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Double propensity-score
adjustment: A solution to design
bias or bias due to incomplete
matching

Peter C Austin1,2,3

Abstract

Propensity-score matching is frequently used to reduce the effects of confounding when using

observational data to estimate the effects of treatments. Matching allows one to estimate the average

effect of treatment in the treated. Rosenbaum and Rubin coined the term ‘‘bias due to incomplete

matching’’ to describe the bias that can occur when some treated subjects are excluded from the

matched sample because no appropriate control subject was available. The presence of incomplete

matching raises important questions around the generalizability of estimated treatment effects to the

entire population of treated subjects. We describe an analytic solution to address the bias due to

incomplete matching. Our method is based on using optimal or nearest neighbor matching, rather than

caliper matching (which frequently results in the exclusion of some treated subjects). Within the sample

matched on the propensity score, covariate adjustment using the propensity score is then employed to

impute missing potential outcomes under lack of treatment for each treated subject. Using Monte Carlo

simulations, we found that the proposed method resulted in estimates of treatment effect that were

essentially unbiased. This method resulted in decreased bias compared to caliper matching alone and

compared to either optimal matching or nearest neighbor matching alone. Caliper matching alone

resulted in design bias or bias due to incomplete matching, while optimal matching or nearest neighbor

matching alone resulted in bias due to residual confounding. The proposed method also tended to result

in estimates with decreased mean squared error compared to when caliper matching was used.
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1 Introduction

There is an increasing interest in estimating the causal effects of treatment using observational or
nonrandomized data. Matching is an attractive analytic method to estimate the effect of treatments,
interventions, and exposures. In matching, each treated or exposed subject is matched to one or
more untreated or control subjects. Outcomes are then compared between treatment groups in the
matched sample. When using conventional matching methods, one is estimating the average
treatment effect in the treated (ATT): the effect of treatment in the sample or population of all
subjects who were actually treated.1

Dorn suggested that when designing an observational study, one should ask ‘‘how would the
study be conducted if it were possible to do it by controlled experimentation?’’, while Rubin believes
that this question defines the objective of an observational study.2 We motivate this paper by
highlighting a consequence of the design of randomized controlled trials (RCTs) and a statistical
method commonly used in the analysis of RCTs. First, randomization results in estimates of
treatment effect that are internally consistent and unbiased. Because of the use of randomization
there will, in expectation, be no systematic differences in baseline characteristics between treatment
groups. Therefore, differences in outcomes between treatment groups represent an unbiased estimate
of the effect of treatment in the population defined by the inclusion and exclusion criteria of the
study. Furthermore, the inclusion and exclusion criteria of the study explicitly define the population
to which the estimand applies. Thus, the estimate is expected to be unbiased and applies to a clearly
defined population. Second, while a crude comparison of outcomes between treatment groups will,
on average, result in unbiased estimation of the effect of treatment in RCTs, several authors have
suggested that estimates of the effect of treatment derived from RCTs be adjusted for baseline
covariates.3,4 Covariate adjustment has two beneficial consequences: first, it permits for the
elimination of residual confounding due to random imbalance in prognostically important
covariates; second, it results in an analysis with increased statistical power.3 Furthermore, when
outcomes are continuous and a linear model is used for covariate adjustment, the standard error of
the estimated treatment effect will decrease compared to the crude or unadjusted estimator (while the
converse will be observed when a generalized linear model is used for adjustment).3

We want to address these two design and analytic issues in the context of observational studies
that use propensity-score matching to estimate the effect of treatment. The first issue relates to the
internal consistency and generalizability of the estimated treatment effect. Rosenbaum and Rubin
coined the term ‘‘bias due to incomplete matching’’ to refer to the bias that can occur when some
treated subjects are excluded from the final matched sample because no appropriate control or
untreated subject was found for those treated subjects.5 The occurrence of incomplete matching
raises important issues around the generalizability of the estimated treatment effect. When
incomplete matching occurs, frequently it is those treated subjects who are the most likely
candidates for therapy that are excluded from the matched sample (due to an insufficient number
of untreated subjects who resemble the most likely candidates for therapy). Thus, one is attempting
to estimate the effect of treatment in all subjects who were treated, using a sample from which those
subjects who most resemble ideal or typical candidates for therapy were excluded. Matching on the
propensity score was intended as a solution to the bias due to incomplete matching that occurred
when matching on sets of individual variables (e.g. matching directly on age, sex, blood pressure,
heart rate, etc.).5 However, in practice, incomplete matching occurs frequently in studies that use
propensity-score matching. Stürmer et al. conducted a systematic review of studies published prior
to 2004 that used propensity-score methods.6 In this review, of 43 studies that used propensity-score
matching and that reported the percentage of treated subjects included in the matched sample, the
median matching rate was 91%, while the 25th and 75th percentiles were 66% and 97.5%,
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respectively, while the lowest reported matching rate was 26%. Thus, in 25% of published studies
that used propensity-score matching, over one-third of treated subjects were excluded from the
matched sample. Some readers, physicians, and decision-makers could question the
generalizability of the conclusions about treatment efficacy in published studies in which a high
proportion of treated subjects were excluded from the matched sample. Furthermore, while the
inclusion and exclusion criteria of the study allow one to succinctly characterize the population
about which one wishes to make inferences, the exclusion of some treated subjects makes it much
more difficult to describe the population to which the estimand actually applies. The second issue is
motivated by the use of covariate adjustment in RCTs. Matching on the propensity score balances,
in expectation, the distribution of measured baseline covariates between treatment groups. However,
as with RCTs, in any particular implementation of propensity-score matching, it is possible that
residual imbalance of measured baseline covariates will be observed. In particular applications, there
may remain the need to remove the effects of residual confounding that persists despite the use of
propensity-score matching.

There are many algorithms for matching subjects on the propensity score. Optimal matching
forms matched pairs of treated and untreated subjects so as to minimize the average within-pair
difference in the propensity score.7 Nearest neighbor matching (NNM) matches each treated subject
to the untreated subject with the nearest propensity score.5,7 In the biomedical literature, matching is
usually done without replacement, so that each control or untreated subject is included in at most
one matched set. Nearest neighbor caliper matching is a refinement of the previous algorithm. A
caliper distance is specified prior to the implementation of the algorithm. Only those matched pairs
whose propensity scores differ by less than the specified caliper distance are included in the final
matched sample. The use of caliper matching can result in the exclusion of some treated subjects
because of a lack of untreated subjects with propensity scores close to those of some of the treated
subjects. Rosenbaum and Rubin described the degree of bias reduction associated with different
choices of caliper widths,5 while a more recent study determined optimal caliper widths in different
scenarios.8

The choice between caliper matching and either optimal or NNM likely reflects a variance-bias
trade-off.9 Caliper matching results in greater reduction in the bias due to confounding variables,
because only matches that meet a certain quality criterion are included. However, caliper matching
can result in a diminished sample size due to the possible exclusion of some treated subjects from the
matched sample. Furthermore, the use of nearest neighbor or optimal matching may result in
estimates with greater generalizability, since they do not suffer from incomplete matching.
However, these two methods are also likely to result in estimates with greater bias due to
confounding, due to the absence of a restriction on the quality of matches.

The objective of the current paper is to describe a method for reducing bias when using optimal or
NNM. The motivation of the approach is twofold. First, to reduce bias due to incomplete matching
(or generalizability bias) compared to when simple caliper matching is used; second, to reduce bias
due to residual confounding compared to when simple NNM or simple optimal matching is used.
The approach is based on using a regression model estimated in the untreated subjects in the
matched sample to impute the missing potential outcomes for those subjects who were ultimately
treated, had they not been treated. The paper is structured as follows: in Section 2, we describe the
proposed method, which we refer to as double propensity-score adjustment. In Section 3, we
describe an extensive series of Monte Carlo simulations to examine the performance of this
method for estimating linear treatment effects. In particular, we examine bias, variance of the
estimated treatment effect, and mean squared error (MSE). In Section 4, we present the results of
these Monte Carlo simulations. In Section 5, we present a case study in which we illustrate the
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application of these methods when estimating the effect of drug prescribing on mortality in a cohort
of patients discharged from hospital with a diagnosis of acute myocardial infarction (AMI). Finally,
in Section 6, we summarize our findings and place them in the context of the existing literature.

2 Double propensity score adjustment

In this section we describe a method for reducing bias due to residual confounding when using
optimal or NNM. The method is based on forming a matched sample using one of these two
matching algorithms. Covariate adjustment using the propensity score is then used to minimize
the effects of any residual confounding. We begin by providing basic background definitions and
notation. Our proposed approach uses a similar framework to a biased-corrected matching
estimator proposed by Abadie and Imbens.10

2.1 The potential outcomes framework

In a setting with two possible treatments, the potential outcomes framework assumes that the ith
subject has a pair of potential outcomes: Yi(0) and Yi(1), the outcomes under the control and the
active treatment, respectively.11 However, each subject receives only one of the two treatments. Let
Z denote the treatment received (Z¼ 0 for control treatment versus Z¼ 1 for active treatment).
Thus, only one outcome, Yi, is observed for the ith subject: the outcome under the treatment
received.

2.2 Average treatment effects (ATEs)

For the ith subject, the effect of treatment is defined to be Yi(1) – Yi(0): the difference between the
two potential outcomes. The ATE is defined as E[Yi(1) – Yi(0)], the average effect of treatment in an
entire sample or population.1 A related measure of effect is the average treatment effect for the
treated (ATT), E Y 1ð Þ � Y 0ð ÞjZ ¼ 1½ �, which is the average effect of treatment in those subjects who
ultimately received the treatment.1 It is the latter effect that is the focus of the current study.

2.3 The propensity score

In an observational study of the effect of treatment on outcomes, the propensity score is the
probability of receiving the treatment of interest conditional on measured baseline covariates:
e ¼ Pr Z ¼ 1jXð Þ, where X denotes the measured baseline covariates.12 Four different propensity
score methods have been described for reducing the effects of confounding when estimating
treatment effects using observational data: propensity-score matching, stratification on the
propensity score, covariate adjustment using the propensity score, and inverse probability of
treatment weighting (IPTW) using the propensity score.12–14 As noted earlier, propensity-score
matching allows one to estimate the ATT. The reader is referred elsewhere for a broader
overview of propensity-score methods.15,16 In conventional covariate adjustment using the
propensity score, an appropriate regression model is used to regress the outcome on two
variables: the propensity score and an indicator variable denoting treatment status. The
regression coefficient for the treatment status indicator is used as the measure of treatment effect.
Thus, if outcomes were continuous, a linear regression model would be used to regress the outcome
on the propensity score and an indicator variable denoting treatment status. The regression
coefficient for the treatment status indicator variable would denote the mean change in the
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continuous outcome due to treatment. If the outcomes were binary, a logistic regression model
would be used, and the resultant odds ratio would be used as the measure of treatment effect.
Difficulties with this approach when outcomes are binary have been described elsewhere.17,18

2.4 Double propensity-score adjustment

Propensity score methods allow one to obtain estimates of the potential outcomes under the active
treatment or exposure and under the control treatment or exposure. When using propensity-score
matching, for the ith treated subject, one can estimate Yi(1) by the observed outcome for the ith
treated subject. Similarly, one can estimate Yi(0) by the observed outcome for the control subject
that was matched to the ith treated subject. Caliper matching imposes a bound on the quality of
matches, so that matched treated and untreated subjects are required to have a propensity score that
can differ by no more than a maximum quantity (the caliper distance). However, neither optimal
matching nor NNM requires such a constraint. Thus, matched subjects may be more dissimilar
when either of these two matching algorithms are used compared to when caliper matching is
employed.

In our proposed method, propensity-score matching, using either optimal matching or nearest
neighbor, is the first propensity-score method that is implemented. This will result in the matching of
all treated subjects, thus avoiding generalizability bias or bias due to incomplete matching.
Covariate adjustment using the propensity score is then used within the matched sample to
reduce any residual confounding due to any remaining systematic differences between treated and
untreated subjects in the matched sample. Our implementation of covariate adjustment using the
propensity score is different than its typical implementation. Instead of implementing covariate
adjustment using the propensity score and then using the estimated regression coefficient for an
estimate of the effect of treatment, we use a univariate regression model with the propensity score to
impute the missing potential outcomes for the treated subjects. Similar to Abadie and Imbens,10 we
define two different regression models: mw xð Þ ¼ E Y wð ÞjX ¼ x½ �, for w¼ 0 and 1. These functions
model the two potential outcomes as a function of the baseline covariate vector X. As noted by
Imbens, given the assumption of no unmeasured confounders, we have that mw xð Þ ¼ E Y wð ÞjX ¼½

x� ¼ E Y wð ÞjW ¼ w,X ¼ x½ � ¼ E YjW ¼ w,X ¼ x½ �.1 Thus, by restricting the sample to either the
treated or untreated subjects, one can estimate the expected potential outcome by regressing the
observed outcome on the observed baseline covariates. As suggested by the above notation, a
regression model appropriate for estimating the expected response should be used. Thus, if
outcomes were continuous, a linear model would be used, whereas if outcomes were binary, a
logistic regression model would be an appropriate choice.

Using the untreated subjects in the matched sample, one can estimate the m0(x) regression model,
with the estimated propensity score as the single baseline covariate. One can then apply this
estimated regression model to the set of treated subjects in the matched sample, to estimate Ŷið0Þ
for the ith treated subject. The effect of treatment on the ith treated subject can then be estimated as:
Ŷi 1ð Þ � Ŷi 0ð Þ ¼ Yi � Ŷi 0ð Þ ¼ Yi �m0 eið Þ, where we have replaced the potential outcome under
treatment for the ith treated subject with the observed outcome. We have also replaced the
observed outcome for the untreated subject to whom the ith treated subject was matched with the
estimated potential outcome obtained using m0 evaluated at the value of the propensity score value
of the ith treated subject. The ATT can then be estimated as ATT ¼ 1

K

PK
i¼1 Yi �m0 eið Þð Þ

¼ 1
K

PK
i¼1 Yi �

1
K

PK
i¼1 m0 eið Þ, where the matched sample consists of K matched pairs.

One could modify the proposed method by using the regression model m1(x) to estimate the
potential outcomes under treatment (Y(1)) for each treated subject. However, this modification is
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unnecessary. For conventional parametric regression models (such as linear or logistic regression),
the mean predicted outcome will be equal to the mean observed outcome. Thus, using m1(x) will
result in the same estimator as using the observed outcomes for the treated subjects.

Thus, if outcomes are continuous, we fit two separate univariate linear regression models in the
matched sample. First, using only the untreated subjects in the matched sample, a linear model is fit,
in which the continuous outcome is regressed on the estimated propensity score. Second, using only
the treated subjects in the matched sample, a linear model is fit, in which the continuous outcome is
regressed on the estimated propensity score (these linear models are described earlier as m0(x) and
m1(x), respectively). The first linear model (m0(x)) is then applied to each treated subject in the
matched sample to estimate their expected potential outcome, conditional on their estimated
propensity score, had they not been treated (their counterfactual exposure). If outcomes are
binary, we would fit two separate univariate logistic regression models in the matched sample.
First, using only the untreated subjects in the matched sample, a logistic regression model is fit,
in which the binary outcome is regressed on the estimated propensity score. Second, using only the
treated subjects in the matched sample, a logistic regression model is fit, in which the binary outcome
is regressed on the estimated propensity score (these logistic linear models are described earlier as
m0(x) and m1(x), respectively). The first logistic regression model (m0(x)) is then applied to each
treated subject in the matched sample to estimate their expected potential outcome, conditional on
their estimated propensity score, had they not been treated (their counterfactual exposure). Note
that the imputed counterfactual potential outcome will be a proportion when outcomes are binary.
It is important to note that we are not using including a treatment status indicator variable along
with the propensity score in the logistic regression model and using the odds ratio as the measure of
treatment effect. Instead, we are using the univariate logistic regression model to predict or estimate
the missing potential outcome for treated subjects. If outcomes were integer counts, a Poisson
regression model could replace the univariate logistic regression model and be used for imputing
or estimating the missing counterfactual outcomes.

Note that we estimated the m0(x) regression model using the untreated subjects in the matched
sample, rather than using all untreated subjects in the original (unmatched) sample. While the latter
choice could have been used, we think that fitting the model in a sample in which the propensity
score had a similar distribution to that of the treated subjects would result in more accurate
estimation of the potential outcomes under absence of treatment at values of the propensity score
equal to those of the treated subjects.

3 Monte Carlo simulations—Methods

We conducted an extensive series of Monte Carlo simulations to examine the performance of double
propensity-score adjustment. We compared its performance with four other methods: (i)
conventional NNM, (ii) conventional optimal matching, (iii) conventional caliper matching, (iv)
caliper matching with subsequent covariate adjustment using the propensity score. We assessed
the performance of each method using three criteria: bias in estimating linear treatment effects
(difference in means and risk differences), variability of the estimated treatment effect and MSE.

The design of our Monte Carlo simulations was based on a previous study that examined the
performance of different caliper widths for use with greedy nearest neighbor caliper matching.8 As in
the prior study, we assumed that there were 10 covariates (X1–X10) that affected either treatment
selection or the outcome. The treatment-selection model was logit pi,treat

� �
¼ �0,treat þ �Lx1,i

þ�Lx2,i þ �Mx4,i þ �Mx5,i þ �Hx7,i þ �Hx8,i þ �VHx10,i. For each subject, treatment status (denoted
by z) was generated from a Bernoulli distribution with parameter pi,treat.
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For each subject we generated both a continuous and a dichotomous outcome. Outcomes were
generated so that there was a heterogeneous treatment effect, so that bias would be induced due to
incomplete matching. The continuous outcome was generated using the following linear model

yi ¼ �0 þ �treat,continuouszi þ �Lx2,i þ �Lx3,i þ �Mx5,i þ �Mx6,i þ �Hx8,i þ �Hx9,i þ �VHx10,i

þ �Lzix2,i þ �Mzix5,i þ �Hzix8,i þ �Hzix9,i þ �VHx10,i þ "i,

where "i � N 0, � ¼ 3ð Þ. By including interactions between the four confounding variables (those
variables that affect both treatment selection and the outcome), we introduced a heterogeneous
treatment effect. This was done so that incomplete matching would result in biased estimation of
the ATT. We selected the value of �treat,continuous so that the ATT would be equal to 1. The required
value of �treat would depend on the treatment-selection model, the prevalence of treatment, and the
distribution of the baseline covariates. In a given scenario, a bisection approach was used to
determine the value of �treat,continuous that resulted in an ATT of 1.

For each subject we also generated a dichotomous outcome using the following logistic model

logit pi,outcome

� �
¼ �0,outcome þ �treat,binaryzi þ �Lx2,i þ �Lx3,i þ �Mx5,i þ �Mx6,i þ �Hx8,i

þ �Hx9,i þ �VHx10,i þ �Lzix2,i þ �Mzix5,i þ �Hzix8,i þ �Hzix9,i þ �VHx10,i

Abinary outcomewas then generated for each subject from aBernoulli distribution with parameter
pi,outcome. The intercept, �0,outcome, in the logistic outcomes model was selected so that the marginal
probability of the outcome if all subjects were untreated would be 0.10. The conditional log-odds
ratio, �treat,binary, was selected using methods described elsewhere so that absolute risk reduction in
treated subjects due to treatment would be 0.0219 (i.e. the true ATT was �0.02). Briefly, for a given
value of �treat,binary, the marginal probability of the outcome in all treated subjects, if all these subjects
were untreated, and the marginal probability of the outcome in all treated subjects if all these subjects
were treated were computed. The risk difference is the difference between these two marginal
probabilities. An iterative process was used to determine the value of �treat,binary that would result
in the desired risk difference (�0.02). Because we were simulating data with a desired ATT, the value
of �treat,binary would depend on the proportion of subjects that were treated.

The regression coefficients �L, �M, �H, and �VH, were set to log(1.25), log(1.5), log(1.75), and
log(2), respectively. Thus, there were two covariates that had a weak effect on each of treatment
selection and outcomes, there were two covariates that had a moderate effect on each of treatment
selection and outcomes, two covariates that had a strong effect on each of treatment selection and
outcomes, and one covariate that had a very strong effect on both treatment selection and outcomes.

Our Monte Carlo simulations had a complete factorial design in which the following two factors
were allowed to vary: (i) the distribution of the 10 baseline covariates; (ii) the proportion of subjects
who were treated. We considered five different distributions for the 10 baseline covariates: (a) the 10
covariates had independent standard normal distributions; (b) the 10 covariates were from a
multivariable normal distribution. Each variable had mean zero and unit variance, and the pair-
wise correlation between variables was 0.25; (c) the first five variables were independent Bernoulli
random variables each with parameter 0.5, while the second five variable were independent standard
normal random variables; (d) the 10 random variables were independent Bernoulli random
variables, each with parameter 0.5; (e) the 10 random variables were correlated Bernoulli
random variables. In this setting, 10 continuous variables were generated as in scenario (b). Each
continuous variable was then dichotomized at the population mean (zero). For the second factor, we
considered five different levels for the proportion of subjects that were treated: 0.05, 0.10, 0.20, 0.25,
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and 0.33. The value of �0,treat in the treatment-selection model was modified to obtain the desired
prevalence of treatment in the simulated datasets. We thus considered 25 different scenarios: five
different distributions for the baseline covariates � five levels of the proportion of subjects who were
treated (0.05, 0.10, 0.20, 0.25, and 0.33).

In each of the 25 scenarios, we simulated 1000 datasets, each consisting of 10,000 subjects.
In each simulated dataset, we estimated the propensity score using a logistic regression model to
regress treatment assignment on the seven variables that affect the outcome. This approach was
selected as it has been shown to result in superior performance compared to including all measured
covariates or those variables that affect treatment selection.20 When using nearest neighbor
matching and optimal matching, subjects were matched on the propensity score. When using
caliper matching, subjects were matched on the logit of the propensity score using a caliper of
width equal to 0.2 of the standard deviation of logit of the propensity score. This caliper width
was selected as it has been shown to result in estimates with the lowest MSE compared to the use of
other caliper widths.21

In each of the three matched sets (optimal matching, NNM, and caliper matching), the treatment
effect was estimated as E[YjZ¼ 1] – E[YjZ¼ 0]. Thus, both a difference in means (continuous
outcome) and a risk difference (binary outcome) were estimated in each propensity-score matched
sample. We refer to these estimates as the crude matched estimators.

In each of the three matched sets, we then used the method described in Section 2 to minimize the
effects of residual confounding. This was done in two different ways. First, the regression model m0

was estimated using only the estimated propensity score (i.e. double propensity-score adjustment).
Second, the regression model m0 was estimated using the seven covariates that affected the outcome.
We refer to these two approaches as PS adjust and covariate adjust, respectively.

Let � denote the true treatment effect (1 and �0.02 for continuous and binary outcomes,
respectively), and let �i denote the estimated treatment effect in the ith simulated sample
(i¼ 1, . . . , 1000). Then, the mean estimated treatment effect was estimated as 1

1, 000

P1,000
i¼1 �i and

MSE was estimated as 1
1, 000

P1,000
i¼1 �i � �ð Þ

2.

4 Monte Carlo simulations—Results

The mean estimated linear treatment effects are reported in Figures 1 (continuous outcome) and 2
(binary outcome). Each figure consists of five panels, one for each of the five distributions of the
baseline covariates. Within each panel, there is one line for each combination of prevalence of
treatment (0.05, 0.1, 0.2, 0.25, and 0.33) and matching method (optimal matching versus NNM
versus caliper matching). On each line there are three different plotting symbols representing the
three estimated treatment effects (the crude matched estimator, the matched and propensity-score
adjusted estimator, and the matched and covariate adjusted estimator). The true treatment effects of
1 and �0.02 (for the continuous and binary outcomes, respectively) are denoted by a vertical line in
each of the five panels.

We define two different types of bias to facilitate the discussion of the results of the simulations.
First, confounding bias is bias in estimating the treatment effect due to residual differences in
baseline characteristics between treatment groups. Second, target bias is bias in estimating the
ATT due to the exclusion of some treated subjects from the matched sample. Thus, bias has been
introduced due to the fact that the matched treated subjects are a nonrepresentative sample of the set
of all treated subjects. Due to the presence of a heterogeneous treatment effect, the estimated
treatment effect using the matched treated subjects differs systematically from the effect of
treatment in the entire treated population.
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When outcomes were continuous and at least some of the baseline covariates were continuous,
several observations merit comment. First, when using crude NNM or optimal matching, bias
increased as the prevalence of treatment increased. Since all treated subjects were included in the
matched samples, the observed bias is entirely confounding bias due to residual differences between
treated and untreated subjects in the matched sample. Second, when using crude caliper matching,
bias increased as the prevalence of treatment increased. Third, when using caliper matching,
subsequent covariate adjustment (using either the propensity score or the covariates individually)
resulted in essentially unchanged estimates of treatment effect compared to when crude caliper
matching was used. Taken together, these last two observations suggest that the bias observed
when using crude caliper matching is almost entirely due to target bias, rather than confounding
bias. Fourth, when using either NNM or optimal matching, subsequent covariate adjustment (using
either the propensity score or the covariates individually) resulted in estimates of the ATT that had
minimal bias. This reinforces our earlier conclusion that the observed bias when using either of these
matching algorithms was confounding bias, rather than target bias. Subsequent adjustment using
the covariates individually tended to eliminate slightly more bias than adjusting for the propensity
score alone; however, differences were minor. Fifth, all methods resulted in essentially unbiased
estimation when the prevalence of treatment was 5 or 10%. When all of the covariates were binary,
the magnitudes of the observed biases were diminished compared to settings in which some of the
covariates were continuous. When the covariates were independent Bernoulli random variables, then
the bias in estimating the ATT was less than 1.5%, regardless of the method used. When the outcome
was binary, the above patterns were still evident (Figure 2).

The empirical standard deviation of the estimated treatment effects across the 1000 stimulated
datasets for each scenario is reported in Figures 3 (continuous outcome) and 4 (binary outcome).
When outcomes were continuous (Figure 3), the empirical variance of the sampling distribution
tended to be similar between the different analytic methods across the majority of scenarios. When
the baseline covariates were correlated normal random variables and the prevalence of treatment
did not exceed 20%, then the regression-adjusted estimates had modestly greater precision
(decreased variability) compared to the crude estimates in the samples constructed using
optimal matching or NNM. When caliper matching was used, regardless of the prevalence of
treatment and of the distribution of baseline covariates, then the adjusted and unadjusted
estimates had virtually identical variability. When outcomes were binary (Figure 4), and the
baseline covariates were correlated normal random variables, the crude estimator in the
matched samples constructed using optimal matching or NNM displayed greater variability
compared to the adjusted estimates in these samples when the prevalence of treatment was less
than or equal to 10%. However, when the prevalence of treatment exceeded 10%, the converse
was observed. As above, when caliper matching was used, the crude estimates and the adjusted
estimates displayed approximately equal variability, regardless of the prevalence of treatment and
of the distribution of the baseline covariates.

The MSE of the estimated treatment effects is reported in Figures 5 (continuous outcome) and 6
(binary outcome). Several findings warrant being highlighted. The first and most important
observation involves the comparison, within each of the 25 different scenarios, of the MSE of the
crude estimator in the caliper-matched sample with the adjusted estimator in either of the other two
matched samples. When the outcome was continuous, then the double propensity score estimator
had lower MSE in 20 of the 25 scenarios when optimal matching was used and in 18 of the 25
scenarios when NNM was used. When the outcome was binary, then in 19 of the 25 scenarios, the
use of either optimal matching or NNM with subsequent propensity-score adjustment, resulted in
estimates with lower MSE than the crude matched estimator in the sample obtained using caliper
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matching. Second, reduction in MSE due to subsequent covariate adjustment was negligible when all
of the baseline covariates were binary, except when the prevalence of treatment was 33% and the
covariates were correlated binary variables. Third, when using either optimal matching or NNM,
subsequent regression adjustment tended to result in the greatest reduction in MSE when the
prevalence of treatment was high.

5 Case study

We used a sample of 9107 patients discharged from 103 acute care hospitals in Ontario, Canada,
with a diagnosis of AMI or heart attack between 1 April 1999 and 31 March 2001. Data on these
subjects were collected as part of the Enhanced Feedback for Effective Cardiac Treatment
(EFFECT) Study, an initiative intended to improve the quality of care for patients with
cardiovascular disease in Ontario.22,23 The EFFECT study consisted of two phases. Data on
patient demographics, vital signs and physical examination at presentation, medical history, and
results of laboratory tests were collected for this sample.

For the current case study, the exposure of interest was whether the patient received a
prescription for a statin lipid-lowering agent at hospital discharge. Three thousand and forty-nine
(33.5%) patients received a prescription at hospital discharge. The outcome of interest for this case
study was a binary variable denoting whether the patient died within 8 years of hospital discharge.
Three thousand five hundred and ninety-three (39.5%) patients died within 8 years of hospital
discharge.

A propensity score for statin treatment was estimated using logistic regression to regress an
indicator variable denoting statin treatment on 30 baseline covariates. Restricted cubic smoothing
splines were used to model the relationship between each of the 11 continuous covariates and the
log-odds of statin prescribing. Each of the matching algorithms described earlier was used to form
matched samples consisting of pairs of treated and untreated subjects. For regression adjustment in
the matched sample, two different regression models were considered. The first used the propensity
score as the sole covariate. The second adjusted for the 30 variables that were contained in the
propensity score model. These variables denote demographic characteristics, vital signs on
admission, classic cardiovascular risk factors, previous medical history and co-existing conditions,
and results of initial laboratory tests.

The different effect estimates are reported in Figure 7. As would be expected based on the results
from the Monte Carlo simulations, the three estimates obtained in the caliper-matched sample
(crude matched estimate and the two adjusted estimates) were all qualitatively similar (risk
differences ranging from �0.037 to �0.035). The two estimates obtained using regression
adjustment using the full multivariable model in the matched samples obtained using NNM and
optimal matching were comparable to the three estimates obtained in the caliper-matched sample.
Interestingly, the estimates obtained using propensity score covariate adjustment in the samples
constructed using NNM and optimal matching were closer to the null treatment effect, whereas
the crude or unadjusted estimates obtained in these two matched samples were between these
estimates obtained using different adjustment methods.

Due to the aberrant results obtained when using covariate adjustment using the propensity score
in the different matched samples, we repeated this analysis using restricted cubic splines with four
knots to model the relationship between the propensity score and the log-odds of the outcome.24

Using this analytic strategy, the adjusted estimates were closer to the crude estimate obtained in the
corresponding matched sample.
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6 Discussion

We proposed a method based on double propensity-score adjustment to increase the degree of bias
reduction when using optimal or NNM. An extensive series of Monte Carlo simulations was used to
assess the performance of this method compared to that of conventional matching algorithms. In
this section, we briefly summarize our findings and place them in the context of the prior literature.
There were three primary findings from our Monte Carlo simulations. First, the use of optimal or
nearest neighbor matching with subsequent regression adjustment resulted in estimates of treatment
effect that had minimal bias compared to using either NNM or optimal matching alone or to the use
of caliper matching with or without subsequent regression adjustment. Second, the use of optimal
matching or NNM with subsequent regression adjustment using the propensity score resulted in
estimates with lower MSE than the crude estimates obtained using caliper matching in over two-
thirds of the scenarios. Third, double propensity score adjustment avoided bias due to incomplete
matching, whereas this bias was not decreased when using subsequent regression adjustment in the
samples formed using caliper matching.

These findings have important consequences for those using propensity-score matching to
estimate the effects of treatments, interventions, and exposures. As noted earlier, caliper matching
can be subject to ‘‘bias due to incomplete matching.’’ We found that, in the presence of a

Figure 7. Estimated absolute reduction in the probability of 8-year mortality in AMI patients due to statin

prescribing.
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heterogeneous treatment effect, caliper matching tended to result in biased estimation of the ATT,
and that the magnitude of the bias increased as the prevalence of treatment increased. This increase
in bias was likely due to the exclusion of an increasing number of treated subjects due to an
inadequate number of controls to which they could be matched. Matching methods such as
optimal matching and NNM can result in biased estimation due to residual confounding since
they do not impose a constraint on the quality of matches necessary for inclusion in the final
matched sample. We found that double propensity score adjustment shares the advantages of
both sets of methods. Propensity-score matching using nearest neighbor or optimal matching
followed by subsequent regression adjustment resulted in estimates with minimal bias. Due to the
inclusion of all treatment subjects, target bias or bias due to incomplete matching is avoided.
Furthermore, the subsequent use of covariate adjustment eliminates the residual confounding due
to the inclusion of some poor quality matches. Since this method uses the entire sample, concerns
around generalizability have been mitigated.

Alternative methods of combining regression adjustment and propensity-score matching can be
proposed. A simple approach would be to regress the outcome on a set of baseline covariates and on
an indicator variable denoting treatment status in the matched sample. The regression coefficient for
the treatment status variable could be used as the measure of treatment effect. We did not pursue this
method because, when outcomes are binary, the resultant measure of effect would be an odds ratio.
When outcomes are binary, our proposed method allows one to estimate risk differences (and the
associated number needed to treat) and relative risks. Several clinical commentators have argued
that these measures of effect have greater utility for clinical decision making than does the odds
ratio.25–28 Furthermore, propensity-score matching and covariate adjustment using the propensity
score have been shown to result in biased estimation of both conditional and marginal odds
ratios.17,18

We examined the use of both optimal matching and NNM and found them to have comparable
performance. Similar findings were reported in a recent study comparing the relative performance of
12 different matching algorithms.9 Consequently, we recommend that the latter be used in practice.
From a computational perspective, NNM is substantially simpler than optimal matching. We
examined the performance of two different methods for using subsequent covariate adjustment in
the propensity-score matched sample: adjustment for the propensity score alone (double propensity
score adjustment) and adjustment for all prognostically important covariates. While the
performance of the latter was negligibly superior compared to that of the former, we advocate
the use of the former for several reasons. First, in RCTs, there is debate about which covariates
to include when estimating an adjusted effect, with some suggesting that the covariates should be
specified prior to the analysis of the study data. This guideline would be simple to implement in the
context of propensity-score matching by stipulating that the propensity score would be used for
subsequent adjustment. Second, the propensity score can be thought of as a single covariate that
encapsulates the distribution of the observed baseline covariates; thus, adjustment for the propensity
score should approximate adjustment for all baseline covariates. Third, this approach may be
preferable in settings with small sample sizes or when the outcome is rare.29 Fitting a regression
model that included all variables that affect the outcome may be problematic when the outcome is
rare and the number of subjects is low.30

Our proposed method of double propensity-score adjustment is similar to the practice of using
regression adjustment in RCTs.4,31 Regression adjustment in RCTs has been advocated for the
following reasons: first, it allows for the removal of residual confounding due to minor
differences in the distribution of measured baseline covariates between treatment groups. Second,
it results in an analysis with increased statistical power compared to a crude or unadjusted analysis.3
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Similarly, we found that regression adjustment in the matched sample formed using optimal or
NNM resulted in increased bias reduction.

There is a paucity of methodological articles examining subsequent regression adjustment in
propensity-score matched samples. In one of the most notable studies to date, Rubin and Thomas
discussed methods for combining propensity-score matching with additional adjustment for
prognostic covariates in settings with continuous outcome variables.32 They proposed two
different analytic strategies. The first was to use regression adjustment within the propensity-score
matched sample to further reduce bias due on residual confounding. The second was to match on the
propensity score and on a limited set of prognostically important covariates. They note that the latter
approach is the observational study analog of blocking in a randomized experiment (i.e. stratified
randomization). Rubin suggested that the ‘‘combination of matching with regression adjustment is
generally better than either alone’’ (page 234).2 Rubin and Thomas suggest that model-based
adjustment within the matched sample may perform better than in the original unmatched sample
because of the reduced extrapolation involved within matched samples. Ho et al., in a similar spirit,
describe matching as allowing nonparametric preprocessing that reduces model dependence in
subsequent parametric analyses.33 The underlying thought being that matching permits more
efficient and robust subsequent regression adjustment than would be possible in the original,
unmatched sample. Abadie and Imbens proposed a bias-corrected matched estimator for linear
treatment effects when outcomes are continuous that is similar to ours, in that it uses regression
models to impute missing potential outcomes in the matched sample.10 They demonstrated that the
proposed approach resulted in greater bias reduction compared to matching alone. Our paper built
upon their framework in two ways: first, by expanding the method to allow for examining binary
outcomes; second, by focusing on the propensity score as the primary adjustment variable.

Lack of adequate overlap in the distribution of the propensity score is an issue that plagues many
observational studies. There are no consistent approaches to dealing with insufficient overlap in the
propensity score between treatment groups. Some analysts pursue an ad hoc approach, in which
subjects with very low or very high propensity scores are excluded. In the context of IPTW using the
propensity score, Crump et al. determined a strategy to optimize the precision of the estimated
treatment effect (i.e. to minimize the standard error of the estimated treatment effect).34 They found
that an approximation to an optimal rule was to restrict the analysis to subjects whose propensity
score lay within the interval [0.1, 0.9]. While this rule results in estimates with the greatest precision,
it nonetheless can result in the exclusion of some subjects, thereby resulting in biased estimation of
the ATE. Some argue that the exclusion of subjects with a very high or very low propensity score is
justified, since the focus should be on those subjects for whom there exists clinical equipoise.
However, under Rosenbaum and Rubin’s assumption of strongly ignorable treatment assignment,
all that is required is that 05 Pr Z ¼ 1jXð Þ5 1.12 In other words, one requires that each subject have
a nonzero probability of receiving the treatment of interest. Since subjects with a high propensity
score are often (by definition) treated, it is important to include these subjects in the sample in which
the effect of treatment is estimated. Failure to do so may result in an estimate of treatment effect that
is biased and that may not be applicable to those subjects in whom the treatment is frequently (but
not always) used. The two effects of interest (the ATE and the ATT) are both well defined. The
population to which the estimands apply can be explicitly described by the inclusion and exclusion
criteria of the study. Once subjects are excluded on the basis of their propensity score, it is much
more difficult to succinctly describe the populations to which the estimands apply. For these reasons,
double propensity score adjustment is an attractive analytic approach since it results in excellent bias
reduction and the population to which the estimand applies retains the ability to be easily
characterized.
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Assessing balance in baseline covariates induced by matching on the estimated propensity score is
a critical component of a propensity-score matching analysis. Balance diagnostics for use with
propensity-score matching have been described elsewhere.35 A reasonable question would be how
to conduct balance assessment when using double propensity score adjustment (or for that matter,
any form of covariate adjustment in the propensity-score matched sample). As in Section 1,
instructive lessons can be learnt from the analysis of RCTs. In RCTs, the ubiquitous ‘‘Table 1’’
describes the baseline characteristics of subjects in each of the different treatment groups. Readers
often informally examine this table as a way of assessing whether randomization produced different
treatment groups that were balanced with respective to prognostically important covariates.
However, in RCTs, the primary analysis is often not a crude (unadjusted) analysis, but an
adjusted analysis that adjusts for a set of baseline covariates.36 Thus, in analyses that employ
propensity-score matching, balance diagnostics conducted in the matched sample permit one to
have a basic assessment of the comparability of treated and untreated subjects in the matched
sample, with the understanding that additional differences have been removed through the use of
covariate adjustment. While balance diagnostics have been described for use with propensity-score
matching35 and covariate adjustment using the propensity score,37 subsequent research could
develop methods for assessing balance when combining these two methods. However, that is
beyond the scope of the current study.

There are several limitations of the current study that deserve mention. First, our study was based
on Monte Carlo simulations. Thus, it is conceivable that different results would be observed under
different data-generating processes. However, we examined 25 different scenarios characterized by
different distributions for the baseline covariates and by the prevalence of treatment. The current
study examined more scenarios than are typically examined in studies that use Monte Carlo
simulations to examine the behavior of matching estimators. Second, our attention was focused
on continuous and binary outcomes, and we did not consider the survival outcomes that occur
frequently in the biomedical literature.36 Prior studies examining combining matching and
regression have restricted their focus to settings with continuous outcomes (e.g. Rubin and
Thomas32). The current study expands this focus to address settings with binary outcomes,
thereby furthering the existing literature. Covariate adjustment using the propensity score has
been shown to result in biased estimation of both conditional and marginal hazard ratios.17,38

Consequently, simply regression adjustment in the propensity-score matched sample may lead to
bias estimation of the underlying marginal hazard ratio. Further research is necessary for the
optimal method to impute the unobserved potential outcomes (i.e. the unobserved event times or
survival times under the treatment not received) and then to subsequently use regression adjustment
to eliminate residual confounding. This needs to be addressed in future research. Third, further
research is required into methods to estimate the standard error of the estimated treatment effect
when double propensity score adjustment is used, particularly when outcomes are binary. However,
the use of the bootstrap may hold promise.39

In conclusion, regression adjustment using the propensity score in a matched sample
constructed using either nearest neighbor or optimal matching allows the analyst to obtain
unbiased estimates of the ATT when outcomes are continuous or binary. In contrast, the
unadjusted estimate obtained in a sample formed by either of these matching methods resulted
in biased estimation due to residual confounding. Furthermore, the naı̈ve estimate obtained using
caliper matching was biased due to incomplete matching (i.e. target bias or design bias). This bias
was not reduced by subsequent regression adjustment. Double propensity score adjustment
permits elimination of both bias due to design (incomplete matching or target bias) and bias
due to confounding.
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