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Abstract

Background—In settings like the Ebola epidemic, where proof-of-principle trials have provided 

evidence of efficacy but questions remain about the effectiveness of different possible modes of 

implementation, it may be useful to conduct trials that not only generate information about 

intervention effects but also themselves provide public health benefit. Cluster randomized trials are 

of particular value for infectious disease prevention research by virtue of their ability to capture 

both direct and indirect effects of intervention, the latter of which depends heavily on the nature of 

contact networks within and across clusters. By leveraging information about these networks – in 

particular the degree of connection across randomized units, which can be obtained at study 

baseline – we propose a novel class of connectivity-informed cluster trial designs that aim both to 

improve public health impact (speed of epidemic control) and to preserve the ability to detect 

intervention effects.

Methods—We consider cluster randomized trials with staggered enrollment, in each of which the 

order of enrollment is based on the total number of ties (contacts) from individuals within a cluster 

to individuals in other clusters. Our designs can accommodate connectivity based either on the 

total number of external connections at baseline or on connections only to areas yet to receive the 

intervention. We further consider a “holdback” version of the design in which control clusters are 

held back from re-randomization for some time interval. We investigate the performance of these 

designs in terms of epidemic control outcomes (time to end of epidemic and cumulative incidence) 

and power to detect intervention effect, by simulating vaccination trials during an SEIR-type 

epidemic outbreak using a network-structured agent-based model. We compare results to those of 

a traditional Stepped Wedge trial.
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Results—In our simulation studies, connectivity-informed designs lead to a 20% reduction in 

cumulative incidence compared to comparable traditional study designs, but have little impact on 

epidemic length. Power to detect intervention effect is reduced in all connectivity-informed 

designs, but “holdback” versions provide power that is very close to that of a traditional Stepped 

Wedge approach.

Conclusions—Incorporating information about cluster connectivity in the design of cluster 

randomized trials can increase their public health impact, especially in acute outbreak settings. 

Using this information helps control outbreaks – by minimizing the number of cross-cluster 

infections – with very modest cost in power to detect effectiveness.
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Background

Vaccine and other treatment trials are typically designed to ensure sufficient power to detect 

effects for the intervention under study.1 In an epidemic setting, however, rapid disease 

control may also be of vital importance. The goal of intervention trials may be to generate 

proof of efficacy (i.e. benefit to trial participants receiving the intervention), or of 

effectiveness (i.e. benefit to communities participating in the trial). In an epidemic setting, a 

trial may also benefit wider society now, if it substantially reduces the number of infectious 

individuals in the current outbreak, or if it identifies an efficacious intervention for future 

outbreaks. In this paper we consider designs that are intended to simultaneously address the 

goals of evaluating effectiveness and of epidemic control.

Statistical inference in the context of vaccine (and other infectious disease) trials is 

complicated by “dependent happenings” – where the risk of infection of an index depends 

on the health status of others – which may lead to interference between treatment and 

control groups.2,3 Cluster randomized trials allow the estimation of combined direct effect 

(benefit of vaccinating the index) and indirect effect (benefit to the index of vaccinating 

others). In the commonly-used “Parallel” design, clusters are randomized to treatment or 

control, and then followed-up for a pre-determined period of time. An alternative approach, 

the “Stepped Wedge” design, treats all clusters sequentially in a randomized order. In this 

latter design, intervention effects can be measured through some combination of between- 

and within-cluster comparisons, accounting for the presence of temporal effects unrelated to 

the intervention.4, 5 Such designs address logistical difficulties preventing simultaneous 

intervention roll-out in all clusters, and also have the advantage that the study power is less 

affected by intraclass correlation than Parallel designs.4 Stepped Wedge designs may be of 

particular value in settings where efficacy has already been demonstrated in individual-level 

trials.4

Standard Parallel and Stepped Wedge designs benefit from cluster randomization to prevent 

possible confounding by underlying heterogeneity in clusters.6 Concerns regarding risk 

factor imbalance in cluster randomized trials are addressed by matching of clusters based on 

predictors of outcome, which may also improve efficiency.7 Such designs may be 
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particularly useful in infectious diseases trials, given the likelihood of considerable 

heterogeneity in outcomes across clusters.8

Cluster randomized trial designs generally seek to minimize contamination between study 

arms that arises when individuals in different arms have contact with one another,9 but this is 

not always feasible. For example, in cluster randomized trials for HIV prevention, 

individuals in one cluster may have partners in another;10 in Ebola vaccine trials, infected 

individuals from one cluster may travel for care to homes or hospitals in another.11 In an 

epidemic setting, the degree of connection between clusters is likely to predict outcomes of 

interest, including outbreak timing within a cluster and epidemic size. Taking between-

cluster connectivity into account can therefore aid in matching.

The purpose of a vaccine is to render potentially-infectious network ties (i.e. the direct 

connection between infectious person i and susceptible person s) non-infectious.12–14 This 

change can be achieved by successfully vaccinating either end of the tie. Hence, vaccination 

acts by removing ties from a graph that represents potentially-infectious pathways within a 

population. Contamination can be conceptualized as a network problem: individuals from 

clusters randomized to one intervention arm can be impacted by those from clusters 

randomized to the other arm through ties between them. Such contamination will attenuate 

the randomized treatment effect observed, and thus limit our ability to measure the causal 

effect of the intervention.

Recent efforts to measure vaccine efficacy in the context of a waning epidemic have led to 

innovative designs in which intervention ordering is driven by observed incidence or 

prevalence of disease (i.e. risk-informed). One such innovative design is the use of “Ring” 

vaccination – a method previously employed to control smallpox and foot–and–mouth15, 16 

– within trials of vaccines against Ebola in Guinea.17, 18 In the Ebola trial, vaccination of all 

contacts was immediate in the intervention arm, and delayed for three weeks in the control 

arm.19, 20 Another example is the “risk-prioritized” approach proposed by Bellan et al., in 

which clusters are assigned to intervention based on recent incident case rates.11

While recent incidence rates are likely to be strong predictor of future case load within a 

community, the degree to which each community is connected to the outside world, and thus 

at risk of importing new infection chains, is also likely to predict risk. Taking such 

connectivity into account when planning the order in which a trial is rolled out to clusters 

may therefore offer benefits to the trial community, and potentially to those outside this 

community. It may also increase the public health impact of the trial if clusters treated early 

on do indeed have higher incidence by virtue of their higher level of connectedness.

We therefore propose a novel class of cluster randomized trial designs, which makes use of 

information about the connectivity between study clusters. We show that these designs can 

reduce the number of new infections more rapidly than standard designs, while still allowing 

for the evaluation of intervention effectiveness. We focus exclusively on Stepped Wedge 

trials, which are particularly relevant for settings where the intervention’s efficacy has been 

shown at least in part and when logistic or resource constraints require roll-out in a 

sequential manner; but where either evidence of field effectiveness is not considered 
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sufficient for licensure, or the usefulness of a licensed vaccine is not sufficiently well 

established. We investigate the performance of these designs by simulating vaccination trials 

during an Ebola-like epidemic and evaluate both epidemic outcomes and power to detect the 

vaccine effect under various designs.

Methods

A class of connectivity-informed cluster trial designs

Connectivity defines how individuals or groups in a network are linked to one-another. For 

sexually transmitted infections, ties are sexual acts; for hemorrhagic fevers, physical 

contacts; for behavior change interventions, conversations. In our study, we consider ties 

measured prior to study start; for each cluster we measure the absolute number of ties from 

members of the cluster to members of all other clusters. We then rank clusters from most- to 

least-connected in one of two ways: the “Static Rank” approach, where the ranking is 

conducted only once at baseline; and the “Adaptive Rank” approach, where clusters that 

have not yet been assigned to receive the intervention are re-ranked after each randomization 

based only on their connectedness to other clusters yet to receive the intervention. Both 

approaches are based on the idea that a cluster’s connectivity to all other clusters is related to 

its tendency to transmit infections; hence intervening in more connected clusters earlier may 

slow epidemic spread. Both approaches can be used to determine the order in which 

interventions will be rolled-out prior to trial commencement, since they use only information 

available at baseline. We outline the proposed study designs in Figure 1.

Within the Static Rank approach, we consider several different designs. First, a “Strict 

Order” design which rolls-out an intervention in order from the most- to the least-connected 

clusters; this non-randomized approach roughly provides an upper bound on how fast the 

epidemic might be controlled using between-cluster connectivity information. Second, a 

“Fuzzy Order” design which randomizes the two most-connected clusters to intervention 

and control status at the time of study origin (step 1). At the next time of randomization, the 

control cluster from step 1 and the next most-connected cluster are randomized. This process 

is repeated until there is one remaining cluster that has not received the intervention; this 

cluster is then assigned to intervention. The Fuzzy Order design can be generalized to a 

“Fuzzy Order Holdback-h” design, in which the control cluster at each time of 

randomization is held-back from randomization for h intervention time units: if h = 1, the 

control cluster from step 1 would be re-eligible for randomization at step 3; if h = 2, at step 

4, etc. We illustrate how these Static Rank designs operate in Figure 2A. Both Strict Order 

and Fuzzy Order designs are specific examples of connectivity-informed Stepped Wedge 

designs, since they are rolled out sequentially based on how connected clusters are.

All our proposed designs can all also use an Adaptive Rank approach. This approach is 

particularly relevant for vaccination interventions, since it minimizes provision of the 

intervention to people whose contacts have already been vaccinated. Because successful 

vaccination effectively removes the potentially infecting tie between a vaccinated subject 

and her/his uninfected contact, there is no further benefit to vaccinating susceptible 

individuals whose contacts have all been successfully vaccinated. This implies that 

vaccinating a cluster that is highly connected to already-treated clusters is likely to provide 
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less cluster-level benefit than does vaccinating a cluster that is highly connected to untreated 

clusters. By including only clusters yet to receive the intervention in its measurement of 

between-cluster connectivity, the Adaptive Rank approach should therefore preferentially 

target cross-cluster ties that still have the potential to transmit infection.

Removing ties involving clusters that have received the intervention from the set of ties used 

to define cluster connectivity levels can lead to significant re-rankings (see Figure 2B). 

Where this leads to more transmissible ties being removed, it should also lead to more rapid 

epidemic control. The cost of the Adaptive Rank approach is its requirement for more 

detailed data as compared to the Strict Rank approach: the latter requires only an ordering of 

clusters by their overall connectivity (K quantities in a study of K clusters), whereas the 

former requires a measure of connectivity for every pair of clusters 

.

Simulation studies

We generate a community-structured population using a standard stochastic block model 

with K = 20 blocks (clusters), with each block consisting of N = 200 nodes (individuals).21 

Mean total degree (inclusive of both intra-cluster ties and inter-cluster ties) for each 

individual is set at 5.5. In the baseline simulation, we assume that within each cluster, ties 

are distributed uniformly at random across all dyads (node pairs). Half of all clusters are 

designated to have higher external connectivity: in these clusters, individuals have a number 

of between-cluster ties drawn from a normal distribution with a mean of 1, compared to 0.5 

for the other clusters; the standard deviation of the number of ties for all individuals in all 

clusters is 0.5.

We simulate an epidemic on the network graph of the community-structured population, 

using parameter values relevant for Ebola, which provides a recent example of a disease for 

which preliminary data on vaccine efficacy has been developed. This member of the viral 

hemorrhagic fever group has caused, acute outbreaks and is, of course, likely to do so again 

in the future.22 We use a state transition model with six states: Susceptible, Exposed, 

Infectious, Hospitalized, Funeral, and Removed (see Supplementary Figure 1).21 Parameter 

values for the simulation are chosen so that progression times between states and the basic 

reproductive number (R0, the average number of new infections caused by an infectious 

individual in a fully susceptible population) are roughly equal to those observed for 

Ebola.23, 24 These values were not optimized to simulate epidemics that resemble those 

previously observed, as the simulation is intended for design comparison, not Ebola 

epidemic prediction.

To compare study designs, we first generate a network realization from the stochastic block 

model. We then simulate seven epidemics on the network, one for each trial design, using 

the above six-state epidemic model. We initialize the epidemic model by randomly selecting 

four nodes (corresponding to 0.1% of the population) at the beginning of the simulation to 

be infected and use the same initial condition for each study design (and for the reference 

simulation involving no intervention at all). In each case, the epidemic is propagated on the 

underlying network using daily time steps, and allowed to run for 42 days (six weeks) from 
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the initial introduction of infection. If all seven epidemics have substantial ongoing 

transmission at this point – specifically the effective reproductive number (Re, the average 

number of new infections actually caused by each infectious person) is greater than one in 

week six – then we begin the trial; otherwise we discard this network realization and 

generate a new realization.

We simulate vaccinating one cluster every seven days. We assume 80% vaccine coverage of 

susceptible individuals in targeted clusters, and that vaccine immediately removes 

individuals from a susceptible state 95% of the time. We continue the simulation until each 

epidemic has died out. We repeat the network generation and epidemic simulation process 

until we have 1,000 complete realizations. Parameter values for network generation, 

epidemic model, and infection and vaccination models are provided in Supplementary Table 

2.

Statistical analyses

For each simulation we compute three metrics to quantify the epidemic outcomes: (1) time 

from epidemic start (T0) until Re first falls below one; (2) time from T0 until the last 

infectious individual recovers; and (3) cumulative incidence for the entire epidemic. These 

metrics are intended to evaluate the: (i) speed of control; (ii) speed of elimination; and (iii) 

overall burden of the epidemic. For each metric, we calculate median and interquartile range 

across all 1,000 simulations.

We compare the statistical power to detect vaccine effectiveness using permutation tests for 

the five study designs that involve randomization. The null hypothesis is that the cumulative 

incidence rates in the intervention and control clusters are equal. We evaluate power for a 

class of test statistics based on the difference in cumulative incidence rates between 

intervention and control clusters, with varying length of follow-up. The test statistics are 

calculated from the sum of differences in incidence rates measured during each study week 

across all applicable pairs of intervention and control clusters. That is, these differences are 

summed across w weeks after Tk, the date at which the intervention is provided to cluster k. 

We vary w from 1 to 10. Since there are (K−h−1) randomizations in the trial, the test statistic 

is the sum of (K − h − 1) terms, where each term represents the difference in cumulative 

incidence rates between intervention and control clusters within each pair. For example, in a 

20-cluster Fuzzy Order trial, which requires 19 randomizations, data from 19 pairs of cluster 

cumulative incidence rates are used for the test for differing lengths of follow-up.

To generate the permutation null distribution, we randomly permute the treatment 

assignment within each pair of clusters and calculate the same test statistic as described 

above. Each permutation test involves 2000 permutations, and p-values are computed as the 

proportion of test statistics greater or equal to the observed test statistic in absolute value 

across these 2000 permutations. The validity of the permutation tests is ensured by 

randomization.25

To assess sensitivity of results to key vaccine, trial and population characteristics, we 

conduct a range of additional analyses. First, we run a model for a vaccine with no 

effectiveness (to investigate type-I error control). Second, we model vaccines that are: (i) 
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perfect (100% reach and 100% protective); (ii) poor (70% reach and 70% effective); and (iii) 

perfect and able to protect those in the Exposed as well as in the Susceptible state, moving 

them directly to the Removed state. Third, we begin the intervention program at 56 and 70 

days post-initial infection. Fourth, we modify the heterogeneity in connectivity between 

clusters by varying the standard deviation of the number of between-cluster ties from 0.5 to 

0.25 and 0.5 to 0.75 contacts. Fifth, we lengthen the time period between intervention steps 

from 7 to 14 and 21 days. Sixth, we reduce the infectiousness of the infection by 40%, to 

simulate a less-serious epidemic. Seventh, we consider clusters with skewed distributions for 

within-cluster ties by drawing each respondent’s degree from a lognormal distribution with 

σ = 1. Finally, we double the simulation population to 40 clusters, keeping all other 

parameter values the same, and then randomly select 20 clusters to participate in the trial. 

Intervention ordering is determined by total connectivity of clusters to both trial and non-

trial clusters. The goal of this sensitivity analysis is to evaluate the impact of clusters being 

connected to the wider world. For each sensitivity analysis we summarize results in terms of 

the key metrics for epidemic outcomes.

Results

In the absence of an intervention, the spreading process infects a median of 80.0% of the 

population (interquartile range [IQR] across 1,000 runs: 78.9–81.1%), peaks at a mean of 

107.4 incident cases per 1000 susceptible individuals per week, and dies out after a median 

of 292 days (IQR 270–317). Mean Re declines slowly from a peak of 2.08 on day 36, falling 

below 1 after a median of 149 days (IQR: 137–164). Temporal plots of mean values for all 

state variables are shown in Supplementary Figure 2.

As intended, all study designs lead to substantial reductions in proportion of individuals ever 

infected, time to end of outbreak and time to Re<1, relative to no intervention (Table 1). All 

connectivity-informed designs lead to lower peak infectiousness than traditional study 

designs, with little discernible difference among them (Figure 3B). Connectivity-informed 

designs reduce the proportion of individuals ever infectious relative to the Standard Stepped 

Wedge by approximately 20%, but do not have meaningful impact on time to last infection 

or to infection control (Table 1).

Cluster-level mean incidence rates decline as each cluster receives the intervention (Figure 

4). In the Static Rank approach, the clusters that receive the intervention last – and thus have 

lowest baseline connectivity – have notably lower incidence rates throughout the follow-up 

period; this is not the case for the other designs where clusters receiving the intervention last 

are determined either at random (Standard approach) or based on Adaptive Ranks.

The Standard Stepped Wedge design has the greatest power to detect differences in 

incidence rates when using data collected over any length of time post-intervention, rising 

from 61.8% using data from the first seven days to 82.7% after 2 weeks and 90.4% after 3 

weeks (Figure 5). While the trends for the Fuzzy Order designs are similar, the levels of 

power to detect effects are markedly lower, starting at 47.1% (Static Order) and 45.8% 

(Adaptive Order) after 1 week, and plateauing at 72% (both orderings) based on 10 weeks of 

data. The Holdback-1 design falls between the Standard and Fuzzy Order designs, with 
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56.3% power after 1 week, 74.7% after 2 weeks and 91% after 10 weeks. The lower power 

of connectivity-informed designs reflects the impact of subsequent intervention on control 

communities within each pair of clusters.

In our first sensitivity analysis we show that when the vaccine is ineffective, cumulative 

incidences are indistinguishable across intervention approaches and the empirical type-I 

errors are close to 5% as expected, illustrating the validity of the permutation tests 

(Supplementary Table 1). Sensitivity analyses also suggest that time to epidemic end is 

affected strongly by the effectiveness of the vaccine; a vaccine that protects only 50% of 

vaccinated people leads to outcomes almost equal to no vaccine at all. Less-effective vaccine 

scenarios lead to both lower power to detect effects and reduced benefits in terms of lower 

cumulative incidence associated with connectivity-informed designs. Greater heterogeneity 

in the level of between-cluster connectedness leads to greater epidemic control benefits from 

the proposed designs and slightly greater power losses compared to the Standard Stepped 

Wedge design, although these effects were relatively small within the range of parameter 

values we considered.

Expanding the time between each study step prolongs the epidemic, leading to higher 

cumulative incidence than does a 7-day step length; as a result, connectivity-informed 

designs give almost identical results as does the standard design. When we reduce the 

infectiousness of infected subjects, any intervention is extremely effective in reducing 

cumulative incidence (from around 40% with no intervention to under 4% in all designs), 

while power after 1 week is reduced by approximately one-third (3 percentage points) under 

all connectivity-informed designs compared to the Standard Stepped Wedge.

Finally, analyses in which we either wait until the epidemic is more advanced (start at 8 or 

10 weeks) or run the trial within a subset of a larger population (20 out of 40 clusters), 

cumulative incidence is roughly equal across all connectivity-informed designs (and 

approximately 10% lower than for the standard design aside from the 10 week start). Power 

at 1 week is only slightly lower for the Fuzzy Order approach than for the Standard Stepped 

Wedge, but is higher for the Holdback-1 approach.

Discussion

In this article we propose a class of connectivity-informed designs for cluster randomized 

trials that provide more rapid epidemic control in return for reduced ability to detect 

intervention effects that varies from minimal to considerable. This potential addition to the 

trial design arsenal for epidemic settings is made possible by leveraging knowledge of the 

contact network between clusters. Based solely on a relative ordering of how connected 

members of a cluster are to the outside world (Static Rank) or absolute levels of connectivity 

(Adaptive Rank), our designs aim to minimize the potential number of cross-cluster 

infections that can arise, and thus reduce both the rate at which incidence grows and the 

overall epidemic size. In simulation studies, we show that such designs reduce the total 

number of infections in the study population by up to 20%, compared to traditional Stepped 

Wedge cluster randomized trials. This benefit appears to be spread across clusters receiving 
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the intervention both early and late in the trial (Figure 4) across a wide range of sensitivity 

scenarios.

In any trial of an intervention that is expected to reduce disease burden, the primary goal is 

generally to test vaccine efficacy (or effectiveness) and obtain randomized estimates of 

vaccine effects (either efficacy or effectiveness). Nonetheless, achieving a public health 

benefit for those within the trial may also be desirable and achievable – for example, in the 

next outbreak of Ebola. Our designs are most relevant when some preliminary evidence of 

vaccine efficacy has been developed: as our class of designs is likely to be more applicable 

for effectiveness than for efficacy trials, we apply them to Stepped Wedge trials. For 

example, for interventions intended to control the vectors carrying Zika virus, our design 

might be appropriate, provided that data are available on how mosquitoes link communities 

together.

Within the class of designs we propose, the relative level and timing of each study’s ability 

to detect a difference between study arms varies. The upward sloping power curves in Figure 

5 reflect the indirect effect of vaccination of an index on other members of intervened-upon 

clusters that arises from the fact that a case prevented in one time period has follow-on 

benefits in subsequent periods.3 All of the connectivity-informed designs perform worse in 

terms of power than their traditional counterparts, even in the period immediately following 

intervention, at least in part due to the lower overall cumulative incidence seen in these 

scenarios. Lower power a few weeks post-vaccination is to be expected for the Fuzzy Order 

designs, as a cluster which is a control at one time point can be randomized to vaccination 

status at later time points, potentially underestimating intervention effects.

Nonetheless, adding a holdback period (i.e. a period after randomization to control status in 

which each control cluster cannot be vaccinated), greatly improves study power in our 

simulations – regaining more than two-thirds of the power lost by shifting from a Standard 

to Fuzzy Order design, with little impact on infection levels. While longer gaps between 

intervention steps can also allow for incidence differences to arise between arms, such 

pauses also increase the overall cumulative incidence in the population, potentially removing 

too many susceptibles prior to intervention (as we see in our sensitivity analysis). A brief 

holdback period therefore appears useful in settings where insufficient sample sizes can 

otherwise be obtained. Less-effective vaccine scenarios lead to both lower power to detect 

effects and reduced benefits in terms of lower cumulative incidence associated with 

connectivity-informed designs.

The choice of design within our connectivity-informed class will depend on the study goals. 

A Strict Order design should be most effective for epidemic control, since it leads to the 

fastest immunization of potentially-infectious ties between clusters; but it does not provide 

randomized comparisons. A Fuzzy Order design includes randomization; however, it can 

only ensure that each control cluster remains without intervention for a single period. 

Depending on how fast the infection spreads, this may not be sufficient for substantial 

differences between intervention and control arms to emerge. Adding holdback periods to 

the Fuzzy Order design offers the assurance that control clusters remain without intervention 

for longer periods of time, which can allow larger differentials in observed incidence rates to 
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arise. The trade-off is that some highly connected clusters may not receive the intervention 

early on.

These connectivity approaches can be applied to Parallel or Stepped Wedge design, although 

we present only the latter as examples here. It is less clear, however, if and when 

connectivity-informed designs would perform better or worse than risk-informed ones such 

as a ring vaccination trial18, 20 or Bellan’s incidence-prioritized model.11 The relative benefit 

is likely to depend on both the ease of identifying incident infections, which depends on the 

proportion of infections that are symptomatic and the uniqueness of symptoms, and the ease 

of detecting relevant connections between clusters. The relative benefit will also depend on 

the specifics of the epidemic.

A combination of both approaches may be possible: for example, prioritizing clusters for 

randomization based on some weighted combination of high incidence and high connectivity 

(drawing on our Static Rank approach), or high levels of connection to clusters with high 

incidence (drawing on our Adaptive Rank approach).

Another way to incorporate both risk and connectivity would be to use different designs at 

different epidemic stages. Connectivity-informed designs are likely to have the greatest 

ability to reduce infections early in the epidemic, when many clusters have low incidence. In 

such a situation, the ability to stop infections from reaching clusters other than those 

receiving the intervention, i.e. acting as a fire-break, is greatest. Once the epidemic is 

widespread or waning, this inter-cluster spillover benefit will be reduced, as seen in the 

lesser control benefit of connectivity-informed approaches in our sensitivity analyses which 

started the epidemic later, were less infectious, or were also seen in non-trial clusters. Thus a 

connectivity-informed approach might be best early on, but a risk-informed one more 

powerful later in the epidemic.

In addition to the stage of the epidemic, the nature of the connection network is also likely to 

be important in determining the benefit of a connectivity-informed approach in at least two 

ways. First, the better-defined the clusters (i.e. the lower the ratio of between-cluster to 

within-cluster connectivity), the more useful a connectivity-informed approach is likely to 

be. Second, the more heterogeneous the between-cluster connectivity, the more benefit is 

likely to arise from prioritizing the most connected clusters, since a larger proportion of all 

between-cluster ties will be effectively eliminated early on in such settings.

A key aspect of our proposed methods is the assumption that connectivity can be quantified; 

we stress that our method requires only between-cluster connectivity measures. For the 

Static Rank approach, only a rank ordering of the connectivity between each cluster and all 

other individuals (either within or without the trial) is required. While we have focused on 

connectivity within the trial population itself, all connections outside a cluster can be used to 

generate measures of connectivity, and indeed when the epidemic under consideration is 

widespread it would seem prudent to do so.

Ideally, measures of connectivity would be based on empirical data on the type of ties 

through which the epidemic is passed (e.g. sexual episodes, physical contacts, mosquito 

movements). Such information is unlikely to be quickly accessible in the context of a fast-
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moving epidemic. However, more readily measured statistics can potentially be used as 

proxies. In the context of the designs we present, the crucial aspect of connectivity is the 

density of connections between cluster pairs. Call detail records for cellphones offer one 

empirical way to ascertain such densities,26 and they have been used previously to infer 

approximate residential locations for large numbers of people27 and to learn about their 

mobility patterns.28 Indeed, a recent study considered how call detail records might be used 

to estimate between-cluster mixing in the context of a cluster randomized trial.29 Call detail 

record data can be augmented by self-reported mobility data,30 or data on traffic flows, 

should such be available. In the absence of rapidly available empirical data on connectivity, 

a gravity model utilizing only the spatial distance between clusters and their population sizes 

can be highly effective in predicting how epidemics will spread, particularly for infections 

spread by interpersonal contact, such as cholera.31 These data can all be analyzed prior to 

the start of a trial, and different network measures of interest easily recomputed based on the 

order of cluster intervention.

Limitations of our approach arise from its need for information on connectivity regarding 

ties through which epidemics are passed (e.g. sexual partners, close contact). This 

information is not easy to gather accurately, and insofar as it is mis-measured or evaluated 

via proxy variables, clusters may be mis-ranked. Such mis-ranking may reduce the 

performance of our proposed designs in reducing overall incidence, though even mis-ranking 

should not cause overall incidence to be worse than under Standard approaches on average. 

Second, our designs add complications regarding interpretation of the randomized effect of 

vaccine in the presence of between-cluster interference, due in part to the fact that random 

assignment of a cluster depends on prior randomizations. In the presence of connectivity 

among clusters, the randomized effect differs from the overall causal effect; i.e., the 

difference between the effect of providing the intervention to all clusters compared to 

providing it to none.32 In our designs, the order of randomization would impact the 

randomized effect because the cluster pairs are formed based on connectivity.

This paper could be extended in several ways. First, our set of study designs is not 

exhaustive. Connectivity information could be used in various other ways, for example it 

could be measured relative to an outbreak source. Alternatively, one might wish to account 

for the nature of networks within clusters,10 either in addition to or instead of between-

cluster connections. Second, we have presented a vaccine candidate for Ebola but our 

designs could be applied to interventions for other infections as well as to the spread of ideas 

or behaviors. The only requirements for our methods are the existence of a spreading 

process and an intervention that affects this process. Third, we have presented a simple case 

in which the study population is homogeneous except for each person’s number of contacts. 

The approach can be extended to adjust for individual covariates of individuals, or 

characteristics (e.g. strength) of the ties between individuals.

Conclusion

Making use of information about cluster connectivity can allow for cluster randomized trial 

designs to address both the need for randomized evidence on effectiveness and to serve as 

public health interventions in their own right – especially in acute outbreak settings. While 
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the performance of these designs depends on the infection and the social context of the 

outbreak, connectivity-informed designs may play an important role in the implementation 

of novel interventions for which evidence of efficacy has been established.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A typology of study designs
Notes. The seven approaches compared are each shown in the blue rounded rectangles. Strict 

order designs are unable to evaluate vaccine efficacy.
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Figure 2. Between-cluster connectivity calculated at different times in a cluster randomized trial
Each figure shows four clusters, each containing 10 individuals. Within-cluster ties are 

shown in grey (paler) and between-cluster ties are shown in red (darker). In panel A, cluster 

A has 14 ties to other clusters; cluster B 16; cluster C 8 and cluster D 12; the ordering of 

cross-cluster ties is thus (B, A, D, C). The Static Rank Strict Order design will follow the 

order B, A, D, C. The Static Rank Fuzzy Order design will first treat either A or B, with the 

other acting as control; at step 2, the untreated cluster from A or B will be randomized 

against D; and at step 3 the remaining untreated cluster will be randomized against cluster C. 

The Static Rank Fuzzy Order Holdback-1 would first treat either A or B, with the other 

acting as control and then being barred from randomization at step 2; at step 2 C and D 

would be randomized; at step 3 only the untreated cluster from the A and B randomization 

would be available and thus treated; at step 4 the final cluster would be treated.

In panel B, after cluster ‘B’ has been treated and removed from consideration, cluster ‘A’ 

has moved from the second most-connected to the least-connected cluster; the ordering has 

now changed to (D, C, A).
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Figure 3. 
Mean state values for each day since the start of the epidemic across 1000 simulations, 

selected states
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Figure 4. Mean weekly incidence (per 1000 susceptible individuals) within clusters
Darker lines represent earlier randomization times, thus the darkest line represents the mean 

incidence rate in clusters that were treated at the first possible time point (week 6) in each 

simulation realization.
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Figure 5. Comparison of statistical power of various study designs
Figure shows the proportion of 1000 simulations that reject the null hypothesis of no 

difference at α=0.05 between the intervention and control clusters using a permutation test 

with varying test statistics. Comparisons are therefore across K – h – 1 pairs of cluster-

observation time: i.e. 18 pairs for the Holdback-1 design; 19 for the remainder.

Each datapoint in this figure represents a power estimate comparing the cumulative 

incidence up to the week in question (e.g. the points at “3 weeks after intervention” compare 

incidence rates over days 1 to 21 after each intervention in the intervention and control 

clusters). Data on which this figure is based are shown in Supplementary Table 1.
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Table 1

Population-level spreading process outcomes

Proportion ever infectious (%) Time to Re < 1 (days)
Time to last infectious individual 

(days)

No randomization

 No Vaccination 80.0 [78.9 – 81.1] 149 [137 – 164] 292 [270 – 317]

 Static Rank Strict Order 29.7 [20.6 – 37.8] 130 [119 – 140] 229 [217 – 242]

 Adaptive Rank Strict Order 29.3 [19.9 – 37.5] 129 [118 – 140] 228 [216 – 242]

Stepped Wedge designs

 Standard Stepped Wedge 35.8 [28.0 – 42.0] 131 [120 – 141] 226 [216 – 240]

 Static Rank Fuzzy Order 29.6 [21.3 – 37.0] 131 [120 – 141] 227 [217 – 241]

 Static Rank Fuzzy Order Holdback-1 31.2 [22.6 – 38.6] 130 [119 – 140] 226 [216 – 240]

 Adaptive Rank Fuzzy Order 28.9 [20.2 – 37.9] 130 [118 – 141] 230 [218 – 242]

Notes. All outcome figures are medians and interquartile ranges of result from 1000 simulation realizations. Re: effective reproductive number.
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