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Abstract

Background—Despite evidence for the effects of metals on neurodevelopment, the long-term 

effects on mental health remain unclear due to methodological limitations. Our objective was to 

determine the feasibility of studying metal exposure during critical neurodevelopmental periods 

and to explore the association between early-life metal exposure and adult schizophrenia.

Methods—We analyzed childhood-shed teeth from nine individuals with schizophrenia and five 

healthy controls. We investigated the association between exposure to lead (Pb2+), manganese 

(Mn2+), cadmium (Cd2+), copper (Cu2+), magnesium (Mg2+), and zinc (Zn2+), and schizophrenia, 

psychotic experiences, and intelligence quotient (IQ). We reconstructed the dose and timing of 

early-life metal exposures using laser ablation inductively coupled plasma mass spectrometry.

Results—We found higher early-life Pb2+ exposure among patients with schizophrenia than 

controls. The differences in log Mn2+ and log Cu2+ changed relatively linearly over time to 

postnatal negative values. There was a positive correlation between early-life Pb2+ levels and 

psychotic experiences in adulthood. Moreover, we found a negative correlation between Pb2+ 

levels and adult IQ.

Conclusions—In our proof-of-concept study, using tooth-matrix biomarker that provides direct 

measurement of exposure in the fetus and newborn, we provide support for the role of metal 

exposure during critical neurodevelopmental periods in psychosis.
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1. Introduction

According to the neurodevelopmental model of schizophrenia, psychotic symptoms emerge 

as a result of interactions between brain abnormalities established in early development and 

brain maturational events that occur much later [1]. Metals have well-known effects on 

neurodevelopment in children, some acting as essential nutritive elements and others as 

neurotoxicants [2–8]. For example, zinc (Zn2+) is essential in development of the nervous 

system, and is involved in neuronal proliferation and migration as well as modulation of 

synaptic activities and intracellular signaling pathways [9]. Lead (Pb2+) interferes with 

intraneuronal gene transcription, affects hippocampal neurogenesis, and causes glial 

dysfunction in developing brain [10]. Furthermore, many essential elements, such as copper 

(Cu2+), manganese (Mn2+), and Zn2+, might exert toxic effects on brain at higher doses [11–

14]. The link between exposure to different metals and adverse early neurodevelopmental 

outcomes is well known [2,4,6–8,15–22]. However, the effect of metals on later 

developmental outcomes, such as schizophrenia, is still debated.

Beyond the general effect of metals on neurodevelopment, there are multiple intriguing links 

between several metals and schizophrenia (Table 1). Lead (Pb2+) and manganese (Mn2+) 

have been shown to cause alterations in neurotransmitters in the same manner that is often 

observed in patients with schizophrenia [23–25]. For example, strong evidence links 

developmental exposure to Pb2+ with disrupted N-methyl-D-aspartate (NMDA) receptors 

function [25], which can lead to NMDA receptor hypofunction with subsequent 

dysregulation of brain-derived neurotrophic factor (BDNF) signaling, synaptic function, and 

long-term potentiation [23,25]. Furthermore, NMDA receptors, partly regulated by the 

tryptophan–kynurenine pathway, are essential during in utero brain development and 

influence synaptic formation and plasticity, cell proliferation, and cell migration during 

prenatal period [26–28].

Of note, individuals exposed to heavy metals or deficient in nutrient metals frequently 

experience neuropsychological deficits also observed in schizophrenia [5–7,18,19,29]. 

Wilson's disease, caused by a hereditary excess in Cu2+, frequently manifests with psychosis 

[11]. Multiple reports have found different concentration of various metals, such as Cu2+, 

Mn2+, Zn2+, and cadmium (Cd2+) between patients with schizophrenia and healthy controls 

[30–34]. Intriguingly, higher delta-aminolevulinic acid levels (marker of Pb2+ exposure) 

have been detected in mothers whose children later develop schizophrenia [35,36].

The debate on the potential role of metals in schizophrenia is further complicated by 

methodological limitations of available studies. Importantly, metal exposure is mostly 

measured after disease development and is seldom determined during critical developmental 

periods. Studies that did measure metal exposure during critical developmental periods 

usually used indirect measures, such as maternal blood samples [35,36]. Moreover, most 

studies relied on samples that do not reflect exact timing of exposure during the high-risk 
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developmental period, and fall short of tracking change in exposure over time. To our 

knowledge, no prior studies have robustly studied the link between fetal or early childhood 

metal exposure and risk of psychotic illness in adulthood. Our primary objective was to 

determine whether the timing and dose of prenatal and early childhood metal exposure 

influences later development of schizophrenia and psychotic experiences.

2. Methods

In a proof-of-concept study, we analyzed shed deciduous teeth from nine individuals from 

the Genetic Risk and OUtcome of Psychosis (GROUP) [37] study with a DSM-IV diagnosis 

of schizophrenia and five healthy controls. GROUP is a prospective cohort of 1120 patients 

with psychotic disorders and 1648 controls and aims to investigate the genetic and 

environmental risk factors of psychosis in the Netherlands. A total sample size of 14 was 

estimated to be sufficient to detect a large effect size in the difference in mean log 

concentrations between cases and controls.

We investigated the association between exposure to metals, including manganese (Mn2+), 

lead (Pb2+), cadmium (Cd2+), copper (Cu2+), magnesium (Mg2+), and zinc (Zn2+), and 

intelligence quotient (IQ), syndromal schizophrenia as well psychotic experiences (as 

assessed by the Community Assessment of Psychic Experiences (CAPE) scale) [38]. 

Deciduous teeth from each subject were evaluated for pre- and postnatal metal exposure. We 

reconstructed the dose and timing of fetal and childhood metal exposures using a novel 

biomarker method named laser ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS), which has been described and validated in detail elsewhere [39–45]. All teeth 

collected in the study were shed naturally and kept by the parents at home, as is often the 

case in some cultures. Teeth were stored dry in sealed containers of various types. The 

method for tooth analysis in this study excludes the external layers to avoid any 

contamination. Importantly, all analytical methods used here have been extensively validated 

and applied to samples stored over decades and archeological samples that are thousands of 

years old [44,46]. Briefly, the method combines sophisticated histological and laser-based 

chemical analyses to precisely sample dentin layers corresponding to specific life stages, 

generating integrated, longitudinal, 1- to 2-week metal exposure estimates in pregnancy and 

during early childhood [39]. The time-varying difference between early-life (−4 to 6 months) 

metal concentrations, as measured in the tooth biomarker, and case/control designation was 

evaluated using a distributed lag model (DLM).

3. Results

Characteristics of the study participants and of the GROUP cohort are presented in Table 2. 

Mean [standard deviation, (SD)] age for the patients was 25.2 (1.9) years, and mean (SD) 

age for the control group was 28.0 ± 8.4 years. Mean (SD) duration of disorder was 3.8 (2.5) 

years.

After stringent statistical correction, the longitudinal differences in log Pb2+ were generally 

estimated above zero, showing statistically significant higher early-life intake of Pb2+ among 

patients with schizophrenia compared with controls (Fig. 1A and B). The differences in log 
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Mn2+ and log Cu2+ changed relatively linearly over time to postnatal negative values, 

indicating lower postnatal exposure to Cu2+ and Mn2+ in patients with schizophrenia than 

controls (Fig. 1A). The largest between group perinatal difference in Cu2+ and Mn2+ was 

observed six months postnatally (log difference case–control for Cu2+, −0.52, case/control 

ratio of 59% corresponding to 41% lower Cu2+ concentrations in cases compared to 

controls; log difference case–control for Mn2+, −0.42, case/control ratio of 66% 

corresponding to a 34% lower Mn2+ concentrations in cases compared to controls). There 

was a positive correlation between pre- and postnatal Pb2+ levels and CAPE score in 

adulthood (Fig. 1C). There was a negative correlation between Pb2+ levels and adult IQ (Fig. 

1D), which was strongest during the second trimester of pregnancy (r = −0.39) and 

decreased gradually in the third trimester and postnatal period. There was a positive 

correlation between Mg2+ levels and IQ that peaked around birth (r = 0.28) and decreased 

postnatally (Fig. 1D).

4. Discussion

Our proof-of-concept study is the first to use a tooth-matrix biomarker as a way to 

investigate the association between early-life metal exposure and long-term psychiatric 

outcomes. It provides initial support for the role of metal exposure during critical 

neurodevelopmental periods in early life and adult psychosis.

We believe that several characteristics make our study important. First, the study introduces 

a new method to reconstruct environmental exposures longitudinally from the second 

trimester and through the first year of life and it has the potential to transform research into 

environmental causes of mental disorders. The method is objective and therefore eliminates 

the possibility of bias in measuring environmental exposures. Second, correlations between 

metal exposures and severity of psychotic experiences ranged from 0.1 to 0.4, which is 

remarkable given the sample size, and that this is a unique longitudinal correlation across a 

25-year period. Finally, unlike previous studies that used maternal samples as a way to 

measure fetal exposure, our method allows for direct measurement of exposure in utero, 

starting from second trimester of pregnancy. Larger sample sizes would definitely be 

beneficial as they would allow to increase power (which will lead to detection of more subtle 

statistical differences), and could help understand mechanisms better because they will allow 

for more sophisticated statistical analyses taking into account multiple metals.

We should also emphasize that the method is a highly sophisticated imaging technique that 

in contrast to all previous methods measures value of each metal for each individual 

hundreds of times across several months. Therefore, the tooth for each individual is 

represented by 120–180 distinct yet temporally connected values. Furthermore, although the 

sample size may seem small in clinical research, in molecular research, it is considered a 

moderate sample size. For example, PET imaging studies in human use comparable sample 

sizes [47–50]. Importantly, despite the small sample size, we were able to show a 

statistically significant effect for lead after a Bonferroni correction for multiple comparisons.

A clear pattern emerged from our results linking exposure to Pb2+ during early development 

with schizophrenia and psychotic experiences. Importantly, the association was both strong 
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and statistically significant (i.e. the 95% CI for the ratios rarely included 1 and the 

correlation coefficient representing a `small'/`medium' effect size with 95% CI for the 

correlation coefficient rarely included zero). This confirms the findings of previous studies 

where more indirect measures of lead exposure were used to study the association between 

lead exposure during perinatal period and risk of schizophrenia. In two nested case–control 

studies, Opler et al. [35,36] showed that higher delta-aminolevulinic acid (D-ALA) levels 

corresponding to ≥15 μg/dL blood lead level in the mother is associated with a twice 

increase in risk of schizophrenia in the offspring compared with a blood lead level of <15 

μg/dL.

We also found an interesting association between higher lead levels and low IQ. While 

previous studies provided substantial evidence for the association between childhood lead 

exposure and low IQ [4,51–54], our study takes this evidence one step further. Some 

previous studies suggested that the effect of lead exposure on mental development was 

different depending on the trimester of pregnancy. This was based on maternal blood 

samples [52,53]; but our study provides the first set of direct measurement of fetal in utero 

exposure. We found that lead levels during prenatal period had a significant negative 

correlation with IQ (r ~ −0.5); but after reaching a plateau in the third trimester and first two 

months of life, the magnitude of correlation gradually decreased toward zero. This finding 

suggests that the prenatal period is the critical time where exposure to lead can have a 

substantial impact on intellectual development and that the lead impact tends to decrease as 

the brain gradually becomes more mature. It should be noted however that our sample was 

small, and therefore further replication of our finding is required.

We also found evidence of potential differential time-related relationship and critical 

windows of susceptibility for several other metals, such as Mg2+, Cu2+, and Mn2+, and adult 

outcomes. Although small sample size precludes any definitive interpretation of our 

findings, it is clear that determining the exact timing of exposure is critical, because 

exposure during different developmental periods confer different risks for adult outcomes.

Nevertheless, our findings should be interpreted in light of some limitations. First, our study 

was underpowered by design and therefore 95% CIs for estimates were very wide. 

Nevertheless and despite wide 95% CIs we could find a statistically significant effect of lead 

exposure on IQ and risk for psychosis. Furthermore, small sample size precluded statistical 

adjustment for important confounders, such as socioeconomic status and the interaction 

between metals. Third, although we tried to choose the most relevant metals for our study, 

there are several other metals that might be plausibly linked to abnormal neurodevelopment 

and consequently higher risk of psychosis. For example, iron regulates three key processes 

in brain development, namely energy metabolism, dopaminergic transmission, and 

myelination [55]. Importantly, studies suggest that iron deficiency is more prevalent in 

patients with schizophrenia than healthy controls [33]. Fourth, an inherent limitation of our 

method is that it cannot assess metal exposure during first trimester, which is considered 

another critical period in brain development. However, our novel biomarker provides the 

first set of direct in utero evidence and therefore is extremely valuable in assessing 

environmental exposures during pregnancy.
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In summary, this study provides support for the role of metal exposure during critical early-

life neurodevelopmental periods in psychosis. Our new biomarker represents a potential 

major advance in environmental science research in adult psychiatric disorders, since we can 

now objectively determine the temporal pattern of early-life environmental exposures. 

Further studies in a larger sample with a wider array of environmental exposures are 

required to fully elucidate the association between early-life environment and schizophrenia 

and related phenotypes in the population.
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Fig. 1. 
Metal concentration in early life and adult psychosis and related phenotypes. (A) The 

difference of log concentrations between schizophrenia cases (N = 9) and controls (N = 5) 

for six metals during three developmental periods. (B) The differences of log concentrations 

between schizophrenia cases (N = 9) and controls (N = 5) for Pb2+ with Bonferroni-adjusted 

95% confidence intervals. (C) The association between CAPE and perinatal log 

concentrations of six metals (N = 14). (D) The association between IQ and perinatal log 

concentrations of six metals (N = 14).
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Table 1

Clinical and neurobiological similarities of schizophrenia and altered balance of metals.

Schizophrenia Pb2+ (excess) Cd2+ (excess) Mn2+ (excess) Cu2+ (excess) Mg2+ (deficiency) Zn2+ (deficiency)

Core neuropsychological 
dysfunctions (IQ, working 
memory, attention, processing 
speed)

** ** * ** * *

References [15,16] [6–8] [8,56] [29,57,58] [59–63] [18,19]

Core neurotransmitter disturbances

• Dopamine + + + + + +

• Serotonin + + + + + +

• Glutamate + + + + + +

References [64–66] [67–69] [14,24] [70] [71–73] [74–76]

Clinical evidence of association 
with psychosis

+ + + + + +

References [35,36] [30,77] [44,45] [12,30] [78,79] [30]

+
Evidence of association;

*
moderate association;

**
strong association.
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Table 2

Demographic characteristics of all participants in GROUP study and those included in the pilot study.

Variable All participants in GROUP study Participants in the pilot study

Psychosis (n = 1120) Controls (n = 1648) Cases (n = 9) Controls (n = 5)

Male (%) 76 45.7 100.0 20.0

Age, mean (SD) 27.7 (8.1) 28.7 (9.3) 25.2 (1.9) 28.0 (8.4)

IQ, mean (SD) 94.9 (16.1) 105.4 (15.6) 100.2 (11.0) 114.0 (19.2)

Illness Duration, years, mean (SD) 4.4 (4.1) – 3.8 (2.5) –

DSM-IV diagnosis (%)

• Schizophrenia 68.8 – 44.4 –

• Schizoaffective 10.7 – 44.4 –

• Psychosis not otherwise specified 10.4 – 11.1 –

• Other 10.1 – – –

PANSS score, mean (SD)

Positive 13.9 (6.6) – 11.1 (5.6) –

Negative 15.0 (6.7) – 16.8 (4.7) –

Psychotic episodes, mean (SD) 1.7 (1.1) – 1.7 (0.7) –

IQ, intelligence quotient; PANSS, positive and negative syndrome scale; SD, standard deviation.
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