated along with studies in which the eQTLs were reported.
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