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Clinical and preclinical in vivo tracking of extracellular vesicles (EVs) are a crucial tool for the development and optimization of
EV-based diagnosis and treatment. EVs have gained interest due to their unique properties that make them excellent candidates
for biological applications. Noninvasive in vivo EV tracking has allowed marked progress towards elucidating the mechanisms and
functions of EVs in real time in preclinical and clinical studies. In this review, we summarize several molecular imaging methods
that deal with EVs derived from different cells, which have allowed investigations of EV biodistribution, as well as their tracking,
delivery, and tumor targeting, to determine their physiological functions and to exploit imaging-derived information for EV-based
theranostics.

1. Introduction

The naturally produced biological nanoparticles, termed
extracellular vesicles (EVs), are released from most of cells
into the extracellular space. These include exosomes (40–
100-nm diameter membranous vesicles of endocytic origin)
and microvesicles (large membranous vesicles of 50–500-
nm diameter), which are shed directly from the plasma
membrane [1, 2]. Proteins and lipids are themain components
of EVmembranes, which are enrichedwith lipid rafts [3]. EVs
are capable of carrying various biological materials such as
lipids, proteins, mRNA, and miRNA [3–6]. A previous study
has also demonstrated that pancreatic cancer cell-derived
EVs can contain fragments of double-stranded genomic
DNA [7]. Intercellular communication is essential to cell
development and maintenance of homeostasis in multicellu-
lar organisms. These communications between cells can be
localized or distant. Distant intercellular communication in
particular is achieved via EVs [8, 9]. A major discovery has
been that the cargo of EVs included bothmRNA andmiRNA;
mRNAs could be translated into proteins in target cells [6, 10].

The recent studies showed that the biological roles of
EVs ranged from normal physiological functions, such as
stem cells in kidney monitoring and repair [11, 12], immune

modulation [13], and tissue homeostasis [14], to contribut-
ing to the pathophysiology of several diseases [10]. EVs
can modulate immune-functional properties against tumors
and set up tumor escape mechanisms [15]. EVs are ideal
vehicles for molecule-delivery (suicidal proteins and RNAs,
small molecule drugs, etc.) to certain cells, because of their
biocompatibility, stability in blood circulation, and, most
importantly, their ability to target certain cell types [16].
Even though the first discovery of EV’s role in cell-cell
communication was made in the 1990s [17], more discoveries
continue to be made. During the past few years, there has
been enormous progress in our understanding of the function
of EVs and their possible applications in clinical settings [18],
yet more biological roles remain to be discovered. The role
of EVs in in vivo communication and their applicability as
vehicles for drug-delivery to targets require the investigation
of their biodistribution.

Noninvasive imaging modalities have the potential of
providing better understanding of the biological process and
effectiveness of EVs for various diseases by determining
the in vivo kinetics of EVs. Molecular imaging are mainly
categorized into two main technique classes, namely, direct
and indirect labeling. Direct labeling involves labeling of EVs
by means of various agents, such as magnetic particles [19],
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lipophilic tracer dyes [20], or radionuclides [21], while, in
indirect labeling, cells are genetically altered to transcribe
and translate reporter proteins, and the EVs containing the
reporter proteins are then isolated [22, 23].

Here, we will review studies that used molecular imaging
techniques to evaluate EV visualization, biodistribution, and
targeted drug-delivery in certain diseases and further discuss
important issues in this area. We also provide a general
overview and specific examples of in vivo tracking of EVs
by means of various imaging modalities, to enhance under-
standing of the roles of EVs in various pathophysiological
conditions.

2. Biogenesis of Extracellular Vesicles

EVs are secreted from various cells, such as immune cells
(T and B cells, dendritic cells, natural killer cells, mono-
cytes/macrophages, platelets, and red blood cells [RBCs])
[24–29]; mesenchymal stem cells (MSCs) [14]; and tumor
cells (glioblastoma, thyroid, lung, breast, liver, ovarian, and
colon cancers) [30–35]. Bacteria and plants also secrete EVs
[36, 37]. Even though almost all cells are able to release EVs
with various biological and pathological functions, they were
considered as “garbage bags” in the past.

2.1. Exosomes. Endocytic membrane trafficking is controlled
through several cytosolic regulatory mechanisms that dictate
the number, composition, and fate of vesicles in their lumen
(i.e., intraluminal vesicles, ILVs) and exosomes [44, 45]. Mul-
tivesicular bodies (MVBs) (Figure 1(a)), which appear along
the endocytic pathway, are characterized by the presence of
ILVs formed by inward budding of the outer cell membrane
[46]. Exosomebiogenesis and cargo sorting involves the coor-
dinated recruitment and employment of endosomal sorting
complex required for transport (ESCRT) machinery and its
associated proteins [47–49]. A study by Ostrowski et al.
established that a number of Rab family proteins (including
Rab27a and Rab27b) act as vital regulators of exosome release
[50]. However, the mechanism behind this process is not yet
completely understood.

2.2. Microvesicles. The small vesicles are shed from the
surface of many cells called microvesicles (Figure 1(a)) [51].
Microvesicles are slightly larger than exosomes and can
therefore carry more cargo load than exosomes. EVs (exo-
somes and microvesicles) can be identified under electron
microscopy by their round shape and the presence of a lipid
bilayer (Figure 1(b)).

3. Emerging Therapeutic and Diagnostic
Potential of Extracellular Vesicles

Recent studies have revealed the biopathological roles of
EVs in treatment, drug-delivery, tumor progression, and
disease diagnosis [52]. Recently, the therapeutic application
of EVs has also emerged [53]; for example, the application of
dendritic cell- (DC-) derived exosomes for cancer treatment
was recently investigated in a clinical trial (NCT01159288)
[54, 55]. MSC-EVs have been proposed as a replacement for
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Figure 1: Release of exosomes and microvesicles. (a) Exosomes
are represented by small vesicles of different size released from
multivesicular body andmicrovesicles bud directly from the plasma
membrane. (b) Typical structure of EV by TEM images and the
size of EVs is around 40–500 nm. EV; extracellular vesicle, TEM;
transmission electron microscopy.

MSCs for the treatment of various diseases, such as for tumor
inhibition and cardiac and brain injuries [56–60]. MSC-
derived exosome for Crohn’s fistula treatment was recently
under investigation in a clinical trial [61, 62].

The emerging evidence that EVs possess special charac-
teristics may indicate that they can be used to create an EV-
based drug-delivery system that is superior to synthetic drug
carriers [53]. A previous study used exosomes for delivering
curcumin as a treatment for an inflammatory disease [63]. To
enhance the function of drugs in the central nervous system,
exosomes can also carry small molecular drugs across the
blood-brain barrier [64].

Tumor-derived EVs may enhance tumor cell activity. For
example, exosomes released from breast carcinomas stimu-
late cancer cell movement, leading to establishment of distant
metastasis [65]. Recent studies showed that tumor-derived

https://clinicaltrials.gov/ct2/show/NCT01159288?term=NCT01159288&rank=1
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Figure 2: Strategy for labeling of extracellular vesicles. GFP; green fluorescent protein, DiR; near infrared fluorescent dye.

EVs promote endothelial cell migration during angiogenesis
in the tumor microenvironment via ERK1/2 and JNK signal-
ing pathways [66]. Numerous studies have shown that tumor-
derived EVs transfer oncogenic activity, thus promoting
tumor progression [67, 68]. Tumor-secreted exosomes have
been shown to facilitate tumor progression by affecting
the adhesion of the primary cancer cells and promoting
metastasis [65, 69].

Recently, other biomarker-like exosomes have been inves-
tigated. Glypican-1 and endothelial locus-1 positive exosomes
may serve as potential noninvasive diagnostic tools for
detecting the early stages of pancreatic cancer and breast can-
cer, respectively [70, 71].Multiple research groups are actively
seeking novel biomarkers, including EV-based markers, for
detecting hidden cancers at the earliest possible stage.

4. Molecular Imaging Techniques for
Tracking Extracellular Vesicles

Methods that allow EV monitoring in vivo offer several
advantages over the traditional ex vivo methods, which re-
quire sacrifice of the animal and histological analysis. Molec-
ular imaging, for example, is fundamentally noninvasive and
allows for quantitative assessment of the EV biodistribution
and the effects of EV therapy over time (Figure 2). Biolumi-
nescent imaging (BLI) and fluorescence imaging (FLI) have
the advantage of high-throughput efficiency at low cost.

BLI uses light generated from a luciferase enzyme-sub-
strate and an ultrasensitive cooled charge-coupled camera for
signal detection. In indirect labeling of EVs, the cells are first

transfected with a vector containing imaging reporter genes
(e.g., Gaussia luciferase [Gluc]). These cells then produce
Gluc mRNA which is translated into the reporter protein.
Isolation of EVs from these cells will provide EVs containing
the reporter protein from the cell. In stably transfected cells,
the reporter gene is inherited by daughter cells upon cell
division. This strategy is essential for long-term isolation of
EVs containing the reporter protein.

FLI signal generation is achieved by exciting the fluores-
cent proteins/dye at a given light wavelength and detection
of the light emission at another wavelength by means of a
charge-coupled camera. In indirect labeling of EVs with a
fluorescent protein (GFP/RFP) [23, 72], the same method
is used as that for bioluminescent reporter proteins. Direct
labeling of EVs with a fluorescent dye is a very simple
technique to perform. EVs can be washed a few times after
incubation with a fluorescent lipophilic dye [12, 73, 74], and
they are then ready for in vivo experiments. Direct labeling
of EVs with fluorescent dyes has a few drawbacks. The
exogenous dye labeling produces a nonspecific signal due
to the long half-life of the fluorescent dye and its resistance
to degradation. One of the main considerations when a
fluorescent dye is used to label the membranes of the EVs is
that the dye can be released from the EVs; this can lead to
generation of non-EV-associated signals [74–76]. Compared
to BLI, FLI is generally less sensitive, due to the higher
background signal. In most cases, FLI is used for live imaging
of shallow tissue areas.

Nuclear imaging is also a widely used molecular imaging
technique. As radionuclides emit gamma rays or positrons,
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radionuclides can be detected, even when located deep in
organs. Radionuclides can be placed inside EVs [20, 21] or be
incorporated as a label in membrane proteins of EVs [41, 42].

Magnetic resonance imaging (MRI) can be used for track-
ing EVs after labeling with ultrasmall superparamagnetic
iron oxide nanoparticles (USPIO, 4–6 nm) [20, 43]. As MRI
provides high-resolution anatomical images, we can easily
discriminate the location of the EVs. However, it is limited by
its relatively lower sensitivity of detection than that of other
molecular imaging modalities [77].

5. Tracking Extracellular Vesicles by
Bioluminescence Imaging

BLI is a powerful method for cell tracking in small animals
(such as mice) over time, without requiring the subject to
be euthanized [78–80]. Bioluminescence reporters are able to
reveal the in vivo biodistribution and allow tracking of EVs
with very high sensitivity. To date, there have been very few
studies that have used bioluminescence reporters for in vivo
visualization and tracking of the distribution of EVs (Table 1)
[22, 23, 38].

5.1. Direct Labeling Methods. To date, there has been no
report about direct bioluminescence reporter-based labeling
of EVs. Yet, it is possible to achieve labeling of EVs with
bioluminescence reporters. A few other studies have shown
that exogenous peptide, proteins, and siRNA can be loaded
into EVs [81–83]; similarly, it is possible to load exogenous
bioluminescence reporter proteins into EVs, which could be
used for visualizing and monitoring EVs in vivo in the near
future.

5.2. Indirect Labeling Methods. Gluc is a reporter protein
that emits bioluminescence when its substrate, coelenter-
azine, is present, and lactadherin is a membrane-associated
protein mainly found in exosomes. This is referred to as
Gluc-lactadherin which is eventually found in the exosomes
[23]. A previous study used melanoma cell (B16-BL6) to
produce exosomes, in which they transfected cells with a
Gluc-lactadherin construct. Intravenous injection of these
exosomes revealed for the first time that EVs could be
visualized in vivo by using bioluminescent reporter proteins
present in exosomes. This study provided the overall tissue
distribution and quantitative pharmacokinetic properties of
exosomes in vivo and proved that exosomes have very short
half-lives after systemic administration.This was not possible
with dye-based EV studies, as dye can be released from the
EVs, which can lead to non-EV-associated signals [23].

In another study, Gluc was fused to a biotin acceptor
domain in cells, which then produced the labeled EVs.
Intravenous injection of EVs derived from these cells revealed
that the EVs could be visualized in vivo and showed an organ-
specific distribution of EVs. The Gluc signal was observed in
the spleen and liver in the EV-injected mice and later in the
liver and kidney of these mice.This was eventually quantified
by determining the average bioluminescent radiance in organ
regions of the mice. The advantage of this study was that
it combined both Gluc and biotin to create an EV-specific

reporter with a high sensitivity for studying in vivo dynamics
of systemically administered EVs.The BLI revealed that most
EV-Gluc was cleared from the animals by 6-h after injection
and also showed that EVs could be targeted to tumors [22].

Another study also used Gluc-lactadherin for exosome
labeling. It clearly indicated that macrophages play a major
role in the clearance of exosomes in general, by usingBLI [38].
All three studies showed rapid in vivo distribution of EVs in
animals.

6. Tracking Extracellular Vesicles by
Optical Fluorescence

The strategy for imaging and tracking for EVs by labeling
them fluorescently has been widely used to investigate in vivo
behavior of exogenous EVs both in vitro and in vivo (Table 1)
[12, 20, 39, 40, 72, 84–86].

6.1. Direct Labeling Methods. The direct labeling protocol is
very simple and there is no need to use genetically modified
EVs (Figure 3). This simple imaging strategy, which uses
dye to label the lipid membrane of EVs, has been used to
reveal the spatiotemporal location of systemically injected
exogenous EVs in organs and target tumors [12, 40]. Grange
et al. have demonstrated that it is possible to analyze the
biodistribution of EVs by direct labeling of EVs with a
DiD dye. In particular, they observed that the labeled MSC-
derived EVs were localized within injured kidneys in vivo.
The signal generated by the EVs was maintained even 24 h
after the injection [12].

Hood et al., using a lipophilic tracer dye (DiD), showed
that the melanoma exosome prepares the way for metastasis
of this cancer to the sentinel lymph nodes [84]. Another
study used DiR labeling of EVs to show delivery of Let-7a
miRNA by exosomes to epidermal growth factor receptor-
expressing breast cancer cells in vivo, which was confirmed
ex vivo [40]. Smyth et al. compared the biodistribution and
delivery efficiency of tumor-derived exosomes and liposomes
by using a lipophilic dye (DiR). FLI revealed that tumor-
derived exosomes and liposomes had a similar clearance time
in vivo. Furthermore, this study also revealed that liposomes
and tumor-derived exosomes were not targeted to the tumor
when injected systematically. Moreover, FLI showed that
tumor-derived exosomes and liposomes injected into the
tumor stayed within the tumor [20].

Wiklander et al. used a near-infrared dye (DiR) and
studied the biodistribution profile of EVs derived from a
broad range of different cell types, namely, HEK293T, pri-
mary mouse DCs, and primary human MSCs. DiR-labeled
HEK293T EVs were subsequently injected via the tail vein
of mice, but the fluorescent signal in whole mouse imaging
did not yield sufficient accuracy to determine from which
tissue or organ the signal originated; thus, organs were
harvested and imaged ex vivo. They also showed that dif-
ferent routes of injection (intravenous, intraperitoneal, and
intramuscular) yielded different distribution patterns for EV
signals from organs and tissues. Furthermore, FLI revealed
that distributions of EVs derived from different cells yielded
different distribution patterns in internal organs. They also



BioMed Research International 5

Ta
bl
e
1:
St
ra
te
gi
es

of
in

vi
vo

tr
ac
ki
ng

of
ex
tr
ac
el
lu
la
rv

es
ic
le
s.

Im
ag
in
g

m
od

al
ity

La
be
lin

g
str

at
eg
y

Ty
pe
so

fc
el
ls

Is
ol
at
io
n
m
et
ho

d
La
be
lin

g
m
et
ho

d
In
je
ct
io
n

Si
te

Su
bj
ec
t

D
ur
at
io
n
of

tr
ac
ki
ng

Pu
rp
os
e

Cl
in
ic
al

tr
an
sla

tio
n

Re
fe
re
nc
e

BL
I

In
di
re
ct

H
EK

29
3T

ce
lls

U
C

G
lu
c

IV
M
ic
e

30
to

36
0

m
in
ut
es

Bi
od

ist
rib

ut
io
n/
Tu

m
or

Ta
rg
et
in
g

x
[2
2]

M
el
an
om

ac
el
ll
in
e

U
C

G
lu
c

IV
M
ic
e

10
to

24
0

m
in
ut
es

Bi
od

ist
rib

ut
io
n

x
[2
3]

M
el
an
om

ac
el
ll
in
e

U
C

G
lu
c

IV
M
ic
e

10
to

24
0

m
in
ut
es

Bi
od

ist
rib

ut
io
n

x
[3
8]

FL
I

D
ire

ct

M
SC

U
C

D
iD

IV
M
ic
e

10
m
in
ut
es

to
24

ho
ur
s

Ta
rg
et
in
g
to

in
ju
re
d

ki
dn

ey
x

[1
2]

M
ou

se
B1
6-
F1
0
(C

RL
64
75
)

m
el
an
om

ac
el
ls

U
C

D
iR

In
tr
ad
er
m
al

M
ic
e

48
ho

ur
s

N
od

al
tr
affi

ck
in
g

x
[3
9]

H
EK

29
3

U
C

D
iR

IV
M
ic
e

24
ho

ur
s

Bi
od

ist
rib

ut
io
n/
Tu

m
or

Ta
rg
et
in
g

x
[4
0]

4T
1,
M
CF

-7
,a
nd

PC
3
ce
lls

Su
cr
os
ed

en
sit
y
cu
sh
io
n/
U
C

D
iR

IV
an
d
IT

M
ic
e

30
m
in
ut
es

to
7

ho
ur
s

Bi
od

ist
rib

ut
io
n/
Tu

m
or

Ta
rg
et
in
g

x
[2
0]

N
I

D
ire

ct

4T
1,
M
CF

-7
,a
nd

PC
3
ce
lls

Su
cr
os
ed

en
sit
y
cu
sh
io
n/
U
C
1
1
1
In
-o
xi
ne

IV
an
d
IT

M
ic
e

30
m
in

to
7

ho
ur
s

Bi
od

ist
rib

ut
io
n/
Tu

m
or

Ta
rg
et
in
g

o
[2
0]

Ra
w
26
4.
7,
H
B1
.F
3

N
an
ov
es
ic
le
s(
se
qu

en
tia

l
fil
tr
at
io
n)

io
di
xa
no

lg
ra
di
en
t/U

C

9
9
m
Tc
-

H
M
PA

O
IV

M
ic
e

30
m
in
ut
es

to
5

ho
ur
s

Bi
od

ist
rib

ut
io
n

o
[2
3]

Er
yt
hr
oc
yt
e

U
C

9
9
m
Tc
-

tr
ic
ar
bo

ny
l

IV
M
ic
e

1h
ou

r
Bi
od

ist
rib

ut
io
n

o
[4
1]

B1
6B

L6
m
ur
in
em

el
an
om

a
ce
ll
lin

e
U
C

1
2
5
I-
bi
ot
in

de
riv

at
iv
es

IV
M
ic
e

1m
in
ut
et
o
4

ho
ur
s

Bi
od

ist
rib

ut
io
n

x
[4
2]

M
RI

D
ire

ct

M
ou

se
B1
6-
F1
0
(C

RL
64
75
)

m
el
an
om

ac
el
ls

U
C

U
SP

IO
In
tr
ad
er
m
al

M
ic
e

1h
ou

r,
48

ho
ur
s

N
od

al
tr
affi

ck
in
g

o
[4
3]

M
ur
in
ea

di
po

se
ste

m
ce
ll

(C
57
BL

/6
)

Pu
re
Ex

o�
Ex

os
om

eI
so
la
tio

n
Ki
t

U
SP

IO
IM

M
ic
e

1h
ou

r
Re

te
nt
io
n
at
in
je
ct
io
n

sit
e

o
[19

]

BL
I,
bi
ol
um

in
es
ce
nc
ei
m
ag
in
g;
FL

I,
flu

or
es
ce
nc
eI
m
ag
in
g;
N
I,
nu

cle
ar

im
ag
in
g;
M
RI
,m

ag
ne
tic

re
so
na
nc
ei
m
ag
in
g;
U
C,

ul
tr
ac
en
tr
ifu

ge
;M

SC
,m

es
en
ch
ym

al
ste

m
ce
ll;
U
SP

IO
,u

ltr
as
m
al
ls
up

er
pa
ra
m
ag
ne
tic

iro
n

ox
id
e;
IV
,i
nt
ra
ve
no

us
;I
T,
in
tr
at
um

or
;I
.M

,i
nt
ra
m
us
cu
la
r;
D
iD

an
d
D
iR
,n
ea
r-
in
fr
ar
ed

dy
es
;G

lu
c,
G
au
ss
ia
lu
ci
fe
ra
se
.



6 BioMed Research International

60 minutes30 minutes 120 minutes

PB
S 

(c
on

tro
l)

EV
-D

iR

×10
7

6.0

6.5

7.0

7.5

Figure 3: In vivo noninvasive visualization of fluorescent dye labeled EVs in nudemice. Representative in vivo fluorescent imaging of EV-DiR
or PBS (control) was administered via the tail vein in nude mice. Images were acquired at 30, 60, and 120min after injection. EV, extracellular
vesicle.

assessed how targeted EVs aswell as tumor burden influenced
the biodistribution [75]. Nevertheless, the use of fluorescent
proteins (GFP/RFP) limits the visualization of EVs in vivo.
Therefore, this technique cannot be applied to visualize EVs.

A few other studies have used lipophilic dyes to label
EVs in order to study their in vivo properties [12, 40, 75,
87, 88]. However, these dyes, including DiR, DiD, PKH26,
and PKH67, are reported to have an in vivo half-life ranging
from 5 to >100 days. Where the administered EVs have been
visualized in vivo, the persistence of the dye may outlast
the labeled EVs in vivo. In addition, labeling of EVs with
exogenous signaling agents can result in changes to the
homing characteristics of EVs, due to the labeling procedures
used.

6.2. Indirect LabelingMethods. In indirect labeling, the trans-
gene used encodes a fluorescent protein, which acts as an
intrinsically produced reporter protein. Similar approaches
for visualizing EVs have been proposed, and a few studies
have exploited imaging based on fluorescent proteins, such
as GFP, RFP, and dTomato, to study EVs both in vitro and
in vivo [23, 72, 85, 86]. A few studies have used biomarkers
in EVs, such as CD63, which was used to design a reporter
conjugated to fluorescent proteins (GFP/RFP) [86, 89]. The

efficiency of in vivo imaging of EVs with a fluorescent signal
in mice depends on the gene expression level in the cells
[90]. Unfortunately FLI of intravenously administered EVs is
problematic, due to the low signal yield of the fluorescence-
labeled EVs [91].

7. Tracking Extracellular Vesicles by
Nuclear Imaging

Nuclear imaging is widely used for preclinical and clinical
cell trafficking [77]; some nuclear imaging studies for in vivo
EV monitoring (Table 1) have been published [20, 21, 41, 42].
The knowledge that has been accumulated for tracking cells
with nuclear techniques can also be applied to tracking EVs.
Although FLI and BLI cannot be used for effective visu-
alization of EVs located in deep organs or tissues, due to
limitation of tissue penetration of optical fluorescent and
bioluminescent signals, nuclear imaging are able to visualize
EVs, regardless of their location in the body, due to the ex-
cellent tissue penetration characteristics of gamma rays [91].

7.1. Direct Labeling Methods. 111In-oxine and 99mTc-hexam-
ethylpropyleneamineoxime (HMPAO) were widely used for
labeling white blood cells in preclinical and clinical studies,
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Figure 4: In vivo noninvasive visualization of 99mTc-HMPAO
labeled extracellular vesicles (EVs) in nude mice. 99mTc-HMPAO
labeled EVs were administrated via tail vein. Image was acquired
using pin-hole gamma camera at 1 hour after injection. The image
shows liver and spleen uptake. But there was no tracer uptake in
the thyroid gland and stomach, which were visualized in free 99mTc
images.

and these were also applied for tracking EVs [20, 21]. Smyth
et al. labeled EVs using 111In-oxine and fluorescent dye and
showed similar distribution patterns [20]. 111In-oxine could
be visualized using a gamma camera or by single-photon
emission computed tomography (SPECT); 111In-oxine was
used for determining biodistribution only. As free 111In-
oxine accumulates in the reticuloendothelial system, it is hard
to distinguish whether it has been released from EVs [91].
Hwang et al. successfully labeled EVs using 99mTc-HMPAO
[21]. 99mTc-HMPAO-labeled EVs are easily visualized using
a gamma camera or SPECT. As free 99mTc-HMPAO shows
a high brain uptake and free 99mTc is taken up by the
thyroid and salivary glands, the freed form can be easily
discriminated from the labeled form (Figure 4). However, a
drawback of thismethod is the low radiochemical yield at low
EV concentrations [20, 91].

Recently, 99mTc-tricarbonyl was used for labeling EVs.
99mTc-tricarbonyl has also been used for the labeling of a
wide range of biomolecules, and it binds to several amino
acids, such as histidine, methionine, and cysteine [41]. 99mTc-
tricarbonyl-labeled EVs can be visualized using a gamma
camera or SPECT. This method showed relatively higher
labeling efficiency in RBC-derived EVs (38.8%). However,
that study only obtained 1-h images and performed image-
based analysis; therefore, further investigations may be
needed to track EVs over a longer time when using this
method.

Radioiodine (123I, 124I, 125I, and 131I) is commonly used
for diagnosis and treatment of thyroid disease [92] and for
tracking cells [93, 94]. Gamma camera and SPECT images

can be obtained using 123I or 131I and positron-emission
tomography (PET) images using 124I. Iodination of surface
protein of the cells or transfection of sodium iodide sym-
porter (NIS) to the cells was used for tracking the cells.
Similar methods could be applied to monitor EVs in vivo. To
establishmore stable radioiodine-labeled EVs, a streptavidin-
lactadherin fusion protein expressed in EVs was conjugated
with a 125I-labeled biotin derivative [42]. Gamma camera or
PET images can be obtained by changing 125I-labeled biotin
to 123I-labeled biotin or 124I-labeled biotin.

7.2. Indirect Labeling Methods. Unfortunately, there are no
articles about indirect radionuclide labeling EVs. Indirect
radionuclide labeling methods might provide additional
information. For indirect labeling, reporter gene transduc-
tions to cells before producing EVs are needed. Many kinds
of nuclear reporters are already established and selection
of appropriate reporter is crucial for successful in vivo EV
monitoring using nuclear imaging.

8. Tracking Extracellular Vesicles by
Magnetic Resonance Imaging

MRI is widely used in clinics for visualizing anatomical
structures with high-resolution images. Recently, EVs were
labeled with USPIOs, which shows decreased signal intensity
in T2-weighted images [19, 43]. Hu et al. reported that EVs
were loaded with USPIOs using electroporation (54.9𝜇g iron
per 100 𝜇g EV protein) [43]. After injection of the EVs into
the feet of the mice, MRI successfully visualized migration of
the EVs to the draining lymph nodes (Table 1).

Busato et al. labeled parent cells (adipose stem cells) with
USPIOs and collected EVs from these cells [19]. As they did
not manipulate the membrane of the EVs, the integrity of the
EVmembranes was preserved. However, the iron contents of
these EVs were lower than those reported in a previous study
(0.643 𝜇g of iron per 100 𝜇g of EV proteins) [19, 43]. They
only showed decreased signal intensity after intramuscular
injection of the EVs. For tracking EVs, a large amount of
EVs is needed to allow visualization on MRI. Although
MRI shows high-resolution images, the sensitivity of USPIOs
is relatively lower than that of optical imaging or nuclear
imaging [77]. Additionally, it is difficult to discriminate EVs
on MR images due to the decreased signal intensity achieved
with the accumulation of USPIOs.

9. Translational and Clinical Applications

Recently, EV-mediated therapies have emerged, and several
clinical trials are under investigation [53, 95]. Most of the
clinical trials focus on visualizing the treatment effect of
EVs. Visualizing the kinetics of EVs in the human body and
quantifying the EVs delivered to target lesions could reduce
unnecessary effort and expenses in trials. As indirect labeling
methods require gene transduction into cells before gathering
EVs, which could change the biological characteristics of the
cells and might cause ethical issues for clinical applications,
the method might not be appropriate for clinical trials. Opti-
cal imaging technologies suffer from the intrinsic limitations
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of signal penetration and therefore might not be effective in
human applications. Nuclear imaging using direct labeling
could be a more useful option for clinical applications, as
it is safe and has no depth limitation. Radioiodine, 99mTc,
and other radionuclides are already widely used in clinics;
and ethical and legal problems in a clinical translation study
using in vivo monitoring of EVs can be avoided by using this
method. In addition, nuclear imaging technology of EVs has
the benefit of theranostic potential by changing gamma ray
emitting diagnostic radionuclides (123I, 124I, 99mTc, 64Ga, etc.)
to beta-particle emitting therapeutic radionuclides (131I, 90Y,
177Lu, etc.) [94].

10. Conclusion

In vivo imaging of EVs is important for realizing the biology
and pathophysiology of EVs and for application of EVs as
part of the diagnostic and therapeutic approach in various
diseases. Here, we described both direct and indirect EV-
labeling strategies for bioluminescent, fluorescent, nuclear,
and MR imaging. Gluc combined with transmembrane
domains, such as lactadherin, could reveal the spatiotemporal
distribution of EVs sensitively, in a quantitative manner,
in small animals without background signals. Florescent
dye labeling of EVs is easy to perform, but it has the
inherent disadvantage of signal generation even after EV
degradation. Optical imaging has a high sensitivity without
high cost but is applicable only to small animals due to the
depth limitation. Nuclear imaging modalities, such as PET,
SPECT, and gamma camera imaging, have problems with
labeling of radionuclides but provide excellent sensitivity
and easier quantification and their clinical applications are
feasible. Multimodal imaging, which combines the strengths
of different imaging techniques to provide corresponding
information on different features of the biological process
under investigation, can offer a better solution to the technical
disadvantages of individual imagingmodalities. An appropri-
ate and specific labeling strategy for use with EVs should be
selected for each experimental setting.
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