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Abstract
A recently described C(sp3)–H activation reaction to synthesise aziridines was used as a model reaction to demonstrate the method-

ology of developing a process model using model-based design of experiments (MBDoE) and self-optimisation approaches in flow.

The two approaches are compared in terms of experimental efficiency. The self-optimisation approach required the least number of

experiments to reach the specified objectives of cost and product yield, whereas the MBDoE approach enabled a rapid generation of

a process model.

150

Introduction
The development of manufacturing processes to produce func-

tional molecules, such as pharmaceuticals or fine chemicals,

often relies on experience and trial-and-error, rather than on

mechanistic process models [1]. The only reason for this is the

complexity of chemistry and the duration of time required for

the development of good mechanistic models. A game changer

in this area is the recently emerged field of automated continu-

ous-flow experiments driven by algorithms for sequential

design of experiments (DoE), which significantly reduce the

effort in running routine reactions and generating data for opti-

misation of reaction conditions [2-7]. An illustration of the

concept is shown in Figure 1.

Mainly, self-optimisation experimental platforms are used to

rapidly obtain optimal reaction conditions using either flow

[8-10] or batch experiments [11]. In these cases, the optimisa-

tion is driven by the global or target optimisation towards the

selected performance criteria. This is rather different from the

objectives of model development. In the case of model develop-

ment, the key criterions are the ability of a model to describe
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Figure 1: A framework of closed-loop or self-optimisation combining smart DoE algorithms, process analytics, chemoinformatics and automated
reactor systems.

the observed experimental data and to predict process perfor-

mance under unseen conditions. Thus, experiments required for

model development are frequently what would be considered as

‘bad’ experiments in the case of optimisation.

A model-development framework has been demonstrated on the

basis of an automated microreactor experimental system for

several complex reactions [8,12,13]. The framework uses facto-

rial design of experiments to obtain an initial data set for param-

eter estimation, followed by an iterative search with online

model discrimination and parameter estimation, guided by

D-optimal design. In a different approach, transient data from

continuous-flow experiments were used to identify parameters

of a known mechanistic scheme to discriminate between several

alternative model structures and to identify model parameters,

but no specific design of experiments method was used [14].

The framework proposed in the present publication is using a

model-based design of experiments method (MBDoE) [15-17],

which incorporates the model with its parameters, as well as

details of the experimental setup, such as measurement accu-

racy and experimental limitations, to design the most informa-

tive experiments. This approach requires some model struc-

tures to be known a priori which may restrict the methodology

to reactions with known mechanism, or to empirical parametric

models. A discussion of how a priori knowledge of chemistry,

i.e., reaction mechanisms, is included in self-optimisation and

model-development frameworks is not well documented in the

Scheme 1: Catalytic reaction scheme showing C–H activation of an
aliphatic secondary amine 1 to form the aziridine product 2 [19,20].
Orange rings show C–H and C–N bonds in the substrate and the prod-
uct, respectively, indicating the location of the C–H activation.

literature. Very recently we have shown that a priori knowl-

edge in the form of density functional theory level (DFT) mech-

anistic calculations can be used to propose process models and

to perform in silico design of novel flow processes [18]. In this

publication, we present an extension of this methodology, in

which an initial process model is developed through a MBDoE

methodology coupled with an automated self-optimisation flow

system.

This approach was tested on the Pd-catalysed C–H activation

reaction of 1 resulting in the formation of an aziridine 2

(Scheme 1) [19]. The reaction was recently discovered [20] and

its mechanism studied [21] and later proven [18]. A simplified

mechanism is shown in Scheme 2. In the reaction of interest,

the starting material 1, an aliphatic secondary amine, is con-

verted into an intermediate species B in a catalytic first step and
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Scheme 2: A simplified reaction mechanism based on literature [21], showing intermediate B and the side reaction compounds 1∙HOAc and A. The
key step includes the C–H activation. 1: starting material, 1∙HOAc: coordinated starting material, Pd(OAc)2: catalyst, 2: product, PhI(OAc)2: oxidant.

Table 1: Details of information considered as a priori knowledge in this study and source of this knowledge.

A priori knowledge Source

reaction mechanism, concentration constraints of species due to degradation of starting material and product. [21]
Gibbs free energies of reaction, obtained from DFT study. [18]
target values based on best results from previous experimental study. [18]
physical constraints (maximum oxidant concentration to prevent crystallisation, maximum temperature to prevent
excessive catalyst decomposition).

empirical

technical details of experimental set-up (e.g., variance of gas chromatography (GC) used in variance model for
MBDoE, minimum and maximum flow rates).

empirical

consecutively transformed to product 2 in the second step,

which comprises the C–H activation. In addition to the main

reaction pathway, B can form the relatively unreactive resting

state complex A, and compound 1 can also form a coordinated

species 1∙HOAc upon protonation with a molecule of acetic

acid. This limits the formation of A due to reduced concentra-

tion of 1.

Table 1 gives an overview of the a priori knowledge used in this

study. Fast reaction steps were lumped into a single one, con-

taining the critical C–H activation, and described by reaction

rate constant k3 in Scheme 2. Empirical information provided

constraints of process conditions, such as temperature and con-

centration ranges, whereas initial values of kinetic parameters

were estimated based on a DFT model. Further details can be

found in Supporting Information File 1.

Here we demonstrate an MBDoE approach on the basis of the

model structure and the initial model parameters from DFT

calculations and using automated flow experiments. We then

use the obtained process model to develop a surrogate model for

optimisation, and compare the different methodologies: clas-

sical kinetic modeling approach, MBDoE with automated flow

experiments and black-box optimisation in achieving the differ-

ent objectives of the methods.

Results and Discussion
Experimental system for model development
and optimisation in flow
Although a number of experimental systems for self-optimisa-

tion were reported in the literature, this number is fairly small

and very few examples of using flow experiments for model de-

velopment are reported [8,9]. In this study a commercial
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Figure 2: Schematics of the automated continuous-flow system used for model development and ‘black-box’ sequential optimisation.

Vapourtec R2+/R4 system was used with a standard 10 mL

coiled reactor. To save on expensive reagents, reagents and

catalyst were injected using 2 mL sample loops, with the sol-

vent being continuously pumped between the reaction slugs.

The two employed sample loops were filled with the same reac-

tion mixture (further information on sample preparation is given

in Supporting Information File 1) to avoid potential experimen-

tal errors due to inaccuracies of generating mixtures with spe-

cific concentrations by pumps. Laminar flow through long pipes

will necessarily cause dispersion, which dictates the minimum

reaction slug length that can be used. This was determined ex-

perimentally, which also allowed to develop the method of

detection of the reaction slugs (by a flow UV cell) and the

protocol for GC sampling. A schematic depiction of the experi-

mental system is shown in Figure 2.

Physical model generation and refinement
The initial model structure and parameters were taken from the

earlier published DFT study of the reaction [18]. Performing

MBDoE in the process modelling software gPROMS [22]

resulted in a design indicating the experimental conditions, the

reaction times and the number of samples required in each ex-

periment for the estimation of a particular parameter or the

combination of parameters. Table 2 shows the different experi-

ments conducted for estimation of the given parameters. Each

experiment refers to a particular composition of the reaction

mixture, but with various reaction times for each sample within

the experiment. Neither in the MBDoE step for kj,ref nor in the

step for Ea,j could an experiment be designed for the estimation

of all parameters simultaneously. This is likely due to correla-

tions between the parameters, which is common for reaction

networks and consecutive reactions. To overcome this problem,

sophisticated decoupling techniques and special design criteria

considering direct measures of correlation could be used

[23,24]. However, as shown by Franceschini and Macchietto, a

simple design-by-grouping method can also yield reasonable

results [25]. Following this approach experiments were de-

signed for either a single or groups of parameters. Parameters,

which showed a maximum in their normalised local sensitivity

curves in the same time interval were grouped together. This is

reasonable, as a sample taken in this time interval likely yields

sensible data for the estimation of the respective parameters. As

can be seen from Figure S9 (Supporting Information File 1), all

parameters of the same type showed maximum sensitivity in

approximately the same time interval. Hence, all possible com-

binations of single and grouped parameters were tested in the

two MBDoE steps and those with the lowest correlation,

maximum number of included parameters and a t-value larger

than a reference t-value were selected. It is worth noting, that

this method overcomes problems with parameter correlations

during the experimental design for parameter subgroups and the

subsequent estimation. The effects of the neglected parameter

correlation may reoccur during the overall parameter estima-

tion, but can be reduced due to the refinement of the parame-

ters in the subgroups.

The best possible design with minimum analytical effort was

selected. It can be seen from Table 2 that the t-test is successful

for the experiments 1–3. This is not surprising as possible corre-

lations between the parameters are neglected by splitting them

into subgroups or even singles. For the experiments 4, 5 and 6

(Table 2) not all parameters pass the t-test. The best possible ex-
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Table 2: Results of the MBDoE for kinetic parameters, showing the number of samples needed in the experiment and the statistical t-test results.

Experiments Parameter(s) Number of samples t-value tref

1 k0,ref 7 76.19 2.92

2 k2,ref 6 23.36 2.92
3 k3,ref 5 23.36 2.92
4 k0,ref, k2,ref, k3,ref 11 5.34, 0.03, 6.42 1.94
5 Ea,0, Ea,2, Ea,3 11 0.05, 0.04, 2.88 1.94
6 Ea,0, Ea,2, Ea,3 11 0.63, 0.25, 2.33 1.94
7 Ea,0, Ea,2 10 2.79, 17.1 2.02
8 Ea,0, Ea,3 10 3.99, 46.8 1.94

perimental design was selected. Due to failed estimability anal-

ysis, no experiment design included parameters for the reaction

j = 1. Experimental conditions associated with each experiment

sequence are given in Supporting Information File 1, Table S4

and Table S5.

Parameter estimation and comparison of
effort
For the investigated reaction in Scheme 2, Zakrzewski et al.

generated and validated a kinetic model using a classical kinetic

approach [18]. For this they used 38 batch experiments, each

comprising approximately 10 sample points at different reac-

tion times, which in total resulted in more than 400 sample

points used for the estimation of kinetic model parameters. In

contrast to that, we used MBDoE and flow experiments. As Ta-

ble 2 shows, the MBDoE resulted in 8 experiments with a total

of 71 samples required to determine the model parameters.

These numbers highlight the benefit of MBDoE for parameter

estimation, reducing the consumption of materials, cost and

time associated with sample generation. Due to some failed ex-

periments only 64 experimental sample points were used for the

model development.

The parameter estimation was employed to obtain estimates of

the kinetic parameters kj,ref and Ea,j, where j  {0, 1, 2, 3} in a

two-step procedure using standard solver settings in gPROMS.

By applying the initial guesses for the parameters, each experi-

ment was first used to estimate only the parameter for which it

was designed, while keeping the others fixed at their current

values. Afterwards, all experiments were included in an overall

estimation with the parameter values obtained from the previous

estimations as new initial guesses to account for possible pa-

rameter correlations, which were neglected by grouping the pa-

rameters. Even though no experiment design comprised the pa-

rameters for reaction j = 1 specifically, they were still included

in the overall estimation to refine their initial values as much as

possible. To avoid stopping the estimation at undesired local

optima, several such estimation runs were performed. The final

results of the obtained parameter values are shown in Table 3.

The final values of parameters k1,ref and Ea,1 do not differ much

from the initial guesses, which is not surprising as the estima-

bility analysis had already predicted a weak influence of k1,ref

and Ea,1 on the model output, i.e., this cannot be estimated with

precision. However, this was not necessary, as the parameters

do not change the model prediction. Therefore, also the very

large 95% confidence interval can be explained. For all other

parameters, the difference between initial guess and final value

is significant, which might be caused be the simplifications em-

ployed for computing the guesses and the uncertainty of the

DFT calculation in the exponentially amplified van’t Hoff equa-

tion. The 95% confidence intervals for the parameters of reac-

tion j = 0 are both one magnitude smaller than the final parame-

ter values indicating sufficiently low uncertainty and good

significance. The confidence intervals for the parameters of

reaction j {2, 3} are larger than the final parameter value.

However, as the values for kj,ref and Ea,j can only be positive,

this indicates still some level of uncertainty in the parameters

estimates. This uncertainty is further revealed by a comparison

of the t-values and the reference t-values. For the overall esti-

mation of kj,ref it was impossible to attain t-values exceeding the

reference t-value, even though k0,ref comes close. Furthermore,

the predicted t-values from the MBDoE, shown in Table 2,

could not be reached. In the overall estimation of Ea,j three out

of four parameters could not be estimated with high statistical

significance. Only for Ea,0 the t-test was satisfied with a t-value

close to the predicted one in Table 2. The problem of dimin-

ished statistical significance of the estimates is likely due to

practical identifiability issues as the measurement data em-

ployed for the estimation was affected by experimental errors.

Additionally, parameter correlation effects reappeared during

the overall estimation making it more difficult to obtain useful

results.
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Table 3: Results of the parameter estimation showing the final values, initial guesses, 95% confidence intervals (CI) and t-values for each of the 8 pa-
rameters.

Parameter Initial guess Final value Units 95% CI t-values

k0,ref 3.019 3.035 L mol−1 s−1 ±0.396 1.403a

k1,ref 2,551,604 2,728,600 L mol−1 s−1 ±4.817∙1011 2.49∙10−6 a

k2,ref 8,591 16,997 L mol−1 s−1 ±6.282∙105 0.012a

k3,ref 0.001756 0.140378 s−1 ±8.175 0.012a

Ea,0 84,132 128,517 J mol−1 ±5.152∙104 2.495b

Ea,1 45,019 44,941 J mol−1 ±1.709∙1010 2.63∙10−6 b

Ea,2 59,508 20,995 J mol−1 ±3.525∙106 0.006b

Ea,3 98,831 144,942 J mol−1 ±3.517∙106 0.041b

aRefers to tref = 1.725 and brefers to tref =1.688.

Figure 3: Results of experiments from the MBDoE in Table 2, conducted for parameter estimation, and their corresponding simulated model
responses based on the estimated parameters. The only experiments conducted were those calculated by the MBDoE, defined by the sampling times
and recipes suggested. (a) Experiment 4 conducted at a reference temperature of 70 ºC to estimate rate constants. (b) Experiment 8 used for deter-
mining activation energies, at 75 ºC.

Figure 3 shows a comparison of the simulated model response

incorporating the final parameter values vs the experimentally

observed product concentrations for the experiments 4 and 8 of

the MBDoE in Table 2. These show a reasonably good model

fit. Only experiments suggested by MBDoE were conducted to

generate data for parameter estimation. Thus, as the method did

not suggest samples to be taken at reaction times longer than

50 minutes in experiment 4, Figure 3a, or between zero and

24 minutes in experiment 8, Figure 3b, there was no data

collected. In total, 8 such experiments were conducted, four for

each of the two parameter types (shown in Supporting Informa-

tion File 1).

Despite the remaining uncertainty in some of the parameters, in-

dicated by the large 95% confidence intervals, the quality of

model prediction was considered to be good-enough for the

purpose of in silico training of the smart DoE algorithm for

target optimisation. Thus, the final parameter values in Table 3

were accepted and used in the model employed for the subse-

quent in silico target optimisation steps.

Improvement of process conditions using an
a priori model and in silico optimisation
Access to automated experimental systems allows to perform

black-box sequential optimisation using sequential DoE algo-

rithms. However, if a process model is available, there exist two

more options for optimisation: optimisation using the available

process model directly, or optimisation using a surrogate model.

The latter is frequently used in expensive computer experi-

ments, and in the case of large-scale process simulations, when

evaluations of process models is computationally too expensive.

In the case of our test reaction the MBDoE approach enabled us

to develop a reasonably good process model in a small number

of flow experiments. We can use this process model to perform
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Figure 4: Results of in silico iterations of the multi-objective active learner (MOAL) algorithm [26]. Each iteration produces two resulting values, one
for yield and one for the cost function. Targets were 100% for yield and 2,108 k£ h kg−1 for the cost function. Green stars signify experiments that
satisfy the selected targets.

optimisation. Although this model is not expensive to evaluate

we resorted to building a surrogate model, which allowed us to

use an efficient target optimisation algorithm we have demon-

strated earlier [11,26]. Target optimisation is significantly easier

compared to global optimisation as the optimiser is allowed to

stop after finding only few conditions that satisfy a target, com-

pared to the problem of finding a global optimal.

The target functions and their corresponding values in the opti-

misation presented below were the yield, y, of 2 defined in

Equation 2, with a desired value of 100%, and a specific cost

function given in Equation 3 with a target value of

2,108 £ h kg−1. This cost function was selected to account for

the material and energy consumption, and the reaction time with

respect to the amount of product 2. Thus, costel and costi repre-

sent the electricity and material costs, whereas Wel and mi,0

denote the consumed electricity and materials, respectively. The

product output  with

(1)

combines the amount of product 2 with the necessary reaction

time. The cost target value was derived based on a reaction with

the shortest reaction time and highest yield, identified from a

series of prior experiments (see Table S2 and Figure S5 in Sup-

porting Information File 1 for further details) [18].

(2)

(3)

The surrogate model was trained on the 64 experimental points

obtained for model parameter identification. In case of an

unknown mechanism, the experiments for mechanism discovery

could also be included in the training set, which leads to a data-

efficient approach. However, they might not be the most infor-

mative for training the surrogate. The output of the surrogate

model is the suggested next experiment to perform, which was

used as an input to the process model. Upon reaching the targets

in silico after a number of optimisation iterations, the success-

ful input conditions were verified experimentally, to confirm

the predictions.

The in silico results for the optimisation target cost and yields

are shown in Figure 4 and Table 4. It can be seen that out of 174

iterations, several points were very close to the targets and two

optimal sets of conditions satisfy both targets (these iterations

are marked with stars). The simulation results of the two identi-

fied successful sets of conditions both predict a yield of

98.72%. The experimentally obtained yields in the validation of

the two sets of conditions were determined to be >99%, which

is caused by the uncertainty of the applied GC method includ-

ing sample preparation, which lead to ±1% variance in the yield

value. The algorithm is not expected to exhibit fast conver-

gence, since it is exploring the reaction space to develop a better

statistical model. The physical experiments performed there-

after confirmed prediction of the successfully attained target
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Table 4: Experimental conditions and results of the experimental validation of the two successful predictions that met the target specifications.a

Iteration T [ºC] treaction [min] Racid-1 Rcat-1 Yield [%] Cost [k£ h kg−1]

66 107 9 46.1 0.077 >99
(98.72)

1.79
(1.92)

174 101 10 41.4 0.077 >99
(98.72)

1.79
(1.93)

aRacid-1: ratio of the concentrations of acetic acid and compound 1, Rcat-1: ratio of the concentrations of catalyst and compound 1. Values in brackets
are the predicted values by the physical model. Further information regarding the experimental conditions is given in Supporting Information File 1,
Table S6.

Figure 5: Results of the optimisation driven by a statistical algorithm and in the absence of a physical process model. Results of the training set and
of sequential optimisation are shown. Information regarding the experimental conditions is given in Supporting Information File 1, Table S7.

values. Hence, only the successful predicted experimental

conditions Xopt were tested in real experiments, which saved

time, cost and material, otherwise associated with testing false

predicted reactions.

The cost target was more difficult to reach than the yield target,

which was already fulfilled after the first iteration and later for

most of the proposed experiments. This can be seen by the large

fluctuation in the cost values for the proposed experiments over

the 174 iterations. One possible reason might be the structure of

the cost function with many input variables and strong sensi-

tivity with regards to product amount and reaction time. The

reaction conditions shown in Table 4 indicate relatively similar

conditions with respect to temperature, reaction time as well as

acid and catalyst loading, and do not at this stage demonstrate a

case of multimodality.

We have also applied the same target optimisation algorithm for

direct improvement of this chemical system as a ‘black-box’

sequential optimisation. For this approach five experiments

were used as a training set, using Latin Hypercube space filling

algorithm; the results are shown in Supporting Information

File 1, Table S7 (Expt. 1–5). Figure 5 shows results of the

initial set of experiments on the left side of the plot. It is noted

that two of the five training experiments did incidentally meet

the target value for yield at the conditions set. All outputs,

regardless whether they reached the desired target values, were

included into the training set and the algorithm was re-trained

on the updated set once more. This iterative process was con-

ducted six times. After a single iteration, the results of the first

suggested set of conditions were already more promising than

any of the training points. The target for yield has been met, as

perhaps expected as it was optimal for two of the training exam-
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ples as well, and the value for cost has been significantly

reduced, getting closer to the pre-defined target. Whilst it is ob-

served that experiments 7 and 9 have a large margin of error

with regards to the targets, this is due to the exploration func-

tion of the algorithm.

Four of the new suggested experimental conditions achieved

high yields with the accepted accuracy and had lower cost

scores than even the lowest that was found in the initial set. The

recipe at the 6th and final iteration following the training set

corresponds to a temperature of 102 ºC, reaction time of

15 minutes, acid–substrate ratio of 27.85 and catalyst–substrate

ratio of 0.084. With these final conditions, the algorithm

converged as both targets were met simultaneously for the first

time.

Comparison of the two optimisation ap-
proaches
In this work we used the automated flow set-up combined with

MBDoE approach to rapidly develop a good-enough process

model, which was then used to train a surrogate model and

perform a target optimisation. This resulted in two new sets of

reaction conditions which both provided better results than the

ones obtained previously. In our second approach we used the

experimental flow system as a ‘black-box’ and employed the

same statistical target optimisation algorithm to experimentally

find the conditions that satisfy the set targets. In this specific

case the ‘black-box’ target optimisation is extremely efficient

and found suitable reaction conditions within a very small num-

ber of experiments. However, no knowledge about the system

was generated. The approach of using automated flow experi-

ments in combination with MBDoE allows to minimise experi-

mental effort compared to classical kinetic studies, but results in

a process model that can be directly used in optimisation. This

approach is clearly preferred for the cases when a model struc-

ture could be identified. There would be many practical cases

when due to complexity of chemistry it would be unrealistic to

develop a physical model within a reasonable timescale. Then

the ‘black-box’ approach is a viable option.

Conclusion
In conclusion, we present an approach of using model-based

design of experiments, based on the first principles model struc-

ture, in automated flow experiments, and coupling of the

process models with a statistical machine learning based target

optimisation. We demonstrate that MBDoE offers a significant

potential for efficient and rapid generation of process models in

flow experiments. The developed process model enables in

silico training of the optimisation surrogate model and cost

effective determination of process conditions that satisfy the set

performance targets. While this is certainly faster than physical

experiments, we also show that the self-optimisation works well

when trained on a space-filling method to avoid many neces-

sary experiments for model generation. This results in a set of

experiments that reach the pre-defined targets in six iterations,

although it does not provide any process knowledge. Hence, a

combined approach, leading to generation of a surrogate model

and a physical model has unique advantages of rapid optimisa-

tion and simultaneous generation of process knowledge.

Experimental
Reaction system and analysis
All reactions were performed in continuous segmented flow

using the R2+/R4 system by Vapourtec, see Figure 2. The reac-

tion mixture segments and the solvent were pumped through a

10 mL polytetrafluoroethylene (PTFE) tubular reactor and

quenched in an ice bath at the reactor outlet. A minimum seg-

ment volume of 2 mL was found to be necessary to avoid

dispersion effects in the centre of the segment. The segments

were detected using the in-line UV cell, which allowed auto-

matic triggering of the GC (Agilent 6850) to sample the seg-

ment at its centre. The flow GC vial was designed by Daniel

Geier and Ralf Thelen from the Institut für Technische und

Makromolekulare Chemie (ITMC) at RWTH Aachen Univer-

sity and manufactured in-house in Cambridge. GC analysis was

performed for product 2 with an accuracy of ±0.0005 mol L−1.

Due to the decomposition of 1∙HOAc, B and A to 1 during

sampling following a reaction, the reaction mixture was

analysed for species 1 prior to beginning a reaction, with an

accuracy of ±0.0003 mol L−1. All communication between

instruments was custom-coded in LabVIEW and communica-

tion with Vapourtec was via its proprietary Excel interface.

Further details of the set-up and the on-line auto-sampling

strategy, as well as a protocol for sample preparation and exper-

iment execution are provided in Supporting Information File 1.

Materials
Toluene (Sigma-Aldrich, anhydrous, 99.8%), acetic acid

(Sigma-Aldrich, ReagentPlus, ≥99.0%), acetic anhydride

(Sigma-Aldrich, ReagentPlus, ≥99.0%), 1,1,2,2-tetra-

chloroethane (Sigma-Aldrich, reagent grade, ≥98.0%), palla-

dium(II) acetate (Sigma-Aldrich, reagent grade, 98.0%, no

further purification steps were applied, the same batch was used

for all experiments, stored according to manufacturer’s sugges-

tions), (diacetoxyiodo)benzene (Sigma-Aldrich, ≥98.0%) were

all used as received. 3,3,5,5-Tetramethylmorpholin-2-one was

synthesised as described elsewhere [18].

Model development and analysis
A process model was developed on the basis of the previously

discussed reaction mechanism and DFT estimates of the rate

constants (see Table S1, Supporting Information File 1) [18].
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The kinetic model was developed as a well-stirred tank reactor.

The model includes kinetic equations, energy and material

balances as well as constitutive equations. A lumped model was

created as each reaction segment was assumed to be ideally

mixed; thus no excess volume was considered for mixing. As

the reaction takes place in a homogeneous liquid phase, and as

the tube dimensions are small, there was no need to account for

mass transfer effects. For simplicity, the slightly endothermic

nature and hence the heat of reaction for the C–H activation was

neglected.

The temperature effect in the reaction steps shown in Scheme 2

were expressed using the Arrhenius equation in its re-para-

metrised form, shown in Equation 4 and Equation 5 [27,28].

This facilitates subsequent parameter estimation by decoupling

the kinetic parameters of each reaction. Assuming equilibrium

for the three reversible reaction steps in Scheme 2, the 8 kinetic

parameters of interest in this reaction sequence were the refer-

ence reaction rate constants (kj,ref) and activation energies (Ea,j),

where j  {0, 1, 2, 3,} given by Equation 4 and Equation 5).

(4)

(5)

The temperature-dependent volumetric reaction rates  of

compound i in the reaction j were modelled by Equation 6, in

which νi,j are the stoichiometric coefficients of a compound i in

the reaction j, ci denotes the molar concentration of the com-

pound i, kj represents the reaction rate constant of the reaction j

and ni,j gives the order of the reaction. All reaction steps in

Scheme 2 were found to be first order with respect of the

participating compounds, except for the oxidant PhI(OAc)2

which is of zero-order dependency [21].

(6)

In addition, the overall and the component mole balances,

Equation 7 and Equation 8, were written for the process model,

where V denotes the reaction volume.

(7)

(8)

The balances were constructed for a single reaction mixture

segment, which was assumed to behave as a batch reactor, as

samples were taken in the dispersion-free centre of the segment.

For the purpose of calculating the cost associated with heating

the system, a steady state energy balance, Equation 9, was

established.

(9)

were ηheat denotes an overall efficiency of conversion of elec-

trical into thermal energy of the reaction mixture segment. This

efficiency was determined experimentally for the employed

reactor system by measuring the electrical power input to the

Vapourtec heating system needed to increase the temperature of

a reaction mixture stream with a set flowrate and of known

composition, thus with known molar flow and heat capacity,

from ambient temperature of approx. 20 °C to a reaction tem-

perature of 70 °C. By inserting these values into Equation 10,

the value for the energy-conversion efficiency was calculated

and kept constant.

(10)

To complete the process model, simple constitutive equations

were applied and initial parameter values were computed. The

latter were identified based on Gibbs free energies of reaction

for the chemical system, which were obtained from a priori

DFT calculations with an accuracy of ±7 kJ mol−1 [18]. These

values were related to kinetic parameters through the exponen-

tial van‘t Hoff equation.

Subsequently, the model was investigated and tested for identi-

fiability to ensure its structural soundness, i.e., that it can be

used to uniquely determine its parameters. This was done using

an established method, detailed elsewhere [29,30]. It is worth

noting that structural identifiability is tested under the assump-

tion of noise-free measurement data and no uncertainty of the

model. Thus, it does not necessarily imply practical identifia-

bility as the measurement data for the parameter estimation is

usually superimposed by noise and errors [31]. Thereafter, an

estimability analysis, based on visual inspection of the local

dynamic sensitivity curves [32], confirmed that all parameters
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except those for reaction with j = 1 can be determined with

sufficient accuracy. For this reaction step, low sensitivity of the

measurable quantity, concentration of compound 2, was found

(see Supporting Information File 1, Figure S9 for further

details). The local dynamic sensitivity curves of the remaining

parameters were used to identify the time intervals with the

maximum sensitivity of the parameters (see Supporting Infor-

mation File 1, Figure S9), indicating reasonable sample points

to obtain sensible measurement data for parameter estimation.

The physical model was implemented in gPROMS. The D-opti-

mality criterion was selected to refine the model using the

model-based design of experiments (MBDoE) and parameter

estimation suite of gPROMS by employing standard solver

settings. Further details on this procedure are given in Support-

ing Information File 1 together with constraints employed for

the experiment control variables in the MBDoE optimisation

problem (Equations S8–S21, Supporting Information File 1).

The experimental design and parameter estimation strategy

included two steps. In the first step, experiments were designed

at a reference temperature Tref = 70 ºC to eliminate Ea,j as a pa-

rameter in each reaction j, see Equation 4 and Equation 5). A

t-test was used as a statistical method for judging the increase in

precision of the predicted parameter and, hence, the statistical

significance of the estimates which is attained if the predicted

t-value exceeds a reference value tref. The performed experi-

ments would therefore generate data to enable estimation of the

reference reaction rate constants kj,ref independent of Ea,j. After

these parameters have been determined to sufficient accuracy,

they were kept constant and experiments were designed at tem-

peratures different from Tref in the second step to obtain data for

the subsequent estimation of Ea,j. The combination of MBDoE

and subsequent parameter estimation was repeated twice in both

steps to increase parameter precision, whilst keeping the experi-

mental effort low. This was necessary to ensure good parame-

ter improvement in the case of poor initial parameter guesses.

Algorithm for statistical optimisation
One key element of the proposed framework for self-optimisa-

tion of reaction conditions is the statistical multi-target optimi-

sation method. For this purpose, the multi-objective active

learner (MOAL) algorithm coded in the numerical computing

environment MATLAB (v.2015b) was adopted, which

combines Gaussian processes as a surrogate model with the

concept of mutual information and a genetic algorithm [26]. To

apply it to the chemistry under investigation, the algorithm was

provided with specified targets Ytarget for the optimisation and

defined experiment design variables X = [T, treaction, c1,0,

cAcOH,0, ccat,0] as the degrees of freedom. The latter were

bounded by the corresponding constraints (see Supporting

Information File 1 for details). A set of 2,000 randomly gener-

ated candidate solutions, uniformly distributed within the

allowed design space was employed, because the algorithm

works with discrete evaluation techniques for the optimisation.

The initial training set [Xtr, Ytr(Xtr)] contained the input vari-

ables Xtr and measurements of the corresponding target values

Ytr(Xtr), which were adopted from the MBDoE approach. It was

updated continuously, so that at each iteration of the algorithm,

a new training point was added. Binary Gaussian process classi-

fication was included into the algorithm to account for feasible

and infeasible solutions in X, hence learning the promising

regions of the design space and evolving some internal process

knowledge stepwise with each new iteration. An infeasible

solution could occur if an experiment fails in the laboratory.

Thus, each point in the training was equipped with one more

value, providing information on its feasibility (1) or infeasi-

bility (−1). The current limitation of this approach is that it does

not automatically distinguish if the experiment failure identifies

the region of design space where the specific reaction is not

working, or the failure was due to a random fluke and the same

experiment, if repeated, would be successful. There is a way of

dealing with this problem, which we will implement, when the

algorithm will be published.

After classification of the candidate solutions and training sam-

ples, the Gaussian process was trained by fitting the so called

hyperparameters of its covariance and likelihood functions by

maximising the marginal likelihood with a conjugate gradient

optimiser. In this way, a statistical surrogate model was created

to provide an approximated response surface for the underlying

problem of investigation. This response surface was used to

evaluate the feasible candidate solutions and subsequently iden-

tify a best solution  with corresponding experimental

conditions . As only discrete candidate solutions were eval-

uated by this method, the Non-dominated Sorting Genetic Algo-

rithm-II (NSGA-II) was employed for perturbation of

 to explore the neighbourhood for further refinement

of the generated solution. The resulting combination of input

and output conditions were subsequently assessed against the

targets. If the targets were attained within acceptable tolerance,

the results were accepted and the statistical algorithm

converged. Otherwise, the results were fed back into the

training set and a new iteration was started.

In silico optimisation
The in silico optimisation process was initiated by first training

the MOAL algorithm (with the data generated for the purpose

of parameter estimation of the physical model described above).

This enables the algorithm to construct a statistical surrogate

model and suggest a set of experimental conditions which might

give results that are closer to the targets. This set is then fed into
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Table 5: Nomenclature.

Symbol Definition Units

ηheat heat efficiency –
νi,j stoichiometric coefficient of component i in reaction j –
A pre-exponential factor in Arrhenius equation case dependent

cost investigated target value ₤ h kg−1

costel, costi cost of electricity, cost of material component i case dependent
ci,0 initial component concentration mol L−1

average molar heat capacity J mol−1 K−1

Ea,j activation energy of reaction j J mol−1

kj,ref reference rate of reaction in reaction j case dependent
mi, mi,0 mass of component i, initial mass of component i kg s−1

ni, n0 number of moles of component i, total number of moles initially mol
Pel,Vapoutec electrical power uptake of Vapourtec flow system W

Qheat heat J
R universal gas constant J mol−1 K−1

reaction rate of component i in reaction j mol L−1 s−1

t, treaction time, reaction time s, min
T, Tref, T0 temperature, reference temperature, initial temperature °C

V volume of system L
Wel electrical work J
X experiment design variables –

the physical model to predict what outputs are expected as

though the experiment had been conducted. This process is

repeated until the required tolerance is reached. A margin of

tolerance was included, such that results within 10 and 1.5% of

the target values for cost and yield, respectively, were taken as

successful, due to the expected difficulty in achieving those

targets. Subsequently, the successful reaction conditions found

in silico were tested experimentally. In the case of failure, the

experimental results were fed back into the algorithm and the

target optimisation loop starts again. Otherwise, the algorithm

converged and suitable experimental conditions were identified.

In principle, standard optimisation approaches employing the

physical model directly to identify optimum operating condi-

tions could be used, but would give poor results in case of

uncertainty and restricted validity of the physical model. How-

ever, by applying the MOAL algorithm, technical difficulties

regarding multi-objective global optimisation can be overcome.

Furthermore, the proposed optimisation procedure can deal with

potential uncertainties and restricted validity in the physical

model. This is achieved by the machine learning functionalities

of the MOAL algorithm, which retrain the algorithm not just on

the physical model but also on unsuccessful experiments, erro-

neously predicted as suitable by the physical model. Thus, it

obtains information beyond the capabilities of the physical

model. An additional point is, that the MOAL algorithm proved

to be especially suited for the detection of multiple possible

solutions to indicate multimodality, which is challenging for

standard optimisation methods, but can yield valuable informa-

tion in the current case.

Statistical closed-loop optimisation
Statistical target optimisation was performed using the MOAL

algorithm. Latin hypercube sampling (LHS) was used to discre-

tise the experimental space initially. An overview of this

sampling strategy is laid out for one variable in Figure S10 in

Supporting Information File 1. A uniform distribution was

taken for the input variables and hence the cumulative distribu-

tion function was linear. In this case k is five and N was the

number of initial experiments to be conducted, which was

decided to be five. This number of initial training experiments

was selected as in the previous application of the MOAL algo-

rithm for laboratory optimisation [11], the same number of

training samples was applied for an optimisation of two targets,

but with a 14 dimensional design space, instead of five dimen-

sions in the current case. Still, the algorithm converged within

17 iterations (including the five training experiments). Hence,

we assumed, that for the current work with less design space

dimensions, the algorithm would learn the response surface as

fast as it was the case for its previous application.
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Table 5: Nomenclature. (continued)

proposed suboptimal inputs –

proposed optimal inputs –

Xtr input training matrix –
y yield %

Ytarget target outputs matrix –

proposed suboptimal outputs –

proposed optimal outputs –

Ytr output training matrix –

Supporting Information
Supporting Information File 1
Details of experimental set-up and protocols, table of a

priori data taken from our previous study, details of model

development, MBDoE results, and LHS results.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-13-18-S1.pdf]
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