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In life, genetic and epigenetic networks precisely coordinate the expression of

genes—but in death, it is not known if gene expression diminishes gradually

or abruptly stops or if specific genes and pathways are involved. We studied

this by identifying mRNA transcripts that apparently increase in relative

abundance after death, assessing their functions, and comparing their abun-

dance profiles through postmortem time in two species, mouse and zebrafish.

We found mRNA transcript profiles of 1063 genes became significantly more

abundant after death of healthy adult animals in a time series spanning up to

96 h postmortem. Ordination plots revealed non-random patterns in the pro-

files by time. While most of these transcript levels increased within 0.5 h

postmortem, some increased only at 24 and 48 h postmortem. Functional

characterization of the most abundant transcripts revealed the following cat-

egories: stress, immunity, inflammation, apoptosis, transport, development,

epigenetic regulation and cancer. The data suggest a step-wise shutdown

occurs in organismal death that is manifested by the apparent increase of

certain transcripts with various abundance maxima and durations.
1. Introduction
A healthy adult vertebrate is a complex biological system capable of highly

elaborate functions such as the ability to move, communicate and sense the

environment—all at the same time. These functions are tightly regulated by

genetic and epigenetic networks through multiple feedback loops that precisely

coordinate the expression of thousands of genes at the right time, in the right

place and in the right level [1]. Together, these networks maintain homeostasis

and thus sustain ‘life’ of a biological system.

While much is known about gene expression circuits in life, there is a pau-

city of information about what happens to these circuits after organismal death.

For example, it is not well known whether gene expression diminishes gradu-

ally or abruptly stops in death—nor whether specific gene transcripts increase

in abundance in death. In organismal ‘death’, defined here as the cessation of

the highly elaborate system functions in vertebrates, we conjecture that there

is a gradual disengagement and loss of global regulatory networks as well as

the activation of regulatory genes involved in survival and stress compensation.

To test this, we examined the global postmortem abundances of mRNAs in two

model organisms: the zebrafish, Danio rerio, and the house mouse, Mus musculus.
The purpose of the research was to investigate the ‘unwinding of the clock’ by
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identifying mRNA transcripts that increase in abundance with

postmortem time and assessing their functions based on the

primary literature. The biological systems investigated in this

study are different from those examined in other studies,

such as individual dead and/or injured cells in live organisms,

i.e. apoptosis and necrosis (reviewed in [2–5]). In contrast

to previous studies, the abundances of mRNA transcripts

from the entire D. rerio body, and the brains and livers of

M. musculus were assessed through postmortem time. The

mRNA transcripts were measured using the ‘Gene Meter’

approach that precisely reports transcript abundances based

on a calibration curve for each microarray probe [6–9].
en
Biol.7:160267
2. Material and methods
2.1. Induced death and postmortem incubation

2.1.1. Zebrafish

Forty-four female Danio rerio were transferred from several

flow-through aquaria kept at 288C to a glass beaker containing

1 l of aquarium water. Four individuals were immediately

taken out, snap frozen in liquid nitrogen and stored in

Falcon tubes at 2808C (two zebrafish per tube). These samples

were designated as the first set of live controls. A second set of

live controls was immersed in an open cylinder (described

below). Two sets of live controls were used to determine

whether putting the zebrafish back into their native environ-

ment had any effects on gene expression (we later

discovered no significant effects).

The rest of the zebrafish were subjected to sudden death

by immersion in a ‘kill’ chamber. The chamber consisted of

an 8 l styrofoam container filled with chilled ice water. To

synchronize the death of the rest of the zebrafish, they were

transferred to an open cylinder with a mesh-covered

bottom and the cylinder was immersed into the kill chamber.

After 20–30 s of immersion, four zebrafish were retrieved

from the chamber, snap frozen in liquid nitrogen and

stored at 2808C (two zebrafish per Falcon tube). These

samples were designated as the second set of live controls.

The remaining zebrafish were kept in the kill chamber for

5 min and then the cylinder was transferred to a flow-through

aquarium kept at 288C so that they were returned to their

native environment.

Postmortem sampling of the zebrafish occurred at: time 0,

15 min, 30 min, 1 h, 4 h, 8 h, 12 h, 24 h, 48 h and 96 h. For

each sampling time, four expired zebrafish were retrieved

from the cylinder, snap frozen in liquid nitrogen and stored

at 2808C in Falcon tubes (two zebrafish to a tube). One zeb-

rafish sample was lost, but extraction volumes were adjusted

to one individual.

2.1.2. Mouse

The mouse strain C57BL/6JRj (Janvier SAS, France) was used

for our experiments. The mice were 20-week old males of

approximately the same weight. The mice were highly

inbred and were expected to have a homogeneous genetic

background. Prior to euthanasia, the mice were kept at

room temperature and were given ad libitum access to food

and water. Each mouse was euthanized by cervical dislo-

cation and placed in an individual plastic bag with holes to

allow air/gas exchange. The bagged carcasses were kept at
room temperature in a large, open polystyrene container.

Sampling of the deceased mice began at 0 h (postmortem

time zero) and continued at 30 min, 1 h, 6 h, 12 h, 24 h and

48 h postmortem. At each sample time, three mice were

sampled (except for 48 h when two mice were sampled)

and the entire brain (plus stem) and two portions of the

liver were extracted from each mouse. For liver samples,

clippings were taken from the foremost and rightmost

lobes of the liver. The brain and liver samples were snap

frozen in liquid nitrogen and stored individually in Falcon

tubes at 2808C.

2.2. RNA extraction, labelling, hybridization and DNA
microarrays

The number of individuals was 43 for zebrafish and 20 for

mice. Samples from two fish were pooled for analysis, result-

ing in two replicate measurements at each time point. The

number of replicated measurements for mice was three at

each of the first six time points and two at 48 h. Thus, the

total number of samples analysed was 22 for zebrafish and

20 for mice. For the zebrafish, samples were mixed with

20 ml of Trizol and homogenized using a TissueLyzer

(Qiagen). For the mice, 100 mg of brain or liver samples

were mixed with 1 ml of Trizol and homogenized. One milli-

litre of the emulsion from each sample was put into a fresh

1.5 ml centrifuge tube for RNA extraction and the rest was

frozen at 2808C.

RNA was extracted by adding 200 ml of chloroform, vor-

texing the sample and incubating it at 258C for 3 min. After

centrifugation (15 min at 12 000g at 48C), the supernatant

(approx. 350 ml) was transferred to a fresh 1.5 ml tube contain-

ing an equal volume of 70% ethanol. The tube was vortexed,

centrifuged and purified following the procedures outlined in

the PureLink RNA Mini Kit (Life Technologies, USA).

The isolated RNA, 400 ng per sample, was labelled,

purified and hybridized according to the One-Color Microar-

ray-based Gene Expression Analysis (Quick Amp Labeling)

with Tecan HS Pro Hybridization kit (Agilent Technologies).

For the zebrafish, the labelled RNA was hybridized to the

Zebrafish (v2) Gene Expression Microarray (Design ID

019161). For the mouse, the labelled RNA was hybridized

to the SurePrint G3 Mouse GE 8�60K Microarray Design

ID 028005 (Agilent Technologies). The microarrays were

loaded with 1.65 mg of labelled cRNA for each postmortem

sample.

2.3. Microarray calibration
Oligonucleotide (60 nt) probes on the zebrafish and mouse

microarrays were calibrated using pooled labelled cRNA of

all zebrafish and all mouse postmortem samples, respect-

ively. The dilution series for the Zebrafish array was

created using the following concentrations of labelled

cRNA: 0.41, 0.83, 1.66, 1.66, 1.66, 3.29, 6.60 and 8.26 mg.

The dilution series for the Mouse arrays was created using

the following concentrations of labelled cRNA: 0.17, 0.33,

0.66, 1.32, 2.64, 5.28, 7.92 and 10.40 mg. Calibration involved

plotting the signal intensities of the probes against a dilution

factor and determining the isotherm model (e.g. Freundlich

and/or Langmuir) that best fit the relationship between

signal intensities and gene abundances.
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Consider zebrafish gene transcripts targeted by

A_15_P110618 (which happens to be one of the transcrip-

tional profiles of gene Hsp70.3 shown in figure 1a). External

file FishProbesParameters.txt shows that a Freundlich

model best fit the dilution curve with R2 ¼ 0.99. The equation

for this probe is the following:

SI ¼ exp( 7:1081Þx0:67632,

where SI is the observed average signal intensity for the dilution

x. The transcript abundance G was calculated by inverting

this equation. For each probe signal intensity at postmortem

time, SIt, the gene abundance G ¼ (SIt/exp(7.1081))1/0.67632.

Specifically, consider two biological replicates of 15 min

postmortem zebrafish, the signal intensities of the probe

A_15_P110618 are 770.5 and 576, which translates into the

abundances 0.50 and 0.33 arbitrary units (arb. units), respect-

ively. The target abundances were further converted to log10

and are shown in external file Fish_log10_AllProfiles.txt.

Further details of the calibration protocols used to calcu-

late RNA transcript relative abundances are provided

elsewhere [6,7].

2.4. Statistical analysis
Abundance levels were log-transformed for analysis to stabil-

ize the variance. A one-sided Dunnett’s T-statistic was

applied to test for increase at one or more postmortem

times compared to live control (fish) or time 0 (mouse).

A bootstrap procedure with 109 simulations was used to

determine the critical value for the Dunnett’s statistics in

order to accommodate departures from parametric assump-

tions and to account for multiplicity of testing. The

transcript profile for each gene was centred by subtracting

the mean values at each postmortem time point to create

‘null’ profiles. Bootstrap samples of the null profiles were

generated to determine the 95th percentile of the maximum

(over all genes) of the Dunnett’s statistics. A transcript was

considered to have a significantly increased abundance

when one or more points had Dunnett’s T-values larger

than the 95th percentile. The corresponding genes were

retained for further analyses.

Orthogonal transformation of the abundances to their prin-

cipal components (PCs) was conducted, and the results were

graphed on a two-dimensional ordination plot. The m � n
matrix of abundances (sampling times by number of gene tran-

scripts), which is 10� 548 for zebrafish and 7 � 515 for mouse,

was used to produce an m � m matrix D of Euclidean

distances between all pairs of sampling times. Principal com-

ponent analysis (PCA) was performed on the matrix of

distances, D. To investigate and visualize differences between

the sampling times, a scatterplot of the first two principal com-

ponents (PC1 and PC2) was created. To establish relative

contributions of the gene transcripts, the projection of each

sampling time onto the (PC1 and PC2) plane was calculated

and those gene transcripts with high correlations (greater

than or equal to 0.70) between abundances and either

component (PC1 or PC2) were displayed as a biplot.

2.5. Gene annotation and functional categorization
Microarray probe sequences were individually annotated by

performing a BLASTN search of the zebrafish and mouse

NCBI databases (February 2015). The gene annotations
were retained if the bit score was greater than or equal to

100 and the annotations were in the correct 50 –30 orientation.

Transcription factors, transcriptional regulators and cell signal-

ling components (e.g. receptors, enzymes and messengers)

were identified as global regulatory genes. The rest were

considered response genes.

Functional categorizations were performed by querying

the annotated gene transcripts in the primary literature and

using UniProt (www.uniprot.org). Genes not functionally

categorized to their native organism (zebrafish or mouse)

were categorized to genes of phylogenetically related organ-

isms (e.g. human). Cancer-related genes were identified using

a previously constructed database (see Additional File 1:

table S1 in [10]).
3. Results
Extracting the total mRNA, calibrating the microarray

probes, and determining the transcript abundances at each

postmortem sampling time produced a fine-grain series of

transcriptome data for the zebrafish and the mouse. Approxi-

mately 84.3% (36 811 of 43 663) zebrafish probes and 67.1%

(37 368 of 55 681) mouse probes were found to provide suit-

able dose–response curves for calibration (electronic

supplementary material, files S1–S7; http://dx.doi.org/10.

5061/dryad.hv223).

Figure 2 shows the sum of all transcript abundances cal-

culated from the calibrated probes in dependence of

postmortem time. In general, the sum of all abundances

decreased with time, which means that less transcript targets

hybridized to the microarray probes. In the zebrafish, mRNA

decreased abruptly at 12 h postmortem (figure 2a), while for

the mouse brain (figure 2b), mRNA increased in the first hour

and then gradually decreased. For the mouse liver, mRNA

gradually decreased with postmortem time. The fact that

total mRNA shown in figure 2a,b mirrors the electrophoresis

patterns shown in the electronic supplementary material,

figures S1 and S2 (ignoring the 28S and 18S rRNA bands)

indicates a general agreement of the Gene Meter approach

to the gel-based approach (i.e. Agilent Bioanalyzer). Hence,

mRNA abundances depend on the organism (zebrafish,

mouse), organ (brain, liver) and postmortem time, which is

aligned with previous studies [11–16].

The abundance of a transcript is determined by its rate of

synthesis and its rate of degradation [17]. We focused here on

transcripts that significantly increased in abundance—

relative to live controls—because these genes might be

actively transcribed after organismal death despite an overall

decrease in total mRNA with time. A transcript was defined

as having a significantly increased abundance when at least

one time point was statistically higher than that of the control

(figure 1a–c). It is important to understand that the entire

profiles, i.e. 22 data points for the zebrafish and 20 points

for the mouse, were subjected to a statistical test to determine

significance (see Material and methods). We found 548 zebra-

fish profiles and 515 mouse profiles had significantly

increased transcript abundances.

Based on GenBank gene annotations, we found that,

among the transcripts with significantly increased abun-

dances, for the zebrafish 291 were protein-coding genes

(53%) and 257 non-annotated mRNA (47%), and for

the mouse 324 were known protein-coding genes (63%), 190

http://www.uniprot.org
http://dx.doi.org/10.5061/dryad.hv223
http://dx.doi.org/10.5061/dryad.hv223
http://dx.doi.org/10.5061/dryad.hv223
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Figure 1. Transcriptional profiles of representative genes (arb. units), ordination plots based on transcript abundances by postmortem time (h) with corresponding
transcript contributions (biplots), and averaged transcript abundances by group. (a – c) Transcriptional profiles of (a) the Hsp70.3 gene, (b) the Tox2 gene and (c) a
non-annotated transcript ‘NULL’ (i.e. no annotation, probe number shown) gene as a function of postmortem time. (d,e) Ordination plots of the (d ) zebrafish and
(e) mouse were based on all gene transcript profiles found to have a significantly increased abundance. Gene transcripts in the biplots were arbitrarily assigned
alphabetical groups based on their positions in the ordination. The average transcript abundances for each group are shown.
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non-annotated mRNA (37%) and one an Agilent control

sequence of unknown composition. Hence, in the zebrafish

and mouse, about 58% of the total genes with significant

transcript abundances are known and the rest (42%) are

putatively non-annotated RNA.

Examples of genes yielding transcripts that significantly

increased in abundance with postmortem time are: the Heat

shock protein (Hsp70.3) gene, the Thymocyte selection-associ-

ated high mobility group box 2 (Tox2) gene, and an unknown

(NULL) gene (figure 1a–c). While the Hsp70.3 transcript

abundance increased after 1 h postmortem to reach a maxi-

mum at 12 h, the Tox2 transcript increased after 12 h

postmortem to reach a maximum at 24 h, and the NULL tran-

script consistently increased with postmortem time. These

figures provide typical examples of transcript profiles and

depict the high reproducibility of the sample replicates as

well as the quality of output obtained by the Gene Meter

approach.

3.1. Non-random patterns in transcript profiles
Ordination plots of the transcript profiles that had signifi-

cantly increased abundances revealed prominent differences

with postmortem time (figure 1d,e), suggesting the increases
in transcript abundances of genes followed a discernable

(non-random) pattern in both organisms. The biplots

showed that 203 zebrafish transcript profiles and 226 mouse

profiles significantly contributed to the ordinations. To ident-

ify patterns in the transcript profiles, we assigned them to

groups based on their position in the biplots. Six profile

groups were assigned for the zebrafish (A to F) and five

groups (G to K) were assigned for the mouse. Determination

of the average gene transcript abundances by group revealed

differences in the shapes of the averaged profiles, particularly

the timing and magnitude of peak abundances, which

accounted for the positioning of data points in the ordinations.

Genes coding for global regulatory functions were exam-

ined separately from others (i.e. response genes). Combined

results show that about 33% of the genes in the ordination

plots were involved in global regulation, with 14% of these

encoding transcription factors/transcriptional regulators

and 19% encoding cell signalling proteins such as enzymes,

messengers and receptors (electronic supplementary

material, table S3). The response genes accounted for 67%

of the total.

The genes were assigned to 22 categories (electronic sup-

plementary material, File S8) with some genes having

multiple categorizations. For example, the Eukaryotic
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translation initiation factor 3 Subunit J-B (Eif3j2) gene was

assigned to protein synthesis and cancer categories [18].

Genes in the following functional categories were investi-

gated: stress, immunity, inflammation, apoptosis, solute/ion/

protein transport, embryonic development, epigenetic regu-

lation and cancer. We focused on these categories because

they were common to both organisms, they contained

multiple genes and they might provide possible explanations

for the postmortem increases in transcript abundances (e.g.

epigenetic gene regulation, embryonic development, cancer).

The transcriptional profiles were plotted by category and

each profile was ordered by the timing of the increased abun-

dance and peak abundances. This allowed comparisons of

transcript dynamics as a function of postmortem time for

both organisms. For each category, we provided the name

and function of the gene and compared transcript dynamics

within and between the organisms.

3.2. Stress response
In organismal death, transcripts from stress response genes

were anticipated to significantly increase in abundance

because these genes are activated in life to cope with pertur-

bations, recover homeostasis [19] and stabilize the

cytoskeleton [20]. The stress response genes were assigned

to three groups: heat shock protein (Hsp), hypoxia-related

and ‘other’ responses such as oxidative stress.

3.2.1. Hsp

In the zebrafish, Hsp gene transcripts that significantly

increased in abundance included: Translocated promoter

region (Tpr), Hsp70.3 and Hsp90 (figure 3). The Tpr gene

encodes a protein that facilitates the export of the Hsp
mRNA across the nuclear membrane [21] and has been impli-

cated in chromatin organization, regulation of transcription,

mitosis [22] and controlling cellular senescence [23]. The

Hsp70.3 and Hsp90 genes encode proteins that control the

level of intracellular calcium [24], assist with protein folding

and aid in protein degradation [25].

In the mouse, the Hsp gene transcripts included: Tpr,

Hsp-associated methyltransferase (Mettl21) and Heat shock

protein 1 (Hspe1) (figure 3). The Mettl21 gene encodes a

protein modulating Hsp functions [26]. The Hspe1 gene
encodes a chaperonin protein that assists with protein folding

in the mitochondria [27].

The timing and duration of the Hsp transcript abundances

varied by organism. In general, the increase in transcript

abundance of Hsp genes occurred much later in the zebrafish

than the mouse (4 h versus 0.5 h postmortem, respectively).

There were also differences in transcript abundance maxima

of Hsp genes since they reached maxima at 9–24 h in the zeb-

rafish, while they reached maxima at 12–24 h in the mouse.

Previous studies have examined the increase of Hsp70.3 tran-

scripts with time in live serum-stimulated human cell lines

[28]. In both the zebrafish and human cell lines (figure 1a),

the Hsp70.3 gene transcript reached a maximum abundance

at approximately 12 h indicating the same reactions occur

in life and death.

3.2.2. Hypoxia

In the zebrafish, hypoxia-related gene transcripts that signifi-

cantly increased in abundance included: Carbonic anhydrase

4 (Ca4c), Nuclear factor (NF) interleukin-3 (Nfil3), Hypoxia-

inducible factor 1-alpha (Hiflab) and Arginase-2 (Arg2)

(figure 3). The Carbonic anhydrase 4 (Ca4c) gene encodes

an enzyme that converts carbon dioxide into bicarbonate in

response to anoxic conditions [29]. The Nfil3 gene encodes

a protein that suppresses hypoxia-induced apoptosis [30]

and activates immune responses [31]. The Hiflab gene

encodes a transcription factor that prepares cells for

decreased oxygen [32]. The Arg2 gene encodes an enzyme

that catalyses the conversion of arginine to urea under

hypoxic conditions [33]. Of note, the accumulation of urea

presumably triggered the increase of Slc14a2 gene transcripts

at 24 h, as reported in the Transport Section (below).

In the mouse, the hypoxia-related gene transcripts that

significantly increased in abundance included: Methyltrans-

ferase hypoxia-inducible domain (Methig1) and Sphingolipid

delta-desaturase (Degs2) (figure 3). The Methig1 gene encodes

methyltransferase that presumably is involved in gene

regulation [34]. The Degs2 gene encodes a protein that acts

as an oxygen sensor and regulates ceramide metabolism

[35]. Ceramides are waxy lipid molecules in cellular

membranes that regulate cell-growth, death, senescence, adhe-

sion, migration, inflammation, angiogenesis and intracellular

trafficking [36].
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The increased abundance of Ca4c transcripts in the zebra-

fish putatively indicates a build up of carbon dioxide 0.1–1 h

postmortem in the zebrafish presumably due to lack of blood

circulation. The increased abundance of the Nfil3 transcripts

in the zebrafish and Methig1 transcripts in the mouse

suggests hypoxic conditions exist within 0.5 h postmortem

in both organisms. The increased abundance of the other

hypoxia gene transcripts varied with postmortem time,

with increases of Hiflab, Arg2 and Degs2 transcripts at 4 h,

12 h and 24 h, respectively.
3.2.3. Other stress responses

In the zebrafish, gene transcripts that significantly increased

in abundance included: Alkaline ceramidase 3 (Acer3), Perox-

irodoxin 2 (Prdx2), Immediate early (Ier2), Growth arrest and

DNA-damage-inducible protein (Gadd45a), Zinc finger CCH

domain-containing 12 (Zcchc12), Corticotropin-releasing hor-

mone receptor 1 (Crhr1) and Zinc finger AN1-type domain 4

(Zfand4) (figure 3). The Acer3 gene encodes a stress sensor

protein that mediates cell-growth arrest and apoptosis [37].

The Prdx2 gene encodes an antioxidant enzyme that controls

peroxide levels in cells [38] and triggers production of

Tnfa proteins that induce inflammation [39]. The Ier2 gene

encodes a transcription factor involved in stress response

[40]. The Gadd45a gene encodes a stress protein sensor that

stops the cell cycle [41], modulates cell death and survival,

and is part of the signalling networks in immune cells [42].

The Zcchc12 gene encodes a protein involved in stress

response in the brain [43]. The Crhr1 and Zfand4 genes

encode stress proteins [44,45].

While the Acer3, Prdx2 and Ier2 transcripts increased within

0.3 h postmortem, indicating a changed physiological state, the

Gadd45a transcript increased at 9 h and the other transcripts

(Zcchc12, Crhr1 and Zfand4) increased at 24 h postmortem.

In the mouse, gene transcripts that significantly increased

in abundance included: Membrane-associated RING-CH 4

(March4), Homocysteine-responsive endoplasmic reticulum-resi-

dent ubiquitin-like domain member 2 (Herpud2), Prohibitin-2

(Phb2), Gadd45a and Two-oxoglutarate and iron-dependent

oxygenase domain-containing 1 (Ogfod1) (figure 3). The March4
gene encodes an immunologically-active stress response protein

[46]. The Herpud2 gene encodes a protein that senses the accumu-

lation of unfolded proteins in the endoplasmic reticulum [47].
The Phb2 gene encodes a cell surface receptor that responds to

mitochondrial stress [48]. The Ogfod1 gene encodes a

stress-sensing protein [49].

Note that the stress gene transcripts in the mouse all

increased within 1 h postmortem and remained at high

abundance for 48 h.
3.2.4. Summary of stress response

In both organisms, organismal death increased the abun-

dance of heat shock, hypoxia and ‘other stress’ gene

transcripts, which varied in their timing and duration

within and between organisms. Consider, for example, the

Tpr and Gadd45a genes, which were common to both organ-

isms. While the transcript abundance for the Tpr gene

significantly increased within 0.5 h postmortem in both

organisms, the transcript abundance for the Gadd45a gene

increased at 9 h in the zebrafish and 0.5 h in the mouse. In

addition, the transcriptional profile of the Tpr gene was

more variable in the zebrafish than that of the mouse since

the transcripts increased in abundance at 0.3 h, 9 h and 24 h

postmortem, which suggests that they might be regulated

through a feedback loop. By contrast, the transcriptional pro-

file of Tpr gene in the mouse increased at 0.5 h and peaked at

12 and 24 h postmortem.

Taken together, the significant increase in transcript abun-

dance of stress genes in both organisms is presumably to

compensate for a loss of homeostasis.
3.3. Innate and adaptive immune responses
In organismal death, an increase of immune response gene

transcripts was anticipated since vertebrates have evolved

ways to protect the host against infection in life, even under

absolutely sterile conditions [50]. Inflammation genes were

excluded from this section (even though they are innate

immune genes) because we examined them in a separate

section (below).

In the zebrafish, gene transcripts that significantly

increased in abundance included: Early growth response-1

and -2 (Egr1, Egr2), Interleukin-1b (Il1b), L-amino acid oxidase

(Laao), Interleukin-17c (Il17c), Membrane-spanning

4-domains subfamily A member 17A.1 (Ms4a17.a1), Mucin-2

(Muc2), Immunoresponsive gene 1 (Irg1), Interleukin-22
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(Il22), Ubl carboxyl-terminal hydrolase 18 (Usp18), ATF-like 3

(Batf3), Cytochrome b-245 light chain (Cyba) and Thymocyte

selection-associated high mobility group box protein family

member 2 (Tox2) (figure 4). The Egr1 and Egr2 genes

encode proteins that regulate B- and T-cell functions in adap-

tive immunity [51,52]. The Il1b gene encodes an interleukin

that kills bacterial cells through the recruitment of other anti-

microbial molecules [53]. The Laao gene encodes an oxidase

involved in innate immunity [54]. The Il17c and Il22 genes

encode interleukins that work synergically to produce

antibacterial peptides [55]. The Ms4a17.a1 gene encodes a

protein involved in adaptive immunity [56]. The Muc2 gene

encodes a protein that protects the intestinal epithelium

from pathogenic bacteria [57]. The Irg1 gene encodes an

enzyme that produces itaconic acid, which has antimicrobial

properties [58]. The Usp18 gene encodes a protease that

plays a role in adaptive immunity [59]. The Batf3 gene encodes

a transcription factor that activates genes involved in adaptive

immunity [60]. The Cyba gene encodes an oxidase that is used

to kill microorganisms [61]. The Tox2 gene encodes a tran-

scription factor that regulates natural killer (NK) cells of the

innate immune system [62].

Increases of immunity gene transcripts in the zebrafish

occurred at different times with varying durations. While

transcripts of genes involved in adaptive immunity increased

in abundance at 0.1–0.3 h (Egr), 9 h (Ms4a17.a1) and 24 h

(Usp18, Batf3) postmortem, transcripts of genes involved in

innate immunity increased at 4 h (Il1b), 9 h (Laao, Il17c),

12 h (Muc2, Irg1) and 24 h (Il22, Cyba,Tox2), indicating a

multi-pronged and progressive approach to deal with

injury and the potential of microbial invasion.

In the mouse, gene transcripts that significantly increased

in abundance included: Catalytic polypeptide-like 3G (Apo-
bec3g), CRISPR-associated endonuclease (Cas1), Perforin-1

(Prf1), Immunoglobulin heavy variable 8–11 (Ighv8-11),

C4b-binding protein (C4b), Complement component C7

(C7), T-cell receptor alpha and delta chain (Tcra/Tcrd), High

affinity immunoglobulin gamma Fc receptor I (Fcgr1a),

Defensin (Defb30), Chemokine-4 (Ccr4), Interleukin-5 (Il5),

NK cell receptor 2B4 (Cd244), Cluster of differentiation-22

(Cd22), Lymphocyte cytosolic protein 2 (Lcp2), Histocompat-

ibility 2 O region beta locus (H2ob) and Interferon-induced
transmembrane protein 1 (Ifitm1) (figure 4). The Apobec3g
gene encodes a protein that plays a role in innate anti-viral

immunity [63]. The Cas1 gene encodes a protein involved in

regulating the activation of immune systems [64–67]. The

Prf1, C7 and Defb30 genes encode proteins that kill bacteria

by forming pores in plasma membrane of target cells

[68–70]. The Ighv8-11 gene encodes an immunoglobulin of

uncertain function. The C4b gene encodes a protein involved

in the complement system [71]. The Tcra/Tcrd genes encode

proteins that play a role in the immune response [72]. The

Fcgr1a gene encodes a protein involved in both innate and

adaptive immune responses [73]. The Ccr4 gene encodes a

cytokine that attracts leucocytes to sites of infection [74]. The

Il5 gene encodes an interleukin involved in both innate and

adaptive immunity [75,76]. The Cd244 and Cd22 genes

encode proteins involved in innate immunity [77]. The Lcp2
gene encodes a signal-transducing adaptor protein involved

in T cell development and activation [78]. The H2ob gene

encodes a protein involved in adaptive immunity. The Ifitm1
gene encodes a protein that has anti-viral properties [79].

Most of the transcripts of immune response genes

increased in abundance within 1 h postmortem in the

mouse (n ¼ 14 out of 16 genes), indicating a more rapid

response than that of the zebrafish.

3.3.1. Summary of immune response

The increase in transcript abundance of immune response

genes in both organisms included innate and adaptive immu-

nity components. An interesting phenomenon observed

in the mouse (but not zebrafish) was that four genes (C7,

Tcra/Tcrd, Fcgr1a and Defb30) reached transcript abundance

maxima at two different postmortem times (i.e. 1 h and

12 h) while others reached only one. The variability in the

gene transcript abundances suggests possible regulation by

feedback loops.

3.4. Inflammation response
The increased abundance of transcripts of inflammation genes

in organismal death was anticipated because inflammation is

an innate immunity response to injury. In the zebrafish,
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inflammation gene transcripts that increased in abundance

included: Egr1, Egr2, Il1b, Tumour necrosis factor receptor

(Tnfrsf19), Haem oxygenase 1 (Hmox1), Tumour necrosis

factor (Tnf), G-protein receptor (Gpr31), Interleukin-8

(Il8), Tumour necrosis factor alpha (Tnfa), NF kappa B

(Nfkbiaa), MAP kinase-interacting serine/threonine kinase 2b

(Mknk2b) and Corticotropin-releasing factor receptor 1 (Crhr1)

(figure 5). The Egr1 and Egr2 genes encode transcription

factors that are pro- and anti-inflammatory, respectively

[51,52,80]. The Il1b gene encodes a pro-inflammatory cytokine

that plays a key role in sterile inflammation [81,82]. The

Tnfrsf19 gene encodes a receptor that has pro-inflamma-

tory functions [83]. The Hmox1 gene encodes an enzyme

that has anti-inflammatory functions and is involved in

haem catabolism [84,85]. The Tnf and Tnfa genes encode

pro-inflammatory proteins. The Gpr31 gene encodes a pro-

inflammatory protein that activates the NF-kB signalling

pathway [86]. The Il8 gene encodes a cytokine that has pro-

inflammatory properties [87]. The Nfkbiaa gene encodes a

protein that integrates multiple inflammatory signalling path-

ways including Tnf genes [88]. The Mknk2b gene encodes a

protein kinase that directs cellular responses and is pro-inflam-

matory [89]. The Crhr1 gene modulates anti-inflammatory

responses [90].

The increased abundance of the pro-inflammatory Egr1
transcript at 0.1 h was followed by an increase of anti-inflam-

matory Egr2 transcript at 0.2 h, suggesting the increase of one

transcript was effecting another (figure 5). Similarly, the

increased abundance of pro-inflammatory Il1b transcript at

4 h postmortem was followed by: increased abundance of

pro-inflammatory Tnfrsf19, Tnf, Gpr31 and Il8 transcripts

and the anti-inflammatory Hmox1 transcript at 9 h, the

increased abundance of pro-inflammatory Tnfa, Nfkbiaa and

Mknk2b transcripts at 12 h, and the increased abundance of

anti-inflammatory Crhr1 transcripts at 24 h. Of note, while

none of the pro-inflammatory gene transcripts increased in

abundance past 24 h, the anti-inflammatory Crhr1 gene

remained at high abundance at 48 h. It should also be

noted that the Il1b, Il8 and Tnfa gene transcripts have been

reported to be increased in traumatic impact injuries in

postmortem tissues from human brains [91].

In the mouse, inflammation gene transcripts that

increased in abundance included: mitogen-activated protein

kinase (Map3k2), TNF receptors (Tnfrsf9, Tnfrs14), B-cell lym-

phoma 6 protein (Bcl6), C-C chemokine receptor-type 4
(Ccr4), Prokineticin-2 (Prok2) and platelet-activating factor

receptor (Pafr) (figure 5). The Map3k2 gene encodes a

kinase that activates pro-inflammatory NF-kB genes [89].

The Tnfrsf9 and Tnfrs14 genes encode receptor proteins

that have pro-inflammatory functions [83]. The Bcl6 gene

encodes a transcription factor that has anti-inflammatory

functions [92]. The Ccr4 gene encodes a cytokine receptor

protein associated with inflammation [74]. The Prok2 gene
encodes a cytokine-like molecule, while the Pafr gene

encodes a lipid mediator; both have pro-inflammatory

functions [93,94].

Most inflammation-associated gene transcripts increased

in abundance within 1 h postmortem and continued to be

abundant for 12–48 h. The anti-inflammatory Bcl6 gene tran-

scripts increased in abundance at two different times, 0.5–6 h

and 24 h, suggesting that their abundances might be regu-

lated by a feedback loop. It should also be noted that pro-

inflammatory Map3k2 and Tnfrs14 gene transcripts were not

at high abundance after 24 and 12 h, respectively, which

also suggests regulation by a putative feedback loop from

the Bcl6 transcript product.

3.4.1. Summary of inflammation response

In both organisms, some transcripts that increased in abun-

dance have pro-inflammatory functions while others have

anti-inflammatory functions. It is possible that the increases

in transcript abundances are regulated by feedback loops

involving an initial inflammatory reaction followed by an

anti-inflammatory reaction to repress it [95]. The variation

in the gene transcript abundances of these inflammatory

genes suggests the underlying regulatory network is still

active in organismal death.

3.5. Apoptosis and related genes
Since apoptotic processes kill damaged cells for the benefit

of the organism as a whole, we anticipated a significant

increase in the abundance of apoptosis gene transcripts in

organismal death.

In the zebrafish, apoptosis gene transcripts that increased in

abundance included: Jun (Jdp2, Jun), Alkaline ceramidase 3

(Acer3), Fos (Fosb, Fosab, Fosl1), IAP-binding mitochondrial

protein A (Diabloa), Peroxiredoxin-2 (Prdx2), Potassium voltage-

gated channel member 1 (Kcnb1), Caspase apoptosis-related
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cysteine peptidase 3b (Casp3b), DNA-damage-inducible tran-

script 3 (Ddit3), BCL2 (B-cell lymphomas 2)-interacting killer

(Bik) and Ras association domain family 6 (Rassf6) (figure 6).

The Jdp2 gene encodes a protein that represses the activity of

the transcription factor activator protein 1 (AP-1) [96]. The

Acer3 gene encodes an enzyme that maintains cell membrane

integrity/function and promotes apoptosis [97]. The Fos genes

encode proteins that dimerize with Jun proteins to form part

of the AP-1 that promotes apoptosis [98,99]. The Diabloa gene

encodes a protein that neutralizes inhibitors of apoptosis

(IAP)-binding protein [99] and activates caspases [100]. The

Prdx2 gene encodes antioxidant enzymes that control cyto-

kine-induced peroxide levels and inhibit apoptosis [101].

Although the Kcnb1 gene encodes a protein used to make ion

channels, the accumulation of these proteins in the membrane

promotes apoptosis via a cell signalling pathway [102]. The

Casp3b encodes a protein that plays a role in the execution

phase of apoptosis [103]. The Ddit3 gene encodes a transcription

factor that promotes apoptosis. The Bik gene encodes a protein

that promotes apoptosis [104]. The Rassf6 gene encodes a

protein that promotes apoptosis [105].

In the zebrafish, transcripts of both anti-apoptosis Jdp2
and pro-apopotosis Acer3 genes increased in abundances

within 0.1 h postmortem (figure 6). These increases were fol-

lowed by increases of five pro-apoptosis gene transcripts and

one anti-apoptosis gene transcript within 0.3–0.5 h. The tran-

scriptional dynamics varied among the genes. Specifically, (i)

the increased abundance of the Fosb gene transcript stopped

after 1 h, (ii) the transcripts of the Diabloa and Fosab genes

reached abundance maxima at 0.5–4 h and then their abun-

dances decreased after 9 h for the Diabloa and after 24 h for

the Fosab genes, (iii) the Jun gene transcripts reached two

maxima (one at 0.5 and another at 4–12 h)—then its abun-

dance decreased after 24 h, and (iv) the transcript of the

Prdx2 gene showed a continuous increase in abundance

until reaching a maximum at 24 h and then the abundance

decreased. The remaining genes were pro-apoptosis and

their transcripts increased in abundance after 1–24 h post-

mortem. The transcripts of the Ddit3 and Rassf6 genes were

very different from the other transcripts because they

increased in abundance at one sampling time (12 h and

24 h, respectively) and then decreased. Apparently none of

the transcripts of apoptosis genes increased in abundance

after 24 h, in contrast to genes in other categories (e.g.
transcripts of some of stress and immunity genes increased

in abundance up to 96 h postmortem).

In the mouse, apoptosis gene transcripts that increased in

abundance included: BCL2-like protein 11 (Bcl2L11), Casein

kinase IIa (Csnk2a1), Interleukin 15 receptor subunit a

(Il15ra), Myocyte enhancer factor 2 (Mef2a), F-box only

protein 10 (Fbxo10), Sp110 nuclear body protein (Sp110),

TGFB-induced factor homeobox 1 (Tgif1), Intersectin 1

(Itsm1), the Ephrin type-B receptor 3 (Ephb3) and the p21

protein-activated kinase 4 (Pak4) (figure 6). The Bcl2L11
gene encodes a protein that promotes apoptosis [106].

The Csnk2a1 gene encodes an enzyme that phosphorylates

substrates and promotes apoptosis [107]. The Il15ra gene

encodes an anti-apoptotic protein [108]. The Mef2a gene

encodes a transcription factor that prevents apoptosis [109].

The Fbxo10 gene encodes a protein that promotes apoptosis

[110]. The Sp110 gene encodes a regulator protein that

promotes apoptosis [111]. The Tgif1 gene encodes a transcrip-

tion factor that blocks signals of the transforming growth

factor beta (TGFb) pathway, and therefore is pro-apoptosis

[112]. The Itsn1 gene encodes an adaptor protein that is

anti-apoptosis [113]. The Ephb3 gene encodes a protein that

binds ligands on adjacent cells for cell signalling and sup-

presses apoptosis [108]. The Pak4 gene encodes a protein

that delays the onset of apoptosis [114].

In the mouse, transcripts for the pro- and anti-apoptosis

genes increased in abundance within 0.5 h postmortem; how-

ever, with the exception of Bcl2L11, most reached transcript

abundance maxima at 12–48 h postmortem (figure 6). The

Bcl2L11 transcripts reached abundance maxima at 1 and 6 h

postmortem.
3.5.1. Summary of apoptotic response

In both organisms, transcripts of both pro- and anti-apoptosis

genes increased in abundance in organismal death. However,

the timings of the increases, the transcript maximum abun-

dance and the duration of the increased abundances varied

by organism. The results suggest the apoptotic genes and

their regulation are distinctly different in the zebrafish than

the mouse, with transcripts of the mouse genes having

increased abundance to 48 h postmortem while those of the

zebrafish having increased abundance to 24 h. Nonetheless,
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the pro- and anti-apoptosis genes appear to be inter-regulating

each another.

3.6. Transport gene response
Transport processes maintain ion/solute/protein homeosta-

sis and are involved in influx/efflux of carbohydrates,

proteins, signalling molecules and nucleic acids across mem-

branes. Transcripts of transport genes should increase in

abundance in organismal death in response to dysbiosis.

In the zebrafish, transport-associated gene transcripts that

increased in abundance included: Solute carrier family 26

anion exchanger member 4 (Slc26a4), Potassium channel vol-

tage-gated subfamily H (Kcnh2), Transmembrane emp24

domain-containing protein 10 (Tmed10), Leucine-rich repeat-

containing 59 (Lrrc59), the Nucleoprotein TPR (Tpr), Importin

subunit beta-1 (Kpnb1), Transportin 1 (Tnpo1), Syntaxin 10

(Stx10) and Urea transporter 2 (Slc14a2) (figure 7). Of note,

the four Tmed10 transcripts shown in figure 7 each represents

a profile targeted by an independent probe. The transcription

profiles of this gene were identical indicating high reproduci-

bility of the Gene Meter approach. The Slc26a4 gene encodes

prendrin that transports negatively charged ions (i.e. Cl2,

bicarbonate) across cellular membranes [115]. The Kcnh2
gene encodes a protein used to make potassium channels

and is involved in signalling [116]. The Tmed10 gene encodes

a membrane protein involved in vesicular protein trafficking

[117]. The Lrrc59, Tpr, Tnpo1 and Kpnb1 genes encode pro-

teins involved in trafficking across nuclear pores [118–121].

The Stx10 gene encodes a protein that facilitates vesicle

fusion and intracellular trafficking of proteins to other cellular

components [122]. The Slc14a2 gene encodes a protein that

transports urea out of the cell [123].

The transcripts of Slc26a4, Kcnh2, Lrrc59 and Tpr genes

initially increased in abundance within 0.3 h postmortem

and remained in high abundance for 12–24 h. The transcripts

of the Tnpo1 gene increased in abundance twice, at 4 and

12 h, suggesting putative regulation by a feedback loop.

The transcripts of the remaining genes increased in abun-

dance at 24 h. The increased abundance of the Slc14a2 gene

transcript suggests a build up of urea in zebrafish cells at
24–96 h postmortem, which could be due to the accumu-

lation of urea under hypoxic conditions by the Arg2 gene

(see Hsp stress response section).

In the mouse, transport-associated gene transcripts that

increased in abundance included: Calcium-binding mito-

chondrial carrier protein (Aralar2), Sodium-coupled neutral

amino acid transporter 4 (Slc38a4), SFT2 domain-containing

1 (Sft2d1), Uap56-interacting factor (Fyttd1), Solute carrier

family 5 (sodium/glucose co-transporter) member 10

(Slc5a10), Mitochondrial import receptor subunit (Tom5),

Translocated promoter region (Tpr), ATP-binding cassette

transporter 12 (Abca12), Multidrug resistant protein 5

(Abc5), LIM and SH3 domain-containing protein (Lasp1),

Chromosome 16 open reading frame 62 (C16orf62), Golgi

transport 1 homologue A (Golt1a), ATP-binding cassette

transporter 17 (Abca17), Nucleotide exchange factor (Sil1),

Translocase of inner mitochondrial membrane 8A1

(Timm8a1), Early endosome antigen 1 (Eea1) and Potassium

voltage-gated channel subfamily V member2 (Kcnv2)

(figure 7). The Aralar2 gene encodes a protein that catalyses

calcium-dependent exchange of cytoplasmic glutamate with

mitochondrial aspartate across the mitochondrial membrane

and may function in the urea cycle [124]. The Slc38a4 gene

encodes a symport that mediates transport of neutral amino

acids and sodium ions [125]. The Sft2d1 gene encodes a

protein involved in transporting vesicles from the endocytic

compartment of the Golgi complex [126]. The Fyttd1 gene

is responsible for mRNA export from the nucleus to the

cytoplasm [127]. The Slc5a10 gene encodes a protein that

catalyses carbohydrate transport across cellular membranes

[128]. The Tom5 gene encodes a protein that plays a role

in importation to proteins destined for mitochondrial

sub-compartments [129]. The Abca12, Abca17 and Abc5
genes encode proteins that transport molecules across

membranes [130–132]. The Lasp1 gene encodes a protein

that regulates ion transport [133]. The C16orf62 gene encodes

a protein involved in protein transport from the Golgi

apparatus to the cytoplasm [134]. The Golt1a gene encodes

a vesicle transport protein [126]. The Sil1 gene encodes a

protein involved in protein translocation into the endoplas-

mic reticulum [135]. The Timm8a1 gene encodes a protein
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that assists importation of other proteins across inner mito-

chondrial membranes [136]. The Eea1 gene encodes a

protein that acts as a tethering molecule for vesicular trans-

port from the plasma membrane to the early endosomes

[137]. The Kcnv2 gene encodes a membrane protein involved

in generating action potentials [138].

Within 0.5 h postmortem, transcripts of genes involved in:

(i) ion and urea regulation (Aralar), (ii) amino acid (Slc38a4),

carbohydrate (Slc5a10) and protein (Sft2d1, Tom5) transport,

(iii) mRNA nuclear export (Fyttd1, Tpr) and (iv) molecular

efflux (Abca12, Abc5) increased in abundance in the mouse.

The transcription profiles of these genes varied in terms of

transcript abundance maxima and duration. While the tran-

scripts of Aralar, Sft2d1, Slc38a4, Fyttd1 and Slc5a10 reached

abundance maxima at 1 h, those of Tom5, Tpr, Abca12 and

Abc5 reached maxima at 12–24 h postmortem. The duration

of the increased abundance also varied for these transcripts

since most remained at high abundances for 48 h postmor-

tem, while the Sft2d1, Fyttd1 and Slc5a10 transcripts were at

high abundances from 0.5 to 12þ h. The shorter duration of

increased abundance suggests prompt gene repression. The

transcript abundances of Lasp1, C16orf62, Golt1a and Abca17
increased at 1 h postmortem and remained elevated for

48 h. The transcripts of Sil1, Timm8a1 and Eea1 increased in

abundance at 6 h, while those of Kcnv2 increased at 24 h

postmortem and remained elevated for 48 h.
3.6.1. Summary of transport genes

The increased abundance of transcripts of transport genes

suggests attempts by zebrafish and mice to reestablish

homeostasis. Although the transcripts of half of these genes

increased in abundance within 0.5 h postmortem, many

increased at different times and for varying durations.
While most of the transcripts of transport genes in the zebra-

fish were not abundant after 24 h, most transcripts of

transport genes in the mouse remained abundant for

24–48 h postmortem.
3.7. Developmental control genes
An unexpected finding in this study was the increased abun-

dance of transcripts of developmental control genes in

organismal death. Developmental control genes are mostly

involved in regulating developmental processes from early

embryo to adult in the zebrafish and mouse; therefore, we

did not anticipate their transcripts to become more abundant

in organismal death.

In the zebrafish, development-associated gene transcripts

that increased in abundance included: LIM domain-contain-

ing protein 2 (Limd2), Disheveled-associated activator

of morphogenesis 1 (Daam1b), Meltrin alpha (Adam12),
Hatching enzyme 1a (He1a), Midnolin (Midn), Immediate

early response 2 (Ier2), Claudin b (Cldnb), Regulator of G-

protein signalling 4-like (Rgs4), Proline-rich transmembrane

protein 4 (Prrt4), Inhibin (Inhbaa), Wnt inhibitory factor 1

precursor (Wif1), Opioid growth factor receptor (Ogfr),
Strawberry notch homolog 2 (Sbno2) and Developing brain

homeobox 2 (Dbx2) (figure 8). The Limd2 gene encodes a

binding protein that plays a role in zebrafish embryogenesis

[139]. The Daam1b gene regulates endocytosis during

notochord development [140]. The Adam12 gene encodes a

metalloprotease-disintegrin involved in myogenesis [141].

The He1a gene encodes a protein involved in egg envelope

digestion [142]. The Midn gene encodes a nucleolar protein

expressed in the brain that is involved in the regulation of

neurogenesis [143,144]. The Ier2 gene encodes a protein

involved in left–right asymmetry patterning in the zebrafish
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embryo [145]. The Cldnb gene encodes a tight junction protein

in larval zebrafish [146]. The Rgs4 gene encodes a protein

involved in brain development [147]. The Prrt4 gene encodes

a protein that is predominantly expressed in the brain and

spinal cord in embryonic and postnatal stages of develop-

ment. The Inhbaa gene encodes a protein that plays a role in

oocyte maturation [148]. The Wif1 gene encodes a WNT

inhibitory factor that controls embryonic development

[149]. The Ogfr gene plays a role in embryonic development

[150]. The Sbno2 gene plays a role in zebrafish embryogenesis

[151]. The Dbx2 gene encodes a transcription factor that plays

role in spinal cord development [152].

Although the abundances of Limd2, Daam1, Adam12 and
He1a transcripts increased in the zebrafish within 0.1 h post-

mortem, other gene transcripts in this category increased

from 0.3 to 24 h postmortem, reaching abundance maxima

at 24 h or more.

In the mouse, development-associated gene transcripts

that increased in abundance included: MDS1 and EVI1 com-

plex locus protein EVI1 (Mecom), MAM domain-containing

glycosylphosphatidylinositol anchor 2 (Mdga2), FYVE,

RhoGEF and PH domain-containing 5 (Fgd5), RNA-binding

motif protein 19 (Rbm19), Chicken ovalbumin upstream pro-

moter (Coup), Single-minded homolog 2 (Sim2), Solute carrier

family 38, member 4 (Slc38a4), B-cell lymphoma 6 protein

(Bcl6), Sema domain transmembrane domain (TM) cyto-

plasmic domain (semaphorin) 6D (Sema6d), RNA binding

motif protein 45 (Rbm45), Transcription factor E2F4 (E2f4),
Long chain fatty acid-CoA ligase 4 (Lacs4), Kallikrein

1-related peptidase b3 (Klk1b3), Sema domain, immunoglo-

bulin domain, TM and short cytoplasmic domain (Sema4c),
TGFB-induced factor homeobox 1 (Tgif1), Interferon regulat-

ory factor 2-binding protein-like (Irf2bpl), Ephrin type-B

receptor 3 (Ephb3), Testis-specific Y-encoded-like protein 3

(Tspyl3), Protein ripply 3 (Ripply3), Src kinase-associated

phosphoprotein 2 (Skap2), DNA polymerase zeta catalytic

subunit (Rev3l), MKL/myocardin-like 2 (Mkl2) and Protein

phosphatase 2 regulatory subunit A (Ppp2r1a) (figure 8).

The Mecom gene plays a role in embryogenesis and develop-

ment [153]. The Mdga2 gene encodes immunoglobins

involved in neural development [154]. The Fgd5 gene is

needed for embryonic development since it interacts with

hematopoietic stem cells [155]. The Rbm19 gene is essential

for preimplantation development [156]. The Coup gene

encodes a transcription factor that regulates development of

the eye [157] and other tissues [158]. The Sim2 gene encodes

a transcription factor that regulates cell fate during midline

development [159]. The Slc38a4 gene encodes a regulator of

protein synthesis during liver development and plays a cru-

cial role in fetal growth and development [160,161]. The

Bcl6 gene encodes a transcription factor that controls neuro-

genesis [162]. The Sema6d gene encodes a protein involved

in retinal development [163]. The Rbm45 gene encodes a

protein that has preferential binding to poly(C) RNA and is

expressed during brain development [164]. The E2f4 gene is

involved in maturation of cells in tissues [165]. The Lacs4
gene plays a role in patterning in embryos [166]. The Klk1b3
gene encodes a protein that plays a role in the developing

embryos [167]. The Sema4c gene encodes a protein that has

diverse function in neuronal development and heart morpho-

genesis [168,169]. The Tgif1 gene encodes a transcription

factor that plays a role in trophoblast differentiation [170].

The Irf2bpl gene encodes a transcriptional regulator that
plays a role in female neuroendocrine reproduction [171].

The Ephb3 gene encodes a kinase that plays a role in neural

development [172]. The Tspyl3 gene plays a role in testis

development [173]. The Ripply3 gene encodes a transcription

factor involved in development of the ectoderm [174]. The

Skap2 gene encodes a protein involved in actin reorganization

in lens development [175]. The Rev3l gene encodes a poly-

merase that can replicate past certain types of DNA lesions

and is necessary for embryonic development [176]. The

Mkl2 gene encodes a transcriptional co-activator that is

involved in the formation of muscular tissue during embryo-

nic development [177]. The Ppp2r1a gene plays a role in

embryonic epidermal development [178].

The transcripts of Mecom, Mdga2, Fgd5, Rbm19, Coup,
Sim2, Slc38a4, Bcl6, Sema6d, Rbm45, E2f4 and Lacs4 genes in

the mouse significantly increased in abundance within 0.5 h

postmortem but the other transcripts increased from 1 h to

48 h reaching abundance maxima at 12 h or more.

3.7.1. Summary of developmental control genes

In organismal death, there is progressive increase in transcript

abundances of some developmental control genes suggesting

that they are no longer silenced. A possible reason for these

increased abundances is that the postmortem physiological

conditions resemble those of earlier developmental stages.

3.8. Cancer genes
There are a number of databases devoted to cancer and

cancer-related genes. Upon cross-referencing the genes

found in this study, we discovered a significant overlap.

The genes found in this search are presented below.

In the zebrafish, transcripts of the following cancer genes

significantly increased in abundance: Jdp2, Xanthine dehy-

drogenase (Xdh), Egr1, Adam12, Myosin-IIIa (Myo3a), Fosb,
Jun, Integrin alpha 6b (Itga6), Ier2, Tpr, Dual specificity protein

phosphatase 2 (Dusp2), Disintegrin and metallopeptidase

domain 28 (Adam28), Tnpo1, Ral guanine nucleotide

dissociation stimulator-like (Rgl1), Carcinoembryonic antigen-

related cell adhesion molecule 5 (Ceacam1), Fosl1, Il1b,
Hif1a, Serine/threonine-protein phosphatase 2A regulatory

(Ppp2r5d), DNA replication licensing factor (Mcm5), Gadd45,
Myosin-9 (Myh9), Casp3, Tnf, Il8, Cyclic AMP-dependent

transcription factor (Atf3), small GTPase (RhoA), Mknk2, Ephrin

type-A receptor 7 precursor (Epha7), ETS-related transcription

factor (Elf3), Nfkbia, Kpnb1, Wif1, RAS guanyl-releasing protein

1 (Rasgrp), Ras association domain-containing protein 6

(Rassf6), Cyba, DNA-damage-inducible transcript 3 (Ddit3),

Serine/threonine-protein kinase (Sbk1) and Tyrosine-protein

kinase transmembrane receptor (Ror1) (figure 9).

In the mouse, transcripts of the following cancer genes

significantly increased in abundance: Retinoblastoma-like

protein 1 (Rbl1), Elongation factor RNA polymerase II (Ell),
Bcl-2-like protein 11 (Bcl2l11), Sal-like protein 1 (Sall1),

Map3k2, Bcl6, Tnfrsf9, CK2 target protein 2 (Csnk2a1),

Transcription factor E2f4 (E2f4), Zinc finger DHHC-type con-

taining 14 (Zdhhc14), Tpr, RAS p21 protein activator 1 (Rasa1),

Gadd45, Prohibitin (Phb2), Serine/threonine-protein phospha-

tase PP1-gamma catalytic (Ppp1cc), Lasp1, G protein-coupled

receptor kinase 4 (Grk4), LIM domain transcription factor

(Lmo4), Protein phosphatase 1E (Ppm1e), Protein sprouty

homolog 1 (Spry1), Multiple PDZ domain protein (Mpdz),

Kisspeptin receptor (Kiss1), Receptor-type tyrosine-protein
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phosphatase delta precursor (Ptprd), Small effector protein

2-like (Cdc42), AT-rich interactive domain-containing

protein 1A (Arid1a), Lymphocyte cytosolic protein 2 (Lcp2),

DNA polymerase zeta catalytic subunit (Rev3l), Tnfrsf14,
Integrin beta-6 precursor (Itgb6), Triple functional domain

protein (Trio), ATPase class VI type 11C (Atp11c) and

Serine/threonine-protein phosphatase 2A regulatory

(Ppp2r1a) (figure 9).

3.8.1. Summary of cancer genes

Genes analysed under this category were classified as ‘cancer

genes’ in a Cancer Gene Database [10] (figure 9). The timing,
duration and peak transcript abundances differed within and

between organisms. Note that some gene transcripts had two

abundance maxima. In the zebrafish, this phenomenon

occurred for Adam12, Jun, Tpr, Dusp2, Tnpo1 and Hif1a
genes and in the mouse, Bcl6, Tnfrs9, Lasp1, Cdc42 and Lcp2
genes, and is consistent with the notion that the transcript

abundances are being regulated through feedback loops.
3.9. Epigenetic regulatory genes
Epigenetic regulation of gene expression involves DNA

methylation and histone modifications of chromatin into
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active and silenced states [179]. These modifications alter

the condensation of the chromatin and affect the accessibil-

ity of the DNA to the transcriptional machinery. Although

epigenetic regulation plays an important role in develop-

ment, modifications can arise stochastically with age or in

response to environmental stimuli [180]. Hence, we antici-

pated that epigenetic regulatory genes would be involved

in organismal death.

In the zebrafish, transcripts of the following epigenetic

genes significantly increased in abundance: Jun dimerization

protein 2 (Jdp2), Chromatin helicase protein 3 (Chd3),

Glutamate-rich WD repeat-containing protein 1 (Grwd1),

Histone H1 (Histh1l), Histone cluster 1, H4-like (Hist1h46l3)

and Chromobox homolog 7a (Cbx7a) (figure 10). The Jdp2
gene is thought to inhibit the acetylation of histones and

repress expression of the c-Jun gene [181]. The Chd3 gene

encodes a component of a histone deacetylase complex that

participates in the remodelling of chromatin [182]. The Grwd1
gene is thought to be a histone-binding protein that regulates

chromatin dynamics at the replication origin [183]. The

Histh1l gene encodes a histone protein that binds the nucleo-

some at the entry and exit sites of the DNA and the

Hist1h46l3 gene encodes a histone protein that is part of the

nucleosome core [184]. The Cbx7a gene encodes an epigenetic

regulator protein that binds non-coding RNA and histones

and represses gene expression of a tumor suppressor [185].

The transcripts of both Jdp2 and Chd3 genes increased in

abundance within 0.3 h postmortem, and reached abundance

maxima at 0.5 h. Note that two different probes targeted the

Jdp2 transcript. The transcript of the Grwd1 gene increased in

abundance at 1 h and 24 h postmortem. The transcript of the

histone genes increased in abundance at 4 h postmortem,

reaching abundance maxima at 24 h. The transcript of the

Cbx7a gene increased in abundance at 12 h, reaching an abun-

dance maximum at 24 h. The transcript abundances of these

genes decreased after 24 h.

In the mouse, transcripts of the following epigenetic

genes significantly increased in abundance: Tubulin tyrosine

ligase-like family member 10 (Ttll10), Histone cluster 1 H3f

(Hist1h3f ), Histone cluster 1 H4c (Hist1h4c), YEATS domain-

containing 2 (Yeats2), Histone acetyltransferase (Kat7) and

Probable JmjC domain-containing histone demethylation

protein 2C (Jmjd1c) (figure 10). The Ttll10 gene encodes a

polyglycylase involved in modifying nucleosome assembly

protein 1 that affects transcriptional activity, histone replace-

ment and chromatin remodelling [186]. The Hist1h3f and

Hist1h4c genes encode histone proteins that are the core of

the nucleosomes [187]. The Yeats2 gene encodes a protein

that recognizes histone acetylations so that it can regulate
gene expression in the chromatin [188]. The Kat7 gene

encodes an acetyltransferase that is a component of histone-

binding origin-of-replication complex, which acetylates

chromatin and therefore regulates DNA replication and

gene expression [189]. The Jmjd1c gene encodes an enzyme

that specifically demethylates Lys-9 of histone H3 and is

implicated in the reactivation of silenced genes [190].

The transcripts of the Ttll10, Yeats2 and histone protein

genes increased in abundance 0.5 h postmortem and reached

maxima at different times, with the Ttll10 transcript reaching

a maximum at 1 to 6 h, the histone transcripts reaching

maxima at 6 and 12 h postmortem, and the Yeats2 transcript

reaching maxima at 12–24 h postmortem (figure 10). The

transcripts of the Kat7 and Jmjd1c genes increased in abun-

dance at 24 h, reaching abundance maxima at 48 h

postmortem. Note that the transcripts of the histone genes

were no longer abundant after 24 h postmortem.

3.9.1. Summary of epigenetic regulatory genes

The increased abundance of transcripts of genes encoding

histone proteins, histone–chromatin modifying proteins,

and proteins involved in regulating DNA replication at the

origin were common to the zebrafish and the mouse. These

findings indicate that epigenetic regulatory genes are still

modifying chromatin structure in organismal death and

thus change the accessibility of transcription factors to the

promoter or enhancer regions.

3.10. Percentage of gene transcripts with significant
abundance by postmortem time

The percentage of gene transcripts was defined as the

number of gene transcripts with abundances greater than

the control over the total number of transcripts with signifi-

cant abundance in a category at a specific postmortem time.

A comparison of the percentage of gene transcripts by post-

mortem time of all gene categories revealed similarities

between the zebrafish and the mouse. Specifically, most

gene transcripts increased in abundance between 0.5 and

24 h postmortem, and after 24 h the transcript abundance

drastically dropped (figure 11, ‘All genes’). It should be

noted that the same pattern was found in stress, transport

and development categories for both organisms. However,

in the zebrafish, the immunity, inflammation, apoptosis and

cancer categories differed from the mouse. Specifically, the

gene transcripts in the immunity, inflammation and cancer

categories increased in abundance much later (1–4 h) in the

zebrafish than the mouse, and the duration of elevated



100
all genes

zebrafish

immune inflammation

apoptosis transport

development cancer

postmortem (h)

%
 o

f 
tr

an
sc

ri
pt

s 
w

ith
 in

cr
ea

se
d 

ab
un

da
nc

es

stress

mouse

n = 342

n = 203

n = 14

n = 13

n = 12

n = 12

n = 14

n = 15

n = 42

n = 10

n = 15
n = 7

n = 10
n = 17

n = 23

n = 32

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0
100

90

80

70

60

50

40

30

20

10

0
L 0.1 0.3 0.5 1 4 9 12 24 48 96 L 0.1 0.3 0.5 1 4 9 12 24 48 96

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

Figure 11. Percentage of transcripts with increased abundances by postmortem time and category. Number of total genes by organism and category are shown.
‘All genes’ refer to the gene transcripts that significantly contributed to the ordination plots. Mouse is red and zebrafish is black.

rsob.royalsocietypublishing.org
Open

Biol.7:160267

15



3.5
3.0
2.5
2.0
1.5
1.0
0.5

0
–0.5

0
–0.2
–0.4
–0.6
–0.8
–1.0
–1.2
–1.4
–1.6
–1.8

0
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7
–0.8
–0.9

0 0.5

postmortem time (h)

 mouse brain

 mouse liver

ex
pe

ct
ed

 f
ol

d 
ch

an
ge

, l
og

2

zebrafish

1 6 12 24 48

Figure 12. Expected fold change of a putatively stable cRNA by postmortem
time. Fold change was determined by subtracting the log2 of the inverted
concentration in ml ng21 of the extracted cRNA of the live controls from
the inverted concentration of extracted cRNA at each sampling time.

rsob.royalsocietypublishing.org
Open

Biol.7:160267

16
abundances was much shorter. For example, while 90% of the

transcripts for genes in the immunity and inflammation cat-

egories increased in abundance in the mouse within 1 h

postmortem, less than 30% of the transcripts in the same cat-

egories were abundant in the zebrafish (figure 11), indicating

a slower initial response. It should be noted that while the

number of transcripts of immunity genes reached abundance

maxima at 24 h postmortem in both organisms, the number

of inflammation genes reaching abundance maxima occurred

at 1–4 h in the mouse and 24 h in the zebrafish. The signifi-

cance of these results is that the inflammation response

occurs rapidly and robustly in the mouse while in the zebra-

fish it takes longer to establish, which could be attributed to

phylogenetic differences. There were significant differences

in the transcript abundances of apoptosis genes between the

zebrafish and the mouse. In the mouse, the percentage of tran-

scripts of apoptosis genes reached 100% at 1 h postmortem

and remained sustained for 48 h postmortem, while the per-

centage of transcript genes with increased abundance in the

zebrafish never reached 70% and the abundances abruptly

decreased after 12 h.
3.11. Upregulation or differential mRNA stability?
Since equal amounts of RNA were used for all time points

(see below), although degradation was ongoing, it is
theoretically possible that the apparent increase in the abun-

dance of a subset of transcripts is actually due to a higher

stability of these transcripts compared to the background of

degrading transcripts. Hence, the question arises whether

higher transcript abundances are due to upregulation after

organismal death or complex decay profiles leading to rela-

tive enrichments. To determine whether the significant

increases were due to such an enrichment, the expected pro-

file of a hypothetical stable non-degrading cRNA was

calculated for the zebrafish, mouse liver and mouse brain.

In theory, the abundance of a stable non-degrading cRNA

transcript determined by the Gene Meter approach should

positively correlate to the amount of total cRNA delive-

red to the DNA microarray. Below is a rationale and the

approach used to identify stable non-degrading cRNAs in

the transcript pool.

As outlined in the Material and methods section, the

amount of sample taken from an animal was approximately

the same and the homogenization volume was the same.

The electronic supplementary material, tables S1 and S2

show the quantity of total RNA extracted from a tissue

(x, ng ml21). Since a fixed amount of RNA was taken into

labelling, the volume of the homogenized sample was pro-

portional to 1/x, i.e. the effective quantity of tissue taken

into the microarray analysis was proportional to 1/x.

Let us assume there was a subset of stable RNAs, while all

other RNA molecules were degrading. Hence, the quantity of

the stable gene transcript would be directly proportional to

the amount of tissue taken into the experiment, 1/x. In

order to provide an expected concentration–time profile for

the assumed stable cRNA, one can compare (on the log2

scale) the 1/x values for all time points. To make it relative

to the live control, the log2 value of the control will be sub-

tracted from each time point. The obtained profile will be

the expected profile (fold change) of a stable non-degrading

cRNA.

Taking into account the above considerations, we found

that the expected profile of the stable zebrafish cRNA

would have an eightfold increase at 96 h postmortem

(figure 12). By contrast, at 48 h postmortem, we found that

the expected profile of the stable cRNA in mouse liver

would have an approximately fourfold decrease, while the

stable cRNA in the mouse brain would have an approxi-

mately twofold decrease, because less tissue was taken into

the microarray analysis (since the total RNA yield increased).

It is important to note that these expected stable mouse

mRNA profiles (lower two panels of figure 12) would not

have been selected by the statistical procedure for identifying

transcriptional profiles that significantly increased in

abundance relative to the live controls.

In the zebrafish, the potentially enriched transcripts (due

to their stability) were identified by correlating their abun-

dances to the expected fold change of the stable cRNA. In

theory, potentially enriched transcripts should be positively

correlated to the expected fold change of the putatively

stable transcript. Alternatively, transcripts that are not

enriched due to stability effects should be negatively corre-

lated or not correlated at all to the expected fold change.

The correlations of the 548 gene transcripts (i.e. those that

were significantly increased in abundance with postmortem

time) ranged from highly negative to highly positive

(figure 13). Note higher frequency gene transcripts on the

left side of the histogram indicate that most transcripts
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were negatively correlated to the expected fold change, while

the lower frequency on the right side of the histogram indi-

cates a small portion of the gene transcripts were putatively

enriched than other transcripts. A standard statistical table,

using d.f. ¼ n 2 2 with direction, revealed that correlations

greater than 0.685 were statistically significant at a ¼ 0.01

(three bars on the right side of the histogram). Hence, 45 of

the 548 gene transcripts were found to be significantly

correlated to the expected fold change of the stable cRNA.

The 45 gene transcripts that were putatively enriched are

shown in table 1. Figure 14 shows the transcriptional profiles

of three selected gene transcripts compared to expected fold

change profile as shown in the top three panels. The tran-

scriptional profile of a negatively correlated gene transcript

served as a control. None of the gene transcripts from the

mouse samples were enriched because the amount of cRNA

in the tissue extract increased or stayed about the same

with postmortem time.
4. Discussion
The primary motivation for our study was driven by curios-

ity in the processes involved in the shutting down of a

complex biological system—which has received little atten-

tion so far. Other fields of research have examined the

shutdown of complex systems (e.g. societies [191], govern-

ment [192] and electrical black outs [193]). Yet, to our

knowledge, no study has examined long-term postmortem

dynamics of transcripts from vertebrates kept in their native

conditions. The secondary motivation for our study was to

demonstrate the utility of Gene Meter technology for gene

expression studies.

4.1. Why study transcriptional dynamics in death?
While the development of a complex biological system

requires time and energy, its shutdown and subsequent

disassembly entails the dissipation of energy and the unravel-

ling of complex structures and could provide novel insights

into interesting pathways. Since the shutdown of a complex

system does not occur instantaneously, not all cells in a
body will be immediately affected by pending death.

Hence, the transcript pools should contain mRNAs involved

in day-to-day survival as well as stress compensation—yet,

since death is the unequivocal end of life—one would

expect mRNAs will change with postmortem time. How

the transcription pools dynamically change with postmortem

time was the goal of this study.

As one would expect, a living system is a collection of bio-

chemical reactions linked together by the components

participating in them. These reactions depending on one

another to a certain extent, we conjecture that the observed

increases in transcript abundance are due to thermodynamic

and kinetic conditions that are encountered during organis-

mal death and that reflect, at least in part, pathways that

are used during life. For example, the increased abundances

of epigenetic regulatory transcripts suggest that histone

modification (e.g. Histh1l) and chromatin interactions (e.g.

Grwd1, Chd3, Yeats, Jmjd1c) could be taking place

(figure 10). Products of these transcripts could be responsible

for the unravelling of the nucleosomes, which enable tran-

scription factors and RNA polymerases to transcribe the

developmental control genes previously silenced since

embryogenesis (figure 8). Hence, one plausible explanation

for the increase in transcript abundances is that specific

genes are transcriptionally upregulated. The energy barrier

in this example is the tightly wrapped nucleosomes that pre-

viously did not allow access to developmental control genes.

Other energy or entropy barriers include the nucleopores

that allow the exchange of mRNA and other molecules

between the mitochondria and the cytosol (e.g. Tpr, Tnpo1,
Lrrc59), or the ion/solute protein channels (e.g. Aralar2,
Slc38a4) that control intracellular ions regulating apoptotic

pathways [194,195].
4.2. Methodological validity
The Gene Meter approach is pertinent to the quality of the

microarray output obtained in this study because convention-

al DNA microarrays yield noisy data [196,197]. The Gene

Meter approach determines the behaviour of every micro-

array probe by calibration—which is analogous to calibrating



Table 1. Positively correlated zebrafish probes and expected fold change at
a ¼ 0.01. 2, non-annotated gene. The profiles of the probes in bold are
shown in figure 14.

zebrafish probe r gene annotation

A_15_P575692 0.69 —

A_15_P573832 0.7 Arrdc3a

A_15_P204336 0.71 Chrnb2

A_15_P330956 0.71 —

A_15_P100286 0.71 Tyw5

A_15_P558612 0.73 —

A_15_P234336 0.73 —

A_15_P499242 0.74 Il6st

A_15_P170211 0.79 Cdh2

A_15_P262926 0.8 —

A_15_P105618 0.8 Gpr143

A_15_P114708 0.88 Nnmt

A_15_P121158 0.93 Tf3a

A_15_P138521 0.9 Sbno2

A_15_P147901 0.72 Slc14a2

A_15_P154461 0.84 Dbx2

A_15_P155766 0.77 Tox2

A_15_P157941 0.82 Minal

A_15_P165836 0.93 C3a

A_15_P188941 0.8 Rapgef1a

A_15_P207266 0.78 Cacnb2a

A_15_P251041 0.83 —

A_15_P251726 0.72 —

A_15_P254361 0.9 —

A_15_P262011 0.84 —

A_15_P295031 0.84 —

A_15_P309396 0.77 —

A_15_P336700 0.77 Dhrs7

A_15_P338120 0.73 —

A_15_P342270 0.82 Tcf3

A_15_P348865 0.85 Prdm16

A_15_P360015 0.7 Fhod3

A_15_P368985 0.86 Pde4d

A_15_P388050 0.83 Spata6l

A_15_P389300 0.85 Ror1

A_15_P407295 0.82 —

A_15_P452885 0.79 Cfp

A_15_P470745 0.78 Nfix

A_15_P526247 0.83 Af9

A_15_P535007 0.94 Psd3

A_15_P542897 0.74 Rps6ka3a

A_15_P544722 0.76 —

A_15_P565217 0.83 —

A_15_P569742 0.84 Efr3a

A_15_P603052 0.77 Stard13b
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a pH meter with buffers. Without calibration, the precision

and accuracy of a meter is not known, nor can one know

how well the experimental data fits to the calibration (i.e.

R2). In the Gene Meter approach, the response of a probe

(i.e. its behaviour in a dilution series) is fitted to either a

Freundlich or Langmuir adsorption model, and probe-

specific parameters are calculated. The ‘noisy’ or ‘insensitive’

probes are identified and removed from further analyses.

Probes that sufficiently fit the model are retained and later

used to calculate the abundance of a specific gene or gene

transcript in a biological sample. The models take into con-

sideration the nonlinearity of the microarray signal and the

calibrated probes do not require normalization procedures

to compare biological samples. By contrast, conventional

DNA microarray approaches are biased because different

normalizations can yield up to 20–30% differences in the

up- or downregulation depending on the procedure selected

[198–201]. Another issue with normalization is that it will

artificially increase some of the transcripts due to the denomi-

nator. For example, if one normalizes gene abundances to

the sum of all transcripts (as often done in conventio-

nal microarray studies) and the majority of transcripts

degrades with postmortem time, the normalized values of

the stable transcripts will be artificially increased due to the

decreasing denominator.

We recognize that next-generation sequencing (NGS)

approaches could have been used to monitor the increase in

transcript abundances in this study. However, the same

problems of normalization and reproducibility (mentioned

above) are pertinent to NGS technology [202]. Hence, the

Gene Meter approach is currently the most advantageous to

study postmortem gene transcript abundances in a high-

throughput manner. Moreover, a recent publication by a

group from the US National Institute of Standards and Tech-

nology used the same dilution series approach (as we did in

this study) to evaluate and calibrate RNASeq [203]. They

found RNASeq comparable to microarrays in terms of

target quantification, but not superior, as may be perceived

by the community.
4.3. Transcription versus decay
Other plausible explanations for the observed increase in

transcript abundances include enrichment of stable non-

degrading RNA in the transcription pool [204] and/or the

changing of cell types in the samples with postmortem

time. In this study, we specifically addressed the enrichment

issue by identifying 45 gene transcripts in the zebrafish that

could have been artificially ‘enriched’ after 12 h postmortem

(table 1 and figure 14). In contrast to the zebrafish, we found

none of the gene transcripts were enriched in the mouse. The

significance of this finding is that a very low percentage (less

than 4%) of the 1063 transcriptional profiles examined in our

study could be classified as ‘artificially’ enriched due to

differential stability. This inference is based on assuming

constant decay rates, but formally we cannot exclude the

possibility that complex differential stability effects might

also occur, which by themselves might be parts of regulatory

loops. Hence, it will be of interest in future experiments to

assess with more direct means the fraction of genes that get

actively transcribed after death versus those that show

complex decay patterns.
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It should be noted that a small number of genes has been

previously reported to be upregulated in cadavers. Using

reverse transcription real-time quantitative PCR (RT-

RTqPCR), a study showed significant increases in expression

of Myosin light chain 3 (Myl3), Matrix metalloprotease 9

(Mmp9), and Vascular endothelial growth factor A (Vegfa)

genes in body fluids after 12 h postmortem [205]. Interest-

ingly, we found an increased abundance of myosin-related

and matrix metalloprotease transcripts in our study. Specifi-

cally, the myosin-related genes included: Myosin-Ig (Myo1g)
in the mouse, and Myosin-IIIa (Myo3a) and Myosin-9

(Myh9) in the zebrafish. The matrix metalloproteinase genes

included the Metalloproteinase-14 (Mmp14b) gene in the zeb-

rafish. The Myo1g gene encodes a protein regulating immune

response [206], the Myo3a gene encodes an uncharacterized

protein, the Myh9 gene encodes a protein involved in
embryonic development [207], and the Mmp14b gene encodes

an enzyme regulating cell migration during zebrafish gastru-

lation [208]. The Myo1g, Myh9 and Mmp14b transcripts began

to increase right after death and reached abundance maxima

at 24 h postmortem, while the Myo3a transcript reached an

abundance maximum at 12 h postmortem. The significance

of these results is twofold: (i) two different technologies

(RT-RTqPCR and Gene Meter) have now demonstrated

increased transcript abundances and these increases have

now been reported in three organisms (human, zebrafish

and mouse); and (ii) there might be significant overlap in

gene transcripts that increase in abundance in death as we

have showed with myosin- and matrix metalloprotease

genes, which warrants further studies using other vertebrates.

The purpose of such studies would be to understand common

mechanisms involved in the shutdown of highly ordered

biological systems.

4.4. Stability of cell types
Changes of the cell types in the samples with postmortem

times could also account for the increases in the transcript

abundances with postmortem time because of the differen-

tial survival of various cell types. In the case of human

blood cells, for example, eosinophils, monocytes, neutrophils

and lymphocytes were present just after death, but at 60 h

postmortem eosinophils and monocytes were not found, at

66 h postmortem neutrophils were not found and at 86 h

postmortem lymphocytes were not found [209]. Skeletal

muscle stem cells from mouse, for example, adopt a dor-

mant cell state and retain regenerative capacity for 14–17

days after organismal death [210]. Fibroblast cells from

sheep can be cultured for 56 h [211], and fibroblast cells

from goats can be cultured for 41–160 days postmortem

[212,213]. Similarly, inner ear stem cells from mice can be

cultured after 5–10 days postmortem [214]. Taken together,

some cells are more resilient than others and are the last

ones to die. If stem cells are the last ones to die, then the

global transcriptome will become more ‘stem-like’ with post-

mortem time.

If the cellular composition of the organ/tissues did

change between sampling times, then this could contribute

to the increases in transcript abundances. Our study analysed

whole zebrafish and dissected organs of the mice that contain

multiple cell types, which could dilute the transcriptional

contribution of any one specific cell type. Current limitations

prevent us from using cell-type-specific approaches in sys-

tematically analysing the postmortem transcriptome.

Furthermore, the number of zebrafish and mouse samples

analysed so far is not sufficient to investigate the full

magnitude of transcriptional changes that could be occurring.

4.5. What do the increases in postmortem transcript
abundances mean in the context of life?

Since increases in postmortem transcript abundances

occurred in both the zebrafish and the mouse in our study,

it is reasonable to suggest that other multicellular eukaryotes

will display a similar phenomenon. What does this phenom-

enon mean in the context of organismal life? We conjecture

that the highly ordered structure of an organism—evolved

and refined through natural selection and self-organizing
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processes [215]—undergoes a thermodynamically driven

process of spontaneous disintegration through complex path-

ways, which apparently involve the increased abundance of

specific gene transcripts and putative feedback loops. While

evolution played a role in pre-patterning of these pathways,

it probably does not play any role in its disintegration fate.

However, one could argue that some of these pathways

have evolved to favour healing or ‘resuscitation’ after

severe injury, which would be a possible adaptive advantage.

The increased abundance of inflammation response tran-

scripts, for example, putatively indicates that a signal of

infection or injury is sensed by the still alive cells after

death of the body. Alternatively, these increases could be

due to fast decay of some repressors of genes or whole

pathways leading to the transcription of genes. Hence, it

will be of interest to study this in more detail, since this

could, for example, provide insights into how to better

preserve organs retrieved for transplantation.

We observed clear qualitative and quantitative differences

between two organs (liver and brain) in the mouse in their

degradation profiles (figure 2). We also showed an increase

in transcript abundances for immunity, inflammation and

cancer genes within 1 h of death (figure 11). It would be inter-

esting to explore if these differences are comparable to what

occurs in humans, and we wonder how much of the trans-

plant success could be attributed to differences in the

synchronicity of postmortem expression profiles rather than

immunosuppression agents [216,217]. Our study provides

an alternative perspective to the fate of transplant recipients

due to the increase of transcripts of regulatory and response

genes after the sample has been harvested from the donor.
5. Conclusion
This is the first comprehensive study to assess changes in

transcriptomic profiles after organismal death and raises inter-

esting questions relative to transplantology, inflammation,

cancer, evolution and molecular biology.
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