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Abstract

Atherosclerosis is primarily a disease of lipid metabolism and inflammation; however, it is also 

closely associated with endothelial extracellular matrix (ECM) remodelling, with fibronectin 

accumulating in the laminin–collagen basement membrane. To investigate how fibronectin 

modulates inflammation in arteries, we replaced the cytoplasmic tail of the fibronectin receptor 

integrin α5 with that of the collagen/laminin receptor integrin α2. This chimaera suppressed 

inflammatory signalling in endothelial cells on fibronectin and in knock-in mice. Fibronectin 

promoted inflammation by suppressing anti-inflammatory cAMP. cAMP was activated through 
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endothelial prostacyclin secretion; however, this was ECM-independent. Instead, cells on 

fibronectin suppressed cAMP via enhanced phosphodiesterase (PDE) activity, through direct 

binding of integrin α5 to phosphodiesterase-4D5 (PDE4D5), which induced PP2A-dependent 

dephosphorylation of PDE4D5 on the inhibitory site Ser651. In vivo knockdown of PDE4D5 

inhibited inflammation at athero-prone sites. These data elucidate a molecular mechanism linking 

ECM remodelling and inflammation, thereby identifying a new class of therapeutic targets.

Atherosclerosis is an inflammatory disease of large to mid-sized arteries that is strongly 

linked to lipid metabolism1. Current concepts and clinical approaches focus mainly on these 

aspects. However, atherosclerotic plaques occur mainly in regions of arteries with disturbed 

flow2,3, which triggers oxidative stress, activation of NF-κB and other mediators, endothelial 

inflammatory gene expression, and leukocyte recruitment4. These local influences synergize 

with systemic risk factors such as high plasma LDL-cholesterol and triglycerides, 

hypertension, diabetes or smoking, to induce atherosclerotic plaques5.

Inflammation and ECM remodelling are closely associated across many biological systems 

and disease processes6–8. Inflammation induces ECM remodelling, with increases in 

provisional ECM proteins such as fibronectin (FN), osteopontin and fibrin. Conversely, 

ECM proteins and fragments modulate inflammatory processes. These complex interactions 

between ECM and inflammatory pathways contribute to normal developmental and adult 

remodelling, and to a variety of pathologies.

In stable, unperturbed vessels, the subendothelial basement membrane consists mainly of 

collagen IV, laminin and associated proteoglycans with minimal FN9. By contrast, FN 

expression and matrix assembly are upregulated during development, angiogenesis and 

flow-dependent vessel remodelling10–12. FN is also deposited in the intima at athero-prone 

regions of arteries13. This occurs even in athero-resistant wild-type (WT) mice, associated 

with endothelial inflammatory gene expression, indicating that it is an early event. FN 

increases in hypercholesterolemic mice together with atherosclerotic plaque progression. 

Studies in genetically modified mice support a causal role for FN in atherosclerosis14–16.

In vitro studies with endothelial cells (ECs) showed that disturbed flow or acute changes in 

flow activate inflammatory pathways such as NF-κB, and induce expression of leukocyte 

recruitment molecules such as ICAM-1, MCP-1 and VCAM-117,18. However, these events 

depend strongly on the ECM proteins to which the ECs adhere: cells on collagen I or IV, or 

basement membrane protein (Matrigel) suppress NF-κB, JNK and PAK in response to flow 

and soluble inflammatory mediators but are activated in ECs on FN13,19–21. Selective 

activation of cyclic AMP and protein kinase A (PKA) in cells on collagen or basement 

membrane protein relative to FN mediates the suppression of inflammatory pathways22,23. 

But how different integrins control cAMP/PKA and inflammation is unknown.

The major FN receptor, α5β1, and the major collagen/laminin receptor, α2β1, that are 

strongly implicated in pro- versus anti-inflammatory signalling in vitro and in vivo24,25 

share the common β1 subunit. While α2β1 binds best to fibrillar collagens, it also serves as 

a functionally relevant receptor for collagen IV and laminins26. We therefore hypothesized 

that the cytoplasmic domains of the unique integrin alpha subunits may determine 
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differential inflammatory signalling. In this study, we examined chimaeric integrin in which 

the cytoplasmic tail of integrin α5 was replaced by that of α2. Our results show that ECM-

dependent differential inflammatory signalling is due to an interaction of the α5 cytoplasmic 

domain with the cAMP-specific phosphodiesterase PDE4D5, with consequent regulation of 

PDE4D5 phosphorylation, probably by protein phosphatase 2A (PP2A).

RESULTS

An integrin α5/2 chimaera blocks flow-dependent inflammatory signalling

To examine ECM-specific signalling, we constructed a chimaeric integrin in which the α5 

cytoplasmic tail was replaced with the α2 tail (Fig. 1a). When over-expressed in bovine 

aortic endothelial cells (BAECs) the integrin α5/2 chimaera localized to the cell surface 

(Supplementary Fig. 1a) and hetero-dimerized with the integrin β1 subunit similarly to WT 

(Supplementary Fig. 1b). Chimaera-expressing BAECs adhered and spread normally on FN 

(Supplementary Fig. 1c and Fig. 2d,e), and showed normal FAK activation, FN 

fibrillogenesis and alignment in laminar flow (Supplementary Fig. 1d–f). We then 

investigated shear-dependent inflammatory responses. The critical inflammatory 

transcription factor NF-κB shows transient activation by onset of flow, and sustained 

activation by oscillatory flow27,28. In both cases, the α5/2 chimaera blocked NF-κB 

activation (Fig. 1b,c) and expression of the NF-κB target gene product ICAM-1 (Fig. 1d). 

We also noted that the α5/2 chimaera gave higher basal activation of NF-κB and other 

inflammatory pathways, but this also occurs with normal ECs on collagen or basement 

membrane protein13,21. While this feature has not been further investigated, the combined 

results demonstrate that the α5/2 chimaera phenocopies cells on basement membranes.

ECM also modulates endothelial responses to soluble inflammatory mediators19,24. IL-1β 
and oxidized LDL are two critical inflammatory mediators in atherosclerosis that also 

activate NF-κB. IL-1β and oxidized LDL strongly activated NF-κB in control ECs on FN, 

whereas control cells on Matrigel, or α5/2 chimaera cells on FN were largely resistant (Fig. 

1e–g). Previous results showed that selective activation of the cAMP/PKA pathway 

suppressed NF-κB on collagen IV–laminin basement membranes22. Shear stress activated 

PKA in cells expressing the α5/2 chimaera but not WT α5 on FN (Fig. 1h). Furthermore, 

blocking PKA with PKI 14-22 amide, a cell-permeable PKA inhibitor, restored NF-κB 

activity in chimaera-expressing cells (Fig. 1i). Together, these data show that differential 

PKA activation and subsequent inflammatory responses are mediated by the integrin αtails.

Integrin chimaera knock-in mice

To investigate the role of integrin α tails in vivo, we made knock-in mice in which the exon 

encoding the endogenous integrin α5 cytoplasmic domain was replaced with that of integrin 

α2 following Cre-mediated recombination (Fig. 2a). Breeding of α5/2-floxed-neo mice with 

CMV-Cre TG mice resulted in replacement of WT integrin α5 with the α5/2 chimaera (Fig. 

2b,c). These mice were viable and able to reproduce. A complete analysis of these mice will 

be reported elsewhere; in this study, we focused on endothelial phenotype. To confirm 

functionality, ECs isolated from WT and knock-in mice were plated on FN. The α5/2 cells 

showed no differences in adhesion or spreading (Fig. 2d,e), confirming normal function. 
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Endothelial inflammatory activation marked by elevated expression of FN, ICAM-1 and 

VCAM-1 occurs in regions of disturbed flow in WT C57Bl6 mice13 and is a strong marker 

for susceptibility to atherosclerosis29,30. Staining for these proteins in the athero-prone inner 

curvature of the aortic arch was greatly reduced in integrin α5/2 knock-in mice (Fig. 2f). 

Thus, the integrin α5/2 chimaera suppresses flow-dependent early inflammation in vivo.

PGI2 mediates flow-dependent cAMP/PKA activation

We next addressed how the ECM–integrin interaction modulates flow-dependent 

cAMP/PKA activation. The pathway by which flow activates cAMP and PKA is unknown; 

however, flow can induce PGI2 (prostacyclin) secretion in ECs31, which binds a Gs-coupled 

receptor to activate adenylate cyclase and induce cAMP production32, which promotes 

vasodilation and inhibits thrombosis and inflammation33. To test this pathway, human 

umbilical vein endothelial cells (HUVECs) on Matrigel were subject to flow with or without 

the cyclooxygenase (COX) inhibitor aspirin to block PGI2 synthesis, or the PGI2 receptor 

antagonist RO1138452 to block PGI2 signalling. Both of these treatments efficiently 

inhibited shear stress-dependent PKA activation (Fig. 3a). They also conferred NF-κB 

activation by flow in cells on Matrigel (Fig. 3b,c), confirming the importance of PKA in 

suppressing inflammatory pathways. Similarly, in α5/2 chimaera cells on FN, blocking 

prostacyclin synthesis (with indomethacin) or the PGI2 receptor inhibited flow-induced PKA 

activation (Fig. 3d) and conferred NF-κB activation (Fig. 3e,f). Thus, suppression of NF-κB 

by adhesion of cells to basement membranes is mediated by prostacyclin and its receptor.

Next, to test whether shear stress-dependent PGI2 secretion is ECM-specific, we analysed 

the stable prostacyclin metabolite 6-keto-PGF1α, an approach that circumvents the 

instability of PGI2. Flow greatly increased 6-keto-PGF1α production, consistent with 

published data31,34. However, 6-keto-PGF1α levels did not differ between FN and Matrigel 

(Fig. 3g). Thus, prostacyclin production cannot account for the difference in cAMP and 

PKA activation in cells on different matrices.

PDE4D is required for ECM-specific NF-κB activation

We next considered whether differential cAMP degradation might mediate the observed 

ECM specificity. Phosphodiesterases (PDEs) are the enzymes that hydrolyse cAMP to 

reduce or terminate signalling35,36. We focused on the PDE4 family, which are abundant in 

endothelial cells37–40. We reasoned that if PDE4 is critical, its inhibition should restore PKA 

activation in endothelial cells on FN to levels similar to those on collagen or basement 

membranes. We first tested the PDE4 inhibitor rolipram, which increased shear-dependent 

PKA activation in cells on FN (Fig. 4a) and abolished flow-dependent NF-κB activation, 

without affecting NF-κ activity on collagen (Fig. 4b). By contrast, flow-dependent AMPK 

activation was unaffected by ECM or rolipram (Supplementary Fig. 2a). PDE4 

compartmentalization by protein–protein interactions mediates functional specificity in 

many systems41. Among the PDE4 sub-families, both PDE4C and PDE4D were reported in 

endothelial cells42. The PDE4D subfamily has eleven splicing variants; however, we used a 

panPDE4D antibody and a PDE4D5-specific antibody to show that PDE4D5 is the only 

isoform detected in HUVEC and BAEC cells (Supplementary Fig. 2b).
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We next examined whether PDE4D5 associates with integrins. Immunoprecipitation of 

endogenous PDE4D5 from HUVECs with two different antibodies brought down α5 but not 

α2 integrin (Fig. 4c). Immunoprecipitating WT α5 or the α5/2 chimaera showed that this 

interaction required the α5 cytoplasmic domain (Fig. 4d). To investigate PDE4D function in 

flow-dependent NF-κB activation, we performed knockdown and reconstitution 

experiments. PDE4D knockdown almost completely abolished shear stress-dependent NF-

κB activation in cells on FN, which was rescued by an short interfering RNA (siRNA)-

resistant construct (Fig. 4e). To test whether targeting PDE4D5 to focal adhesion is 

sufficient for these effects, we fused the focal adhesion targeting domain of FAK to 

PDE4D543. This construct strongly localized to focal adhesions in cells on Matrigel 

(Supplementary Fig. 2c) and conferred flow-induced NF-κB activation (Fig. 4f). This 

construct also reduced shear stress-dependent Creb phosphorylation, confirming suppression 

of PKA activity.

Direct interaction between the PDE4D5 UCR2 linker and integrin α5

We next mapped the integrin-binding region in PDE4D5 using bacterially expressed and 

purified fragments of PDE4D5 (Fig. 5a) to pull down integrin α5 from cell lysates. Binding 

was observed only with the regulatory upstream conserved region 2 (UCR2) with flanking 

connecting segments (Fig. 5b). Using purified integrin αtail fusion proteins that form coiled 

coil domain-mediated homodimers44, only integrin α5 bound the purified PDE4D5 F2 

fragment, indicating that the association is direct and specific (Fig. 5c). Examining a series 

of deletions (Fig. 5d) showed that the carboxy-terminal 13 amino acids from GST-F1-F2 are 

required for the interaction (Fig. 5e). Among those 13 amino acids, mutation of 

K292KKR295 to either EEEE or AAAA completely blocked, and single amino acid 

substitutions partially blocked, the interaction (Fig. 5f). Thus, a short, basic sequence in the 

connecting segment between UCR2 and the catalytic domain is required for binding integrin 

α5.

To further validate this interaction, cells expressing WT or mutated GFP-PDE4D5 were 

plated on FN or collagen, then subject to flow for 15 min. In cells on FN, WT PDE4D5 but 

not PDE4D5 with a mutated α5-binding sequence co-localized with the focal adhesion 

marker vinculin; co-localization was also lost in cells on collagen (Fig. 5g). Thus, the 

interaction with α5 specifically recruits PDE4D5 to focal adhesions.

Integrin α5 binding is required for NF-κB activation on FN

To address whether the interaction between integrin α5 and PDE4D5 is required for pro-

inflammatory signalling in cells on FN, we reconstituted PDE4D5 knockdown cells with 

WT or mutant PDE4D5. Whereas the WT PDE4D5 construct recovered NF-κB activation, 

4E and 4A mutants were inactive, as was catalytically dead PDE4D5 (D556A) (Fig. 5h). 

Thus, PDE4D binding to integrin α5 and catalytic activity are required for inflammatory 

signalling. Together, these results show that recruitment of PDE4D5 to focal adhesions via 

α5 binding mediates its pro-inflammatory function by suppressing anti-inflammatory PKA 

activation.
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Regulation of PDE4D phosphorylation by integrin α5

We then considered whether localization of PDE4D5 by integrin α5 is the sole determinant 

of these effects or whether PDE4 catalytic activity is affected. Assaying catalytic activity of 

purified PDE4D in vitro after addition of recombinant integrin α5 tails revealed no changes. 

PDE4D5 activity is also regulated by phosphorylation; one important site is Ser651, which 

can be phosphorylated by Erk and suppresses enzymatic activity45. Western blotting with an 

antibody against this site showed that Ser651 phosphorylation increased in cells on collagen 

compared with FN, independent of fluid shear stress. Further, the reduced phosphorylation 

on FN was lost in the 4E mutant (Fig. 6a). Cells expressing the chimaeric integrin α5/2 

plated on FN also showed high Ser651 PDE4D phosphorylation compared with WT α5 cells 

(Fig. 6b). These data suggest either that the integrin α5–PDE4D interaction suppresses 

Ser651 phosphorylation or that integrin α2 activates it. Analysis of cells expressing WT or 

4E mutant PDE4D5 were analysed in suspension or after adhesion to FN-coated dishes. 

Plating on FN triggered Ser651 dephosphorylation in WT PDE4D5 but not the 4E mutant 

(Fig. 6c). Chimaeric integrin α5/2 also failed to trigger Ser651 dephosphorylation on FN 

(Fig. 6c). Thus, binding to integrin α5 in cells on FN induces PDE4D5 Ser651 

dephosphorylation.

Proteomic analysis revealed PP2A in PDE4D5 immunoprecipitates in ECs on FN 

(Supplementary Fig. 3a). Co-immunoprecipitation confirmed this interaction in cells on FN 

but not Matrigel (Supplementary Fig. 3b). Both the PP2A inhibitor okadaic acid (OA) and 

siRNA against the PP2A catalytic subunit blocked FN-dependent Ser651 dephosphorylation 

after plating on FN (Supplementary Fig. 3c) and in stable monolayers (Supplementary Fig. 

3d,e) without affecting endothelial cell adhesion, spreading or FAK activation on FN 

(Supplementary Fig. 4a,b). However, these treatments efficiently blocked NF-κB activation 

by flow and IL1βon FN (Supplementary Fig. 3f,g).

We next addressed whether Ser651 phosphorylation controls ECM-specific NF-κB 

activation. For ECs on collagen, expression of phospho-resistant S651A mutant in PDE4D 

knockdown cells increased NF-κB activity (Fig. 6d). Conversely, in cells on FN, rescue of 

PDE4D5 knock down with phospho-mimetic S651E mutant failed to restore NF-κB 

activation (Fig. 6e). These results show that control of PDE4D5 phosphorylation on Ser651 

by integrins determines subsequent inflammatory signalling.

Endothelial-specific knockdown of PDE4D inhibits inflammation

We next investigated whether PDE4D is required for flow-dependent inflammatory 

activation of the endothelium in vivo using siRNA. For these experiments, we used recently 

developed nanoparticles that are highly specific to ECs and do not knock down genes in 

haematopoietic cells, including leukocytes, or in hepatocytes, even at a high dose (2.0 mg 

kg−1)46. We first screened multiple siRNAs and identified a sequence that depleted mouse 

PDE4D in vitro with an IC50 of 0.05 nM (Supplementary Fig. 5a), which is ~100× lower 

than most siRNAs. Transfection into cultured mouse ECs abolished flow-dependent NF-κB 

activation and ICAM-1 induction, which was rescued by viral expression of human PDE4D5 

(Fig. 7a), thus, confirming the efficacy and specificity of this siRNA sequence. A version of 

this siRNA was chemically modified to improve stability and packaged into nanoparticles, 
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then injected intravenously into mice (1.0 mg kg−1). Isolation of aortic endothelial 

messenger RNA 14 days after injection showed a ~70% decrease in PDE4D mRNA 

compared with the luciferase control siRNA (Supplementary Fig. 5b). C57BL6 mice were 

then injected three times in a month with PDE4D or luciferase siRNA nanoparticles. The 

PDE4D siRNA greatly reduced inflammatory gene expression in an athero-prone artery 

segment compared with luciferase siRNA (Fig. 7b).

Effects on atherosclerosis

Lastly, we investigated atherosclerosis in the integrin α5/2 chi-maeric mice by breeding onto 

the hypercholesterolemic ApoE−/−background, which, on a high-fat, ‘Western’ diet, develop 

atherosclerotic plaques at regions of disturbed flow, similar to human disease47. Aortae from 

these mice after 4 months on a high-fat diet showed dramatically decreased plaque burden 

(Fig. 7c). These results validate the connection between early inflammatory activation of the 

endothelium by disturbed shear and later disease progression in hyperlipidaemia.

DISCUSSION

Inflammation has frequently been described as a double-edged sword that is required for 

tissue defence, remodelling and repair but, if not properly regulated, causes damage or 

disease48,49. Inflammatory reactions therefore need to be initiated following infection, injury 

or stress, but then resolved when the infection is cured, injury healed or stress relieved. 

Linking the biochemical and structural changes associated with tissue repair and 

remodelling with the pathways that govern inflammation appears to be essential for proper 

regulation of these processes50,51.

Vascular remodelling to adapt to changes in tissue demand requires inflammatory activation 

of the endothelium and recruitment of leukocytes, mainly monocytes, which aid in 

remodelling6,7. These processes also involve degradation of basement membranes and 

synthesis of a provisional, FN-rich ECM. Once morphogenesis is completed, new basement 

membrane synthesis is a key part of the resolution phase for formation of stable, quiescent 

vessels52,53. Atherosclerosis may be considered a form of pathological flow-dependent 

remodelling where ECs in regions of disturbed flow undergo inflammatory activation but 

can never adapt to restore quiescence54. WT mice show chronic inflammatory activation of 

the endothelium in regions of disturbed flow55 that, when other risk factors are present, 

progresses to atherosclerosis. FN deposition beneath the endothelium is an early event in this 

process, appearing first in the regions of low-grade inflammation in WT mice and increasing 

in atherosclerosis13. FN in the endothelial layer is also abundant in lesions from human 

arteries56. Moreover, several genetic manipulations that reduce FN in the vessel wall reduce 

atherosclerosis in mice14–16, as does an antagonist of integrin α5β1 (ref. 24). Interestingly, 

while classic genetic studies that searched for single genes that affect artery disease 

identified mainly lipid metabolism and inflammatory genes, a recent analysis of gene 

networks identified ECM and ECM remodelling gene networks as equivalently important57. 

Thus, genetic analysis supports a role for tight integration of inflammatory and ECM 

pathways in vascular remodelling.
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Previous work showed that in cells on collagen or basement membrane, flow-induced 

activation of the cAMP/PKA pathway inhibits inflammatory activation of the endothelium22. 

Recent work has also identified PKA-independent anti-inflammatory actions of cAMP on 

inflammasome assembly58–60. The provisional FN-rich ECM relieves this inhibition and 

allows inflammatory activation. Our data show that these effects are mediated through direct 

binding of PDE4D5 to the integrin α5 tail. This interaction localizes PDE4D5 to focal 

adhesions, induces its proximity to PP2A, with subsequent dephosphorylation on an 

inhibitory site. This dephosphorylation increases enzymatic activity to decrease cAMP levels 

and increase endothelial inflammatory activation. These effects were observed both in vitro 
and in vivo, the latter in mice where the integrin α5 cytoplasmic domain was replaced with 

that of α2, and after knockdown of PDE4D5.

Ser651 of PDE4D5 is potentially phosphorylated by Erk2 (ref. 45). However, in cells on 

collagen or basement membrane, Ser651 phosphorylation was high in both high and low 

serum, and was unaffected by the MEK inhibitor U0126 despite large changes in Erk 

activity, and was adhesion-independent. Instead, PDE4D5 Ser651 phosphorylation was 

controlled by matrix-specific, PP2A-dependent dephosphorylation. Thus, plating cells on FN 

or shear stress-dependent integrin activation results in recruitment of PDE4D5 into focal 

adhesions and dephosphorylation of Ser651.

A number of anti-inflammation drugs are in development or clinical trial for treatment of 

atherosclerosis61. Interestingly, both genetic deletion of plasma FN and an integrin α5β1 

antagonist reduced atherosclerotic plaque development in mouse models16,23. However, FN 

contributes to haemostasis, fibrosis and other essential functions; thus, its systemic 

inhibition is unlikely to be clinically viable62,63. The integrin α5–PDE4D interaction may 

therefore provide a more specific target to inhibit plaque progression without globally 

affecting FN function. It should also bypass adverse effects of PDE4 catalytic inhibitors35. 

Further studies will be required to understand how the molecular events and interactions 

defined here play out during the complex physiology and pathology of vessel remodelling, 

atherosclerosis and other instances of chronic inflammation.

METHODS

Cell culture

BAECs were grown in DMEM containing 10% FBS and penicillin/streptomycin. HUVECs 

were grown in DMEM/F12, 10% FBS, 5 mg ml−1 ECGS, 100 μg ml−1 heparin, penicillin/

streptomycin or EGM media (Lonza). Mouse endothelial cells were grown in DMEM 

containing 20% FBS, 1× non-essential amino acids (Gibco), 2 mM L-glutamate, 50 μg ml−1 

gentamicin, 4 μg ml−1 amphotericin B, 100 μg ml−1 heparin, 5 mg ml−1 ECGS and 

penicillin/streptomycin. Primary mouse endothelial cells were isolated from the lung, using 

rat anti-mouse CD31 antibody (clone MEC13.3, Pharmingen, no. 553370) and Dynabeads 

(cat. no. 110.35, Invitrogen) as previously described64. No cell lines were used in this study.
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Generation of BAECs expressing the integrin α5/2 chimaera

BAECs were infected with retrovirus containing human wild-type (WT) integrin α5 or the 

α5/2 chimaera. Infected cells were selected with puromycin (0.5 μg ml−1) and FACS-sorted 

for high expressors with mAb16, which recognizes human-specific integrin α5 extracellular 

domain. Similar surface expression of WT and integrin chimaera was achieved by sorting.

Generation of immortalized mouse aortic endothelial cells expressing NF-κB reporter

Immortalized mouse aortic endothelial cells were first infected with lentivirus containing 

human PDE4D5-GFP and sorted for the cells with similar level of expression to endogenous 

PDE4D5. The cells were then infected with lentivirus for NF-κB reporter65, which induces 

expression of GFP following NF-κB activation.

Plasmids and siRNA

Human integrin α5 WT and integrin α5/2 chimaera were cloned into pLPCX (Clontech) 

using NotI and ClaI sites. The α2 tail sequence was fused to the α5 sequence in frame by 

PCR using primers containing α2 tail sequences. siRNA-resistant PDE4D5 WT and mutants 

were first cloned into pBOB-GFP vector using XbaI and AgeI sites. Then PDE4D5-GFP 

fragments were PCR-amplified using the primers, 5′-gcaagcttatggctcagcagacaagcccgg-3′ 
and 5′-gaattctta cttgtacagctcgtccatgc-3′, and then subcloned into pLPCX vector using 

HindIII and EcoRI sites. For introducing silent mutations into human PDE4D5, the sequence 

5′-atacaaactctgagttggccttgatgta-3′ was used. The PDE4D siRNA sequence used in cultured 

cells was 5′-AAGAACUUGCCUUGAUGUACA-3′ from ref. 66. The siRNA for in vivo 
knockdown of PDE4D was 5′-GAACGAGAUUUGUUAAAA AdTdT-3′, and the siRNA 

for in vivo knockdown of luciferase was 5′-CUUACG CUGAGUACUUCGAdTdT-3′ (ref. 

46). siRNAs used in vivo were modified to prevent immunostimulation, as previously 

described46,67. PDE4D5 F2, F3 and F4 fragments cloned into pGEX-4T1 were previously 

described66. The other PDE4D5 fragments were PCR-amplified and cloned into pGEX-4T1 

vector between EcoRI and XhoI sites. For deletion fragment analysis used in Fig. 5e, the 

following amino acid sequences of PDE4D5 were fused to GST; Δ1:123–284, Δ2: 123–272, 

Δ3: 123–260, Δ4: 123–248. Two siRNA sequences for bovine PP2A-Cα are 5′-CCAU 

GACCGAAAUGUAGUAdTdT-3′ and 5′-GCAUGACUGUAGAUAAGAAdTd T-3′. FAT-

PDE4D5-GFP was constructed by inserting FAT domain (cloned from HUVEC cDNA) into 

the amino terminus of the pLPCX-PDE4D5-GFP construct using Gibson assembly.

Animals

The integrin α5/2 chimaera C57BL/6 strain was generated using homologous recombination 

by OZgene (Australia). Floxed-Neo mice were crossed with the CMV-Cre line (stock 

number 006054) to create the chimaera knock-in mice. For atherosclerosis analysis, integrin 

chimaera knock-in mice were bred with ApoE null mice (stock number 002052). All animal 

experiments were performed under protocols approved by Yale University Institutional 

Animal Care and Use. No statistical method was used to predetermine sample size. The 

animal experiments were not randomized. The investigators were not blinded to allocation 

during experiments and outcome assessment.
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Shear stress experiments

Serum-starved endothelial cells were replated on glass slides coated with the indicated 

proteins for 5 h before flow application. The slides were loaded into parallel plate flow 

chambers. Pulsatile laminar shear of 15 ± 5 dynes cm−2 was used to mimic flow profile in 

athero-resistant regions of artery. Oscillatory shear of 1 ± 5 dynes cm−2, 1 Hz was used to 

mimic disturbed flow in athero-prone regions.

Measurement of prostacyclin production

To measure the stable prostacyclin metabolite 6-keto-PGF1α, HUVECs were starved 

overnight in 1% medium containing 1% FBS, and then were plated on glass slides coated 

with FN or Matrigel for 5 h to form a confluent monolayer. Cells were then treated with 

pulsatile laminar shear (15 ± 5 dynes cm−2) for 90 min or left untreated. The medium was 

centrifuged to remove detached cells and 6-keto-PGF1α assayed using the ELISA kit (Enzo 

life sciences) according to the manufacturer’s instructions.

In vivo PDE4D knockdown

PDE4D siRNA or control luciferase siRNA was packaged into endothelial-specific 

nanoparticles and injected at 1 mg kg−1 via tail vein into WT (C57Bl6) mice. After two 

weeks, mouse aortae were isolated and intimal RNA was prepared as described previously68. 

Briefly, mice were euthanized according to the Yale University IACUC protocol. Aortae 

were isolated and flushed with 250 μl QIAzol lysis reagent by insulin syringe to elute 

endothelial RNA, which was purified by miRNeasy mini kit (Qiagen) and amplified using a 

whole transcriptome amplification kit (Qiagen) according to the manufacturer’s instructions. 

PDE4D transcript levels were measured by qRT-PCR using amplified diluted cDNA 

template. After confirming the dose and time course for in vivo PDE4D knockdown, WT 

(C57Bl6) mice were injected with PDE4D or control siRNA, once a week for 3 weeks. 

Aortae were harvested at the end of the fourth week and stained for inflammatory markers. 

Four male mice (3 month old) were used for each condition.

Immunohistochemistry

Mice were euthanized according to the Yale University IACUC protocol and perfused via 

the left ventricle with 4% paraformaldehyde (PFA). Aortae along with carotid branches were 

dissected and fixed overnight in PFA. For cryosections, tissue was embedded in OCT and 

frozen on dry ice. Longitudinal cryosections (10–15 μm) were prepared with the cryostat. 

For immunostaining, cryosections were fixed in −20 °C acetone for 10 min. Sections were 

blocked in IHC-Tek antibody diluent for 1 h at room temperature, and were then incubated 

with primary antibodies at the indicated concentrations in IHC-Tek antibody diluent 

overnight at 4 °C. After washing 3 times in PBS, sections were incubated with Alexa Flour 

598-conjugated Donkey anti rabbit/rat secondary antibody (1:200, Invitrogen) for 1 h at 

room temperature. After washing with PBS, sections were mounted in Vectashield with 

DAPI (Vector Laboratories) and images taken using a confocal microscope. Four male mice 

(3 month old) were used for each condition to monitor inflammatory markers on the inner 

curvature of the aortic arch. For atherosclerosis analysis, the integrin chimaera mice in ApoE 
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null background (4 male mice with age of three months) were on high-fat diet for 4 months. 

Aortae were opened and stained en face with Sudan IV.

Antibodies

Anti-p-NF-κB p65 (Ser536): rabbit monoclonal antibody (93H1), Cell Signaling (3033L), 

1:1,000 for immunoblotting; anti-p-Creb (Ser133): rabbit monoclonal antibody (87G3), Cell 

Signaling (9198S), 1:1,000 for immunoblot-ting; anti-PKAc: mouse monoclonal antibody, 

BD Transduction Laboratories (610981), 1:1,000 for immunoblotting; anti-integrin α2: 

rabbit polyclonal, Millipore (AB1936), 1:1,000 for immunoblotting; anti-VCAM-1: rabbit 

monoclonal antibody (EPR5047), Abcam (ab134047), 1:200 for immunohistochemistry; 

anti-ICAM-1: rat monoclonal antibody (YN1/1.7.4.), BioLegend (116101), 1:200 for 

immunohistochemistry; anti-ICAM-1: rabbit polyclonal, Abcam (ab124759), 1:1,000 for 

immunoblotting; anti-NF-κB-p65: rabbit polyclonal (C-20), Santa Cruz (sc-372), 1:2,000 for 

immunoblotting; anti-vinculin: mouse monoclonal antibody (VIN-11-5), Sigma (V4505), 

1:500 for immunohistochemistry; anti-fibronectin: rabbit polyclonal, Sigma (F3648), 1:400 

for immunohistochemistry; anti-p-FAK (Tyr397): rabbit polyclonal, Cell Signaling (3283S), 

1:1,000 for immunoblotting; anti-FAK: rabbit polyclonal, Cell Signaling (3285S), 1:1,000 

for immunoblotting; anti-PP2A, C subunit: mouse monoclonal antibody (1D6), Millipore 

(05-421), 1:1,000 for immunoblotting.

Band intensities from immunoblotting were quantified by densitometry using ImageJ 

software.

PKA activity assay

Active PKA was isolated by pulldowns with GST-PKI and quantified as described 

previously69. In brief, bacterially expressed GST-PKI was immobilized on GSH-agarose 

beads. Cell lysates were prepared in lysis buffer containing 25 mM Tris-HCl, pH 7.4, 0.5 

mM EDTA, 0.5 mM EGTA, 10 mM β-mercaptoethanol, protease inhibitor cocktail and 1 

mM phenylmethylsulfonyl fluoride. After brief sonication and centrifugation, the 

supernatants were added with 100 μM ATP and 1 mM MgCl2, then incubated with the GST-

PKI beads for 20 min at 4°C and washed three times with wash buffer (50 mM Tris, pH 7.4, 

100 μM ATP and 1 mM MgCl2). Bound active PKA was eluted with sample buffer and 

immunoblotted with anti-PKA catalytic subunit antibody (BD).

Immunoprecipitation

Cells were lysed in 20 mM PIPES pH 6.8, 1% TX-100, 150 mM NaCl, 150 mM sucrose, 

0.2% sodium deoxycholate, 500 μM EDTA and protease inhibitors. After incubation on ice 

for 15 min and centrifugation, supernatants were diluted 10× in buffer containing 20 mM 

PIPES pH 6.8, 1% TX-100, 150 mM NaCl, 150 mM sucrose, 2.5 mM MgCl2 and 2.5 mM 

MnCl2. Antibody-conjugated protein A beads were incubated with the lysates for 2 h at 4 °C 

before washing with dilution buffer.

Proteomic analysis for PDE4D5 binding proteins

FLAG-tagged PDE4D5 was stably expressed in BAECs using retroviral infection. The cells 

were plated on FN for 30 min and lysed for immunoprecipitation with FLAG antibody. 
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FLAG peptides were used to elute from immune complexes from control non-infected cells 

and PDE4D5-expressing cells. After SDS–PAGE and silver staining, specific bands were 

excised and submitted to Yale Keck Biotechnology Resource Laboratory for LC–MS/MS 

analysis.

In vitro binding assays

For the binding assay using integrin tails on beads, 30 μg of integrin αtail proteins were 

incubated with 6 μl of cobalt beads (Clontech). Washed beads were incubated with 100 ng of 

purified PDE4D5 fragment for 1 h in buffer containing 20 mM PIPES pH 6.8, 1% TX-100, 

150 mM NaCl, 150 mM sucrose. For GST-pulldown analysis for PDE4D domain mapping, 5 

μg of GST fusion proteins on GSH-agarose beads were incubated with 100 ng of purified 

integrin α5 tail proteins in buffer containing 20 mM PIPES pH 6.8, 1% TX-100, 150 mM 

NaCl, 150 mM sucrose and 1 mg ml−1 BSA for 1 h at 4 °C, then washed and analysed by 

SDS–PAGE and western blotting.

Cell adhesion and spreading assay

Cells were detached and replated on dishes coated with either poly-L-lysine or FN (10 μg 

ml−1) for 15 min. Adherent cells were quantified using the acid phosphatase assay70 and 

normalized to the cells attached on PLL-coated dishes for 1 h. To assess cell spreading, cells 

plated for the indicated times were fixed and stained with Alexa Fluor 488-conjugated wheat 

germ agglutinin (Invitrogen, 5 μg ml−1), imaged with spinning-disc confocal microscopy 

(Nikon) and cell areas were quantified using ImageJ software.

Fibronectin fibrillogenesis assay

WT or α5/2 cells were plated on FN-coated coverslips and grown until they formed 

monolayers. Cells were incubated with 1 % FBS containing media for three days, fixed and 

then stained with anti-FN antibody (Sigma).

Statistics and reproducibility

Statistics were analysed using Student’s t-test or one-way ANOVA (multiple comparisons) 

in GraphPad Prism 6. Statistical significance was taken as P < 0.05. Data are represented as 

means ± s.e.m. Pulldown and co-immunoprecipitation results were confirmed in three 

independent experiments.

Data availability

Statistics source data are available in Supplementary Table 1. All other data are available 

from the authors on request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Integrin α subunit cytoplasmic tails determine ECM-specific inflammatory signalling. (a) 

Alignment of integrin α subunit tail sequences and schematic representation of integrin α5/2 

chimaera. (b,c) NF-κB activation by flow. WT α5 or α5/2 cells on FN (20 μg ml−1) were 

subjected to 30 min laminar shear (b) or 18 h oscillatory shear (c). NF-κB activation was 

then assayed by western blotting for Ser536 p65 phosphorylation (b, n = 3; c, n = 4). Y axis 

values throughout the figure represent the fold change (relative to control). LS, laminar 

shear; OS, oscillatory shear. (d) Induction of ICAM-1 after 18 h of oscillatory flow in cells 

expressing WT α5 versus the α5/2 chimaera on FN (n = 3). (e–g) NF-κB activation by 

soluble atherogenic factors. WT BAECs on FN or diluted Matrigel (MG) were stimulated 

with IL-1β or oxidized LDL for 30 min. NF-κB was assayed by western blotting for 

pSer536 p65 (e). t-p65, total p65. Quantification in f (n = 7) and g (n = 4) shows activation 

relative to control cells on FN without flow. (h) Effect of the chimaera on PKA activation. 

WT α5 or α5/2 chimaera cells on FN were sheared for 15 min and active PKA was pulled 

down from cell lysates with GST-PKI followed by immunoblotting. Forskolin (FSK) was 

used as a positive control for PKA activation (n= 4–8). (i) PKA inhibition rescues NF-κB 

activation in α5/2 chimaera cells. Chimaera cells on FN were treated with the PKI 14–22 

amide inhibitor or dimethylsulfoxide (DMSO) alone, and then subjected to oscillatory shear 

for 18 h. Activation of NF-κB was assayed by western blotting (n= 4). Data are represented 
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as means ± s.e.m. *P < 0.05 by one-way ANOVA (b,c,h,i) or two-tailed t-test (d,f,g). In all 

panels n values represent independent experiments. Source data are provided in 

Supplementary Table 1. Unprocessed scans of blots are shown in Supplementary Fig. 6.
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Figure 2. 
Integrin chimaera knock-in mouse showed reduced inflammation in artery. (a) Targeting 

strategy. These floxed, knock-in mice were then bred with CMV-Cre TG mice to obtain 

germline replacement of the exon containing the integrin α5 cytoplasmic domain with the 

integrin α2 cytoplasmic domain. (b) A genomic DNA fragment from homozygous knock-in 

mice containing the integrin α5 tail was amplified by PCR and sequenced. (c) Validation of 

integrin chimaera knock-in mouse. Lung homogenates from WT and chimaera knock-in 

mice were western blotted with the indicated antibodies. (d,e) Endothelial cells isolated 

from adult WT or chimaera knock-in homozygous mice were replated on dishes coated with 

poly-L-lysine or FN (10 μg ml−1). (d) After 15 min, adherent cells were quantified using the 

acid phosphatase assay and normalized to the cells attached on PLL (n = 3 independent 

experiments). Error bars are s.e.m. (e) Cell spreading at the indicated times was determined 

as described in Methods. For each condition, n= 20 images (~10 cells per field) were pooled 

across three independent experiments. The box plot shows the median, with upper and lower 

percentiles, and the bars show maxima and minima values. Source data for d are available in 

Supplementary Table 1. (f) Inflammatory markers in an athero-prone artery segment of 

knock-in mice. Aortae from WT and chimaera knock-in homozygous mice were stained for 

the indicated proteins and the lesser curvature of the arch was examined. Staining intensity 

was quantified as described in Methods (n = 5 mice for each type). L, lumen. Data are 
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represented as means ± s.e.m. *P < 0.05 by two-tailed t-test. Quantification data from 

individual mice are provided in Supplementary Table 1.
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Figure 3. 
Prostacyclin mediates shear-dependent PKA activation but is ECM-independent. (a) 

HUVECs on Matrigel were pretreated with aspirin (ASA, a COX inhibitor, 10 μM) or a 

prostacyclin receptor antagonist (RO1138452, 100 nM) and then sheared for 15 min. PKA 

activity was measured as in Fig. 1 (n = 3). LS, laminar shear; OS, oscillatory shear. (b,c) 

HUVECs on Matrigel pretreated with aspirin (10 μM) or RO1138452 (100 nM) were 

exposed to oscillatory shear for 18 h, and then NF-κB Ser536 phosphorylation was 

measured by western blotting. (b, n = 4; c, n = 3). (d) α5/2 chimaera-expressing BAECs on 

FN were treated with indometacin (Indo.) (10 μM) or RO1138452 (100 nM), and then 

sheared for 15 min. PKA activity was measured as in a (n = 3). (e,f) α5/2 chimaera cells on 

FN pretreated with indometacin (10 μM) or RO1138452 (100 nM) were exposed to 

oscillatory shear for 18 h. NF-κB activation was measured as in b and c (n = 5). (g) 

HUVECs on Matrigel or FN were subjected to pulsatile shear (15 dynescm−2 ± 5 

dynescm−2) for 90 min. 6-keto-PGFα in the medium was measured by ELISA (n = 4). Data 

are represented as means ± s.e.m. *P < 0.05 by one-way ANOVA (b,c,e,f) or two-tailed t-test 

(a,d,g). In all panels n values represent independent experiments. Source data are provided 

in Supplementary Table 1.
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Figure 4. 
Involvement of PDE4D in ECM-dependent inflammatory signalling. (a) BAECs on FN were 

treated with the PDE4 inhibitor rolipram (1 μM), sheared, and PKA activity assayed as in 

Fig. 1. (n = 5). (b) BAECs on FN or collagen (Col.) were treated with rolipram (1 μM) and 

assayed for NF-κB as before (n = 3). (c) HUVEC lysates were immunoprecipitated with two 

different PDE4D5 antibodies and western blots probed for integrin α5 or integrin α2. 

Similar results were obtained in three experiments. (d) BAECs expressing WT integrin α5 

or the α5/2 chimaera were immunoprecipitated with human-specific integrin α5 antibody 

recognizing the extracellular region. Western blots were probed for PDE4D5 and for the 

integrin β1 subunit. Similar results were obtained in 4 experiments. (e) BAECs were 

transfected with siRNA against PDE4D and then rescued with control or PDE4D5-GFP 

retrovirus. Cells were subjected to oscillatory shear and NF-κB assayed as before (n = 4). (f) 
BAECs expressing WT PDE4D5 or FAT-PDE4D5 were plated on Matrigel for 5 h and 

subjected to oscillatory shear. NF-κB Ser536 phosphorylation and Creb Ser133 

phosphorylation were measured by western blotting (n= 4). Data are represented as means ± 
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s.e.m. *P < 0.05 by one-way ANOVA (a,e,f) or two-tailed t-test (b). In all panels n values 

represent independent experiments. Source data are provided in Supplementary Table 1. 

Unprocessed scans of blots are shown in Supplementary Fig. 6.
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Figure 5. 
Mapping the integrin binding site on PDE4D5. (a) Schematic representation of PDE4D5 and 

fragments used for pulldown assays. (b) HUVEC lysates were incubated with GST-tagged 

fragments of PDE4D5 and probed for integrin α5. Results are representative of three 

independent experiments. (c) To test whether the interaction is direct, integrin α tails 

immobilized on cobalt beads were incubated with purified PDE4D5 F2 fragment. Beads 

were washed and bound material was analysed by western blotting (α5R: scrambled 

sequence of α5 tail). (d) Deletion constructs used for detailed mapping and critical residues 

for binding. (e,f) The indicated PDE4D5 fragments and mutants were immobilized on GSH 

beads and incubated with the α5 tail protein used in c. Bound α5 tail protein was detected 

by western blotting with integrin α5 antibody against cytoplasmic tail. Results are 

representative of three independent experiments. (g) BAECs expressing GFP-tagged 

PDE4D5 WT or the 4E mutant were plated on FN or collagen and sheared for 15 min. The 

cells were fixed and stained for the focal adhesion marker, vinculin. Arrow indicates 
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colocalization of PDE4D5 with vinculin. Results are representative of three independent 

experiments. Scale bar, 50 μm. (h) BAECs stably expressing integrin α5 binding-deficient 

PDE4D5 mutants (4A and 4E) or the catalytically inactive mutant (D556A) were transfected 

with siRNA to knock down the endogenous PDE4D, and then were subjected to oscillatory 

shear for 18 h. NF-κB activity was assayed as in Fig. 1; (n= 3 independent experiments). 

Data are represented as means ± s.e.m. *P < 0.05 by two-tailed t-test. Source data are 

provided in Supplementary Table 1. Unprocessed scans of blots are shown in Supplementary 

Fig. 6.
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Figure 6. 
ECM-dependent regulation of PDE4D phosphorylation. (a) BAECs expressing WT or the 

4E mutant of PDE4D5 were plated on collagen or FN for 5 h and then sheared for 15 min. 

Cell lysates were probed for anti-pSer651-PDE4D (n = 4–6). Y axis values throughout the 

figure represent the fold change (relative to control). t-PDE4D, total PDE4D. (b) BAECs 

expressing WT integrin α5 or the α5/2 chimaera on FN were transfected with PDE4D5, and 

then sheared for 15 min. Ser651 phosphorylation was assayed by western blotting as in a 
(n= 3). (c) BAECs expressing PDE4D5 WT or the 4E mutant or chimaera cells expressing 

PDE4D5 WT were kept in suspension (Sus.) for 90 min and then replated on FN-coated 

dishes for the indicated times. Ser651 phosphorylation was assayed by western blotting (n = 

3). (d,e) BAECs in which endogenous PDE4D5 was knocked down were reconstituted with 
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WT, phospho-deficient S651A or phospho-mimetic S651E mutants. The cells were replated 

on collagen (d) (n = 3) or FN (e) (n = 6) and then subjected to oscillatory shear for 2 h. NF-

κB activity was assayed as in Fig. 1. In all panels n values represent independent 

experiments. Data are represented as means ± s.e.m. *P < 0.05 by one-way ANOVA (a,b,d) 

or two-tailed t-test (c,e). Source data are provided in Supplementary Table 1. Unprocessed 

scans of blots are shown in Supplementary Fig. 6.
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Figure 7. 
In vivo PDE4D knockdown reduces flow-dependent inflammation. (a) Validation of siRNA 

used for in vivo knockdown. Immortalized mouse aortic endothelial cells were transfected 

with GFP-tagged human PDE4D5 and transfected with siRNA used for nanoparticle 

formulation. Endo., endogenous PDE4D5. NF-κB activation was assayed either by 

measuring GFP reporter expression under control of the NF-κB responsive element or 

ICAM-1 induction. Y axis values represent the fold change (relative to control). Data are 

represented as means ± s.e.m. *P < 0.05 and #P = 0.079 by two-tailed t-test. (n= 3 

independent experiments) Source data are provided in Supplementary Table 1. (b) 

Nanoparticles containing PDE4D siRNA or luciferase (LUC) siRNA (1 mg kg−1) were 

injected intravenously. Aortae from treated mice were isolated and stained for the indicated 

molecules to assay inflammatory markers in lesser curvature (n= 5 mice). (c) Integrin 

chimaera knock-in mice were bred with ApoE null mice and fed a high-fat diet for 4 months. 
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Aortae were opened and stained en face with Sudan IV (n= 4 mice). Plaque area and 

numbers were quantified. Data are represented as means ± s.e.m. *P < 0.05 by two-tailed t-
test. Quantification data from individual mice are provided in Supplementary Table 1.
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