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Abstract

Since the pioneering work of Elie Metchnikoff and the discovery of cellular immunity, the 

phagocytic clearance of cellular debris has been considered an integral component of resolving 

inflammation and restoring function of damaged and infected tissues. We now know that the 

phagocytic clearance of dying cells (efferocytosis), particularly by macrophages and other immune 

phagocytes, has profound consequences on innate and adaptive immune responses in inflamed 

tissues. These immunomodulatory effects result from an array of molecular signaling events 

between macrophages, dying cells and other tissue-resident cells. In recent years, many of these 

molecular pathways have been identified and studied in the context of tissue inflammation, helping 

us better understand the relationship between efferocytosis and inflammation. We review specific 

types of efferocytosis-related signals that can impact macrophage immune responses and discuss 

their relevance to inflammation-related diseases.
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Introduction

Tissue injury or infection leads to the prompt activation of a local inflammatory response to 

mediate pathogen clearance and limit tissue damage. The proper termination of this 

inflammatory cascade is important to allow execution of tissue repair and resolution 

responses required to restore normal tissue function. Improper resolution can result in 

excessive scarring and organ damage as well as chronic inflammation and loss of self-

tolerance that contributes to disease states such as cardiovascular disease, cancer and 

autoimmunity (1). In healthy, immune competent hosts, most inflammatory episodes are 

self-limiting, with endogenous host mechanisms successfully orchestrating the onset and 

resolution of inflammation. The identification and molecular characterization of these 

endogenous resolution pathways has been a promising and intense area of research in recent 
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years (1–3). In this review, we will discuss how some of the signals that regulate apoptotic 

cell clearance (efferocytosis) can also function to modulate macrophage immune responses 

in the context of tissue inflammation. While we primarily focus on macrophage responses in 

this review, it is important to emphasize that many different types of hematopoietic and non-

hematopoietic cell types can carry out efferocytosis and that apoptotic cells can exert 

important and sometimes cell type-specific immunoregulatory consequences on these 

phagocytes (reviewed in (4–6))

Cell death in inflamed tissues

Cell death is a universal feature of infected and damaged tissues. Cell death can occur by 

unregulated, “accidental” means such as mechanical or osmotic lysis, particularly in the 

early stages of inflammation. However inflammation-associated cell death can also result 

from the activation of specific biochemical pathways (e.g. apoptosis, necroptosis) (7). 

Apoptosis is the most prominent mechanism of programmed cell death seen in inflamed 

tissues for both hematopoietic and non-hematopoietic cells (1, 8). The stimuli that trigger 

apoptosis within inflamed tissues vary widely depending on the type of inflammation, and 

can be due to pathogen-derived, host-derived or iatrogenic stimuli. However, it is important 

to note that inflammation-associated apoptosis is most often multifactorial and in most 

inflammatory settings the precise cellular and molecular mechanisms of apoptosis induction 

are poorly understood. Nonetheless, it is clear that apoptotic cell death plays an integral role 

in the outcome of tissue inflammation.

Sepsis is one of the best-studied examples where apoptosis has clear and profound 

consequences on the resolution of inflammation. A life-threatening condition responsible for 

~250,000 U.S. deaths annually, sepsis can occur when a localized infection fails to properly 

resolve, leading to systemic inflammation, organ failure and death (2, 3, 9). In humans and 

mice, sepsis is associated with widespread apoptosis in lymphoid organs causing dramatic 

reductions in hematopoietic cell numbers, including thymic T cells, bone marrow B cells 

and peripheral lymphocytes (7, 10). This depletion can cause persistent lymphopenia that 

contributes to mortality (11). In mice, blockade of apoptosis using caspase inhibitors or 

overexpression of anti-apoptotic genes improves survival following polymicrobial sepsis 

(12, 13). Similarly, most myeloid cell populations are also depressed in sepsis (e.g. 

monocytes, macrophages, DC), although neutrophil survival is increased (14). Consequently, 

sepsis-associated leukocyte apoptosis is thought to transiently impair immunity and 

contribute to the generation of an immunosuppressed state known as compensatory anti-

inflammatory response syndrome (15). The extent to which immunomodulatory effects of 

efferocytosis contribute to sustained immune suppression is an important but poorly 

understood area of sepsis research (16).

Leukocyte apoptosis is also a characteristic feature of self-limiting inflammation resulting 

from acute, localized and moderate injury or infection. However, unlike sepsis, apoptotic 

cells are thought to be beneficial in self-resolving inflammation by helping to reprogram 

tissue macrophages from a pro-inflammatory to a pro-resolution state (17). Tissue resident 

macrophages are key immune sentinels and thus are among the first immune cells to respond 

to tissue damage by producing cytokines that initiate and orchestrate the recruitment of 
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granulocytes from the blood into the tissue (18). Neutrophils typically accumulate in 

significant numbers within minutes to a few hours depending on the nature and severity of 

the injury. Once in the tissue, most neutrophils rapidly undergo apoptosis and begin to 

accumulate as uncleared apoptotic cells. The time at which viable neutrophil numbers are 

highest in the tissue is often considered the “peak” of a self-limiting inflammatory episode 

(17). Importantly, the maximum number of uncleared apoptotic neutrophils in the tissue 

typically coincides with this “peak”, followed by macrophage-mediated efferocytosis and 

clearance of the neutrophils during the resolution stage (19). Such observations support the 

theory that efferocytosis of apoptotic neutrophils by resident macrophages is an important 

immune trigger for the onset of resolution (20, 21). However confirmation of this theory has 

been hampered by the difficulty in tracking the fate of engulfed endogenous apoptotic cells. 

Nonetheless, there is abundant evidence that apoptotic cells can suppress macrophage 

inflammatory responses in vitro and that failure to clear apoptotic cells exacerbates 

inflammation in vivo, indicating efferocytosis plays a crucial role in modulating the 

inflammatory response of macrophages (and other phagocytes) to promote resolution (5, 6, 

22).

Homeostatic cell clearance

Approximately 1×1010 cells undergo apoptosis daily in the human body; however, few free 

apoptotic cells are seen at homeostasis, indicating the presence of highly efficient 

efferocytosis mechanisms (23). This efficiency depends on the execution of the three main 

efferocytosis signaling programs depicted in Figure 1: 1) find-me signaling – 

chemoattractant-mediated recruitment of phagocytes to apoptotic cells, 2) eat-me signaling – 

receptor-mediated recognition and engulfment of apoptotic cells, and 3) post-engulfment 

signaling – signals related to the phagolysosomal processing of engulfed cellular material. 

The most obvious anti-inflammatory effect of efferocytosis is the physical sequestration of 

dying cells to limit the release of intracellular DAMPs that can drive inflammation (7, 24, 

25). Indeed, there is now very strong evidence that disrupting homeostatic efferocytosis in 

mice, either genetically or chemically, can lead to accumulation of uncleared apoptotic cells 

in situ along with spontaneous inflammation and autoimmune disease (reviewed in (6, 26, 

27)). However, efferocytosis can also directly alter the inflammatory signaling pathways in 

the engulfing macrophage. Here we will discuss how many of the signals that mediate the 

three stages of efferocytosis also play important roles in driving the immunomodulatory 

effects of apoptotic cells on macrophages.

Find-me signaling in inflammation

In order for phagocytosis to occur, phagocytes must first “find” a cell undergoing apoptosis. 

This find-me stage of efferocytosis is mediated by the release of numerous soluble factors 

that attract macrophages to the site of cell death (6, 28, 29). Key find-me signals identified to 

date include triphosphate nucleotides (ATP, UTP) (30, 31), the chemokine CX3CL1 (32), 

and the signaling lipids lysophosphatidylcholine (lysoPC) and sphingosine-1-phosphate 

(S1P) (33–35). While all of these factors can stimulate macrophage migration to apoptotic 

cells, the relevance of individual find-me signals in efferocytosis depends on many factors, 

including phagocyte and apoptotic cell type as well as the apoptotic stimuli and the stage of 
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apoptosis being studied (reviewed in (36)). As discussed below, some of these find-me 

signals also function as key modulators of macrophage inflammatory responses.

Apoptotic cells release adenine and uridine nucleotides through caspase-3/7-activated 

hexameric pannexin-1 channels on their surface (37). Extracellular nucleotides ATP and 

UTP act as find-me signals to promote cell clearance by stimulating recruitment of motile 

phagocytes expressing P2Y purinergic receptors and also by causing upregulation of 

phagocytic receptors (30, 38–40). Extracellular nucleotides can also exert 

immunomodulatory effects on macrophages via the breakdown of ATP into adenosine – a 

well known and potent modulator of macrophage inflammation (41, 42). Recent reports have 

shown that during efferocytosis, Gs-linked A2a and A2b adenosine receptors on 

macrophages mediate suppression of pro-inflammatory cytokines (e.g. CXCL1, CXCL2) 

and upregulation of pro-resolution factors (e.g. Nr4a1, Thbs1) (43, 44) (Figure 1). 

Interestingly, the precise mechanisms responsible for generating extracellular adenosine 

during efferocytosis are poorly understood. Although adenosine can be released directly 

from macrophages (43, 45), in many tissue settings the accumulation of extracellular 

adenosine is largely due to the hydrolysis of extracellular adenine nucleotides (i.e. ATP, 

ADP, AMP) by ecto-enzymes such as CD39 (ATP/ADP→AMP) and CD73 

(AMP→adenosine) (41, 42). How these ecto-enzymes contribute to adenosine generation 

and immune modulation of macrophages during efferocytosis remains an open question.

The chemokine CX3CL1 was identified as an apoptotic find-me signal by Gregory and 

colleagues (32), and since has been implicated in cell clearance and tissue repair in a number 

of tissue settings. Apoptotic cell-derived CX3CL1 stimulates recruitment of CX3CR1+ 

phagocytes to clear apoptotic debris in lymphoid tissues and the brain (32, 46). Additionally, 

CX3CL1 from apoptotic cells enhances efferocytosis by stimulating phagocytes to express 

the eat-me ligand MFG-E8 (47–49). In the context of tissue repair, CX3CL1-CX3CR1 

signaling has been shown to play a beneficial role by reducing expression of inflammatory 

cytokines and enhancing expression of pro-survival (e.g. BCL-2) and antioxidant genes 

(HO-1) (49–51). Thus release of CX3CL1 from dying cells not only serves to promote 

‘clean-up’ of damaged tissues, but also aids in driving expression of genes that are beneficial 

to the restoration of tissue homeostasis.

Lipid find-me signals also double as chemoattractants and immune regulators during 

efferocytosis. S1P is released by apoptotic cells through the caspase-dependent upregulation 

of S1P kinases (SphK) 1 and 2 (34, 35). Chemotaxis of myeloid cells to S1P is mediated by 

the S1P family of GPCRs (S1PR1-5) (52). Beyond its role as a macrophage chemoattractant, 

Brunë and colleagues found that S1P derived from apoptotic cells provokes an anti-apoptotic 

and anti-inflammatory gene expression program in macrophages, characterized by 

suppression of TNF and IL-12 along with increased production of IL-10, VEGF and PGE2 

(53–55). Moreover, S1PR signaling in macrophages promotes an alternative “M2-like” anti-

inflammatory phenotype, including increased cAMP and COX-2 and suppression of NFkB 

signaling (52). More recently, Luo et al reported that apoptotic cell-derived S1P can 

stimulate erythropoietin-EPR autocrine signaling in macrophages that stimulates activation 

of the M2-promoting nuclear receptor PPARγ (56). Like S1P, lysoPC is also a potent 

chemoattractant find-me signal for monocytes and macrophages during efferocytosis (33), 
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and deletion of a putative lysoPC receptor G2A in mice leads to increased tissue 

inflammation and hallmarks of systemic autoimmunity (57, 58). However, it is presently 

unclear what role apoptotic cell-derived lysoPC plays in the immunoregulatory functions of 

G2A in vivo.

Eat-me signaling in inflammation

Macrophages primarily recognize apoptotic cells via high levels of surface PtdSer. Normally 

confined to the inner leaflet of viable cells, PtdSer is enriched on the exofacial side of the 

membrane as a result of caspase-mediated changes in the activity of several key 

phospholipid transport enzymes (reviewed in (59)). At least 12 PtdSer efferocytosis 

receptors have been identified to date and comprise a structurally heterologous group of 

surface proteins that bind either directly to PtdSer or indirectly via recognition of soluble 

PtdSer-binding opsonins (reviewed in (6, 60)). In 2002 Henson and colleagues first showed 

that PtdSer on apoptotic cells was not only a critical ‘eat-me’ ligand, but also that PtdSer 

recognition by macrophages has profound immunomodulatory effects on macrophages and 

other phagocytes (61). Since this time, many efferocytic receptors have been identified and 

subsequently found to play a role in regulating macrophage immune responses (Figure 1).

The four best-studied bona fide PtdSer efferocytosis receptors are: BAI, TIM, Stabilin, and 

CD300. The GPCR BAI1 directly binds PtdSer via a series of N-terminal thrombospondin 

repeats (TSR) and subsequently stimulates actin polymerization and phagocytosis via 

recruitment and activation of the Elmo-Dock bipartite Rac-GEF (62). While Bai1 expression 

is restricted to specific phagocyte populations (62), it appears particularly important for 

efferocytosis by gastric and intestinal phagocytes (63). Using a mouse model of colitis, Lee 

et al recently reported that Bai1-deficient mice displayed increased colonic inflammation, 

tissue damage and mortality (64). It was also shown that Bai1 deletion in macrophages and 

colonic epithelial cells leads to higher levels of IL-1α, IL-6 and TNF in the presence of 

apoptotic cells in vitro (64). These findings are in line with previous studies showing that 

Elmo1-Dock signaling not only regualtes actin dynamics but can also influence the 

expression of inflammatory genes (65–67). Presently it is not clear how Bai/Elmo/Dock 

signaling alters inflammatory gene expression (64). Interestingly, separate studies have 

shown that Elmo can localize to the nucleus (68) and interact with transcriptional machinery 

(66), but whether these functions are relevant to changes in macrophage gene expression 

during efferocytosis is not known.

The TIM family of receptors (hTIM-1, 3, 4) are type I cell-surface glycoproteins that bind 

PtdSer via N-terminal IgV domains to mediate apoptotic cell engulfment (69–71). TIM-1 

and TIM-3 possess one or more tyrosine phosphorylation sites in their C-terminal 

cytoplasmic domains that control ligand-dependent recruitment and suppression of Src 

family kinases (70). TIM expression in murine immune phagocytes is highly subset- and 

tissue-restricted, and mice lacking individual TIM molecules, while viable, display a number 

of organ-specific immune defects (70, 72–75). In a renal ischemia/reperfusion injury model, 

TIM-1 binding of PtdSer is required for apoptotic cells to suppress NFkB activation and 

production of TNF, IL-6, CCL5 in proximal tubular cells (76, 77). In these studies, tyrosine 

phosphorylation of the TIM-1 cytoplasmic tail caused increased recruitment of the p85 
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subunit of PI3K and inhibition of NFkB activation downstream of TLR4 (77). TIM-3 is 

expressed on multiple macrophage and DC populations, and can evoke both immune-

activating and immune-suppressing outcomes during efferocytosis (78). In TLR-stimulated 

CD8+ dendritic cells (DC), TIM-3 can promote cross-presentation of corpse antigens (79), 

However, signaling via TIM-3 can also inhibit NFkB and inflammatory cytokine production 

via tyrosine phosphorylation of the TIM-3 cytoplasmic tail (78). TIM-4, by contrast, has a 

short cytoplasmic tail that is dispensable for apoptotic cell engulfment, suggesting that 

TIM-4 functions as a high affinity PtdSer binding/tethering receptor rather than bona fide 
engulfment signaling receptor (80, 81). Still, Martinez et al recently showed that TIM-4-

mediated corpse engulfment can trigger recruitment of specific autophagy components to the 

phagosome in a distinct form noncanonical autophagy termed LC3-associated phagocytosis 

(LAP) (82). Subsequently Green and colleagues reported that genetic disruption of LAP in 

myeloid cells (via deletion of NOX2 or RUBCN) leads to a chronic autoinflammatory 

disorder and development of SLE-like disease in mice (83). In these studies LAP-deficient 

macrophages stimulated with apoptotic cells in vitro were found to produce much higher 

levels of inflammatory cytokines (IL-1β, IL-6, CXCL10) and lower levels of IL-10 

compared to LAP-sufficient macrophages (83). Given that TIM-4-deficient mice also 

develop hallmarks of tissue inflammation and autoimmunity (73, 74), it will be important to 

delineate the precise roles of TIM-4 in conventional efferocytosis versus LAP in shaping 

macrophage inflammatory responses to apoptotic cells.

Of the seven human CD300 genes, three have been shown to bind PtdSer and modulate 

efferocytosis: CD300A, CD300B, CD300F (84). However, the immunomodulatory effects of 

CD300 receptors during efferocytosis are not straightforward, as these receptors can trigger 

either activating or inhibitory outcomes depending on their association with different 

cytoplasmic signaling modules. For example, although signaling via the ITIM domain of 

CD300A inhibits phagocytosis of apoptotic cells, this domain is important for suppression of 

inflammatory cytokines during efferocytosis (85, 86). CD300F can both stimulate and 

inhibit efferocytosis depending on the type of phagocyte, and CD300F-deficient mice 

develop symptoms of autoimmunity (87). CD300B signaling via the adaptor protein DAP12 

positively regulates efferocytosis, and Voss et al recently showed that LPS treatment of 

macrophages causes CD300B to interact with TLR4 and that this interaction augments 

TLR4-dependent production of pro-inflammatory cytokines (88). Along these lines, the 

CD300F receptor was recently shown to interact directly with the common chain of IL-4/

IL-13 receptor to enhance production of IL-4 and thus could potentially promote M2 

polarization in macrophages (89). Although CD300 molecules have been shown to regulate 

immune responses in many different tissue settings, it remains to be seen exactly how 

CD300-signaling during efferocytosis impacts immune signaling and cytokine production in 

macrophages during the resolution of tissue inflammation.

Stabilin receptors (Stab1, Stab2) are type I surface receptors that trigger efferocytosis 

through direct interaction with PtdSer (90–92). In mice, Stabilin receptors are expressed in a 

number of macrophage populations (93), while in humans Stab1 was found to be highly 

expressed in endothelial cells and steroid-treated tissue macrophages (94). In vitro, 

expression of Stab2 in cultured cells stimulates the binding and Rac-dependent 

internalization of apoptotic cells and also stimulates TGFβ production (91). Interestingly, 
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Stab1/Stab2 double knockout mice have shorter lifespans and increased tissue inflammation 

compared to wild-type mice, although these results likely stem from the loss of hyaluronic 

acid scavenging mediated by these receptors (95, 96). How Stabilin signaling regulates 

cytokine expression during efferocytosis is still unclear, although STAB1-mediated 

engulfment requires the intracellular adaptor protein GULP which has been shown to 

regulate cytokine production downstream of other receptors including LRP1 (97, 98).

A number of efferocytic receptors indirectly recognize PtdSer on apoptotic cells via 

interaction with PtdSer-binding ‘bridging’ proteins such as MFG-E8, CCN1, GAS6 and 

Protein S (ProS1) (6, 60). Upon binding to PtdSer on apoptotic cells MFG-E8 and CCN1 are 

recognized by αvβ3/5 integrin/vitronectin receptors on phagocytes, leading to Rac activation 

and corpse internalization (99, 100). It is clear that αv-mediated engulfment of MFG-E8 

opsonized apoptotic cells is important for limiting tissue inflammation and maintenance of 

self-tolerance in mice (99, 101). However, it is less clear whether αvβ3/5 signaling directly 

regulates cytokine production in macrophages during efferocytosis. Studies using RGD 

mimetics to manipulate αv–mediated apoptotic cell recognition have reported significant 

effects on macrophage TNF and IL-10 production (102, 103). By contrast, studies using 

αvβ3/5 blocking antibodies or macrophages deficient in β3 or β5 did not find substantial 

effects on cytokine production during efferocytosis (104, 105). Still, it is important to note 

that the role of αv integrins in efferocytosis is quite complex owing to its interactions with 

multiple β chains (i.e. β1, β6, β8) and the formation of signaling complexes with other 

efferocytosis molecules such as CD36, thrombospondin and HMGB1 (106, 107). Thus αv 

integrins play key roles in macrophage adhesion, motility and phagocytosis, but more 

investigation is required to define their contribution to immune signaling during 

efferocytosis.

The TAM (Tyro3, Axl, Mer) tyrosine kinases are another family of efferocytosis receptors 

that recognize PtdSer on apoptotic cells indirectly through binding to the PtdSer-binding 

serum proteins GAS6 and ProS1. All three TAM receptors are capable of mediating 

efferocytosis, with Axl and Mer being particularly important for efferocytosis by dendritic 

cells and macrophages (108, 109). Disruption of TAM signaling in vivo leads to increased 

levels of uncleared apoptotic cells in multiple tissues, and TAM-deficient mice display 

exacerbated responses to apoptotic cells and inflammatory stimuli in vivo (108, 110, 111). 

At the molecular level, recognition of Gas6/ProS1-opsonized apoptotic cells causes TAM 

receptor dimerization shown to function as key negative regulators of inflammation and 

adaptive immunity by controlling multiple immune signaling pathways and gene expression 

programs. In the context of efferocytosis, signaling via Axl and Mer can directly suppress 

TLR- and type I IFN-driven inflammatory signaling pathways via distinct mechanisms. In 

dendritic cells, activation of Mer by apoptotic cells inhibits IKK activity downstream of 

TLR4, leading to reduced NFkB binding at the Tnf promoter (113). In a separate study, 

Sharif et al reported that suppression of TLR-driven TNF by apoptotic cells required Axl-

mediated upregulation of the Twist transcriptional repressors that bind E-box elements and 

inhibits Tnf promoter activity (110). Interestingly, TAM receptors also function as negative 

regulators of type I IFN-induced inflammatory signaling in DC by suppressing IFNα-

mediated STAT1 signaling and by upregulation of the E3 ubiquitin ligases suppressor of 

cytokine signaling 1 and 3 (SOCS1 and SOC3) (111). Presently, the precise mechanisms 
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regulating these responses and what roles they play in efferocytosis-mediated immune 

modulation remain to be fully defined. Nevertheless it is clear that in macrophages and DCs 

TAMs are key mediators of both apoptotic cell phagocytosis and anti-inflammatory 

signaling. As such, TAMs are very attractive targets for modulation of efferocytosis 

responses in controlling innate and adaptive immune responses.

Post-engulfment signaling in inflammation

The engulfment of apoptotic cell by macrophages results in the acquisition of substantial 

quantities of excess cellular materials such as lipids, carbohydrates, proteins and nucleic 

acids, and macrophages can adjust to this increased metabolic load by activating degradation 

and efflux pathways (114). In addition, a number of recent studies have shown that 

engulfment of apoptotic cells engages multiple metabolic sensing pathways in macrophages 

that play important roles in controlling phagocytosis and immune signaling (115–118). 

Among these metabolite-sensing mechanisms, the nuclear receptor (NR) family of 

transcriptional regulators stand as the best studied link between sensing of ingested 

apoptotic cells and the macrophage efferocytosis machinery. Studies using genetic and 

pharmacologic manipulation have identified multiple NR family members as critical 

regulators of macrophage efferocytosis in vitro and in vivo, including LXRα, LXRβ, 
PPARγ, PPARδ, RXRα (reviewed in (6, 119)). An important and consistent finding from 

these studies is that NR activation, both homeostatically and during efferocytosis, enhances 

transcription of engulfment-related genes in macrophages, including PtdSer receptors, 

PtdSer binding soluble proteins and key intracellular engulfment signaling molecules 

(Figure 1). Accordingly, mice lacking one or more of these NRs display defective clearance 

of apoptotic cells, enhanced tissue inflammation and autoimmunity (120–122). However, it 

is important to note that while internalization of apoptotic cells can modulate the activity of 

multiple NRs, we presently do not know the cellular source or precise molecular nature of 

the NR-modulating ligands relevant to efferocytosis.

In addition to promoting phagocytosis, NRs are involved in the regulation of macrophage 

inflammation during efferocytosis (119). For example, treatment of LXRα/β-deficient 

macrophages with apoptotic cells does not induce TGFβ and IL-10 production nor suppress 

IL-1β and IL-12 production like their WT counterparts (121). Similarly, macrophages 

lacking PPARδ fail to produce IL-10 and produce more TNF and IL-12 than WT 

macrophages when cultured with apoptotic cells (120). Also, macrophages from mice 

lacking PPARγ and RXRα are refractory to the immunosuppressive effects of apoptotic 

cells in vitro (122). More recently, the nuclear receptor Nr4a1 was found to be rapidly 

upregulated in macrophages cultured with apoptotic cells, and Nr4a1-deficient macrophages 

cultured with apoptotic cells showed enhanced NFkB activation and IL-12 production 

compared to WT macrophages (44, 123). Interestingly, Nr4a1 upregulation by apoptotic 

cells can occur via adenosine activation of the A2a receptor, suggesting regulation of this 

NR could be stimulated by nucleotide find-me signals as well as via phagosomal signaling. 

(44, 124).
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Conclusions

The discovery of the immunomodulatory activity of apoptotic cells on macrophages nearly 

20 years ago transformed our view of efferocytosis from a simple garbage disposal process 

to one capable of actively shaping immune responses and influencing tissue restorative 

programs. This paradigm shift has led to promising new therapeutic avenues built on 

manipulating efferocytosis-related processes, as evidenced by the ongoing trials of anti-

PtdSer antibodies in several clinical settings (125, 126). The efferocytosis mechanisms 

highlighted here illustrate the ability of macrophages to engage specific molecular pathways 

that control both phagocytosis and immune signaling. This linkage supports the idea that the 

process of dead cell clearance is not simply an end unto itself, but rather that the 

efferocytosis process provides key physiologic status information regarding cell death and 

tissue health to the immune system via macrophages (and other phagocytes). Finally, it is 

important to note that while efferocytosis signaling is often framed as a chronological three-

step process (Figure 1), physiologic efferocytosis by macrophages almost certainly involves 

the simultaneous integration of many different efferocytosis signaling processes. As such, 

understanding how the spatiotemporal dynamics and potential synergistic relationships of 

these different signaling pathways affect cell clearance and immunity stands as an important, 

albeit very challenging, area for future studies. Considering the ubiquity of cell death during 

inflammation and the inherent signaling complexities of inflamed tissues, major mechanistic 

advances in this area will likely require new experimental approaches to tease apart the 

precise immunomodulatory roles of dead cell-derived signals.
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Figure 1. Immunomodulatory roles of efferocytosis signals
Depiction of the three key stages of efferocytosis (dashed boxes) with detailed illustrations 

showing some of the known signaling molecules/pathways relevant to immune modulation 

for each of the three stages. The lower table indicates some of the key effects of these 

efferocytosis signaling mechanisms on: immune signaling in phagocytes, production of 

immune mediators, and some of the prominent immune outcomes of the indicated 

molecules/pathways. Arrows in the table indicate whether signaling via these pathways 

generally increases or decreases the effects listed. Please note this diagram represents only a 

portion of the efferocytosis signals and their immunoregulatory effects that have been 

described. More comprehensive lists of these signaling pathways can be found in references 

6, 61. MMP (matrix metalloprotease) PS (PtdSer), RTK (receptor tyrosine kinase), ITIM 

(immune-tyrosine based inhibitory motif).
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