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Abstract

Alzheimer’s disease (AD) is the disease of lost memories. Synaptic loss is a major reason for 

memory defects in AD. Signaling pathways involved in memory loss in AD are under intense 

investigation. The role of deranged neuronal calcium (Ca2+) signaling in synaptic loss in AD is 

described in this review. Familial AD (FAD) mutations in presenilins are linked directly with 

synaptic Ca2+ signaling abnormalities, most likely by affecting endoplasmic reticulum (ER) Ca2+ 

leak function of presenilins. Excessive ER Ca2+ release via type 2 ryanodine receptors (RyanR2) 

is observed in AD spines due to increase in expression and function of RyanR2. Store-operated 

Ca2+ entry (nSOC) pathway is disrupted in AD spines due to downregulation of STIM2 protein. 

Because of these Ca2+ signaling abnormalities, a balance in activities of Ca2+-calmodulin-

dependent kinase II (CaMKII) and Ca2+-dependent phosphatase calcineurin (CaN) is shifted at the 

synapse, tilting a balance between long-term potentiation (LTP) and long-term depression (LTD) 

synaptic mechanisms. As a result, synapses are weakened and eliminated in AD brains by LTD 

mechanism, causing memory loss. Targeting synaptic calcium signaling pathways offers 

opportunity for development of AD therapeutic agents.
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Introduction

Alzheimer’s disease (AD) is neurodegenerative disorder, which is characterized by 

alterations in memory formation and storage. Most cases of AD are sporadic and occur in 

the aging population (>60 years of age), but approximately 1%–2% of cases refer to early 

onset familial form of AD (40–50 years of age) [1]. Familial form of AD (FAD) is caused by 
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mutations in genes encoding Presenilin 1 (PS1), Presenilin 2 (PS2) proteins and amyloid-

precursor protein (APP) [1–4]. Several hypothesis about AD development have been 

proposed, but so-called «amyloid cascade hypothesis» is still considered to be the dominant. 

The amyloid cascade hypothesis states that overproduction and deposition of amyloid β-

peptide (Aβ) in brain tissue driving AD pathogenesis [5]. Therefore, much effort was spent 

to develop agents which will reduce Aβ production or eliminate Aβ from the brain. Most 

drugs developed based on this approach failed to show any potential benefit for patients in 

clinical trials [6], although some promising trends have been recently reported in the trial of 

anti-Aβ antibody aducanumab [7]. These failures suggest that we urgently needed new 

approaches to AD treatment in addition to targeting Aβ. We and others previously proposed 

that neuronal Ca2+ dyshomeostasis has an important role in AD [8–12]. In this review, we 

will discuss Ca2+ signaling alterations observed in AD and point new ways of disease 

modifying drug development based on it.

Loss of synapses in Alzheimer disease

Several pathological hallmarks such as shrinkage of hippocampal and cortex brain regions, 

amyloid plaque deposition, intracellular neurofibrillary tangles and activated microglia are 

observed in AD patients. Another AD marker is a loss of synapses and changes in the shape 

and size of dendritic spines [13, 14]. Synaptic alterations observed at early stages of disease 

[15] and correlate strongly with cognitive decline in AD patients [16]. Synapse is formed by 

presynaptic axon ending and by postsynaptic dendritic spine. According to morphological 

structure, dendritic spines are classified into three groups: mushroom, thin and stubby spines 

[17, 18]. Mushroom spines, which are large and form strong synaptic contacts, were 

proposed to represent stable “memory spine”, while thin spines are “learning spines” which 

are responsible for formation of new memories [19]. We and others previously proposed that 

mushroom spines are strongly eliminated in AD and that loss of mushroom spines may 

underlie cognitive decline during the progression of the disease [20–22]. Consistent with this 

hypothesis, reduction in hippocampal mushroom spines was observed in different 

experimental mice models of AD, including PS1-M146V-KI mice [23], newly generated 

APP-KI mice [24, 25], in conditions of amyloid synaptotoxicity in vivo and in vitro [26], 

and ex vivo in hippocampal slice cultures from APPSDL transgenic mice [27, 28]. We 

suggest that mushroom spines loss is an early event, which precedes more severe 

neurodegenerative changes. Thus, we reasoned that stabilization of mushroom spines may 

help to prevent eventual loss of memories of AD patients. What cell biological mechanism is 

responsible for dendritic spine alterations in AD? In this review we discuss the hypothesis 

that dysregulation of neuronal Ca2+ signaling plays an important role in destabilization of 

synaptic spines in aging and AD brains.

Presenilins and neuronal calcium homeostasis

Genetic mutations in presenilins is one of the major causes of familial AD (FAD) [1–4]. 

Presenilins together with nicastrin, APH-1 and PEN-2 form the γ-secretase complex that 

cleaves several substrates including amyloid precursor protein (APP) [29]. Sequential 

cleavage of APP by β- and γ-secretases constitutes amyloidogenic pathway that leads to 

production of toxic Aβ peptides. FAD-associated mutations in presenilins disrupt the 
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function of γ-secretase. There is a debate on whether FAD mutations in presenilins 

upregulate or downregulate γ-secretase activity [30–32]. Presenilins also exert a number of 

γ-secretase- independent functions [33]. One of these functions is related to Ca2+ signaling. 

The connection between presenilins and Ca2+ signaling was initially uncovered when it was 

reported that fibroblasts from FAD patients release supranormal amounts of Ca2+ in 

response to InsP3 [34]. Similar results were obtained in experiments with cells expressing 

FAD mutant presenilins [35] and in cortical neurons from FAD presenilin mutant knock-in 

mice [36, 37]. To explain these results it has been suggested that mutant presenilins affect 

store-operated Ca2+ influx [38, 39], increase activity and/or expression of intracellular Ca2+ 

release channels such as RyanR [37, 40–42] and InsP3R [43–45] or modulate function of 

SERCA ER Ca2+ pump [46]. We proposed that presenilins form passive ER Ca2+ leak 

channel, the function that is disrupted by many but not all FAD mutations [47–50] (Fig 1). 

This idea created some controversy and it was challenged [51–53]. However, independent 

experimental support for leak function of presenilin began to accumulate [54, 55]. 

Importantly, recent unbiased screen for modulators of intracellular Ca2+ homeostasis 

revealed key role of presenilins in mediating passive Ca2+ influx from ER, in agreement 

with the “leak channel” hypothesis [56, 57]. A large hole that traverses through the entire 

protein was observed in the recent high resolution crystal structure of archaeal presenilin 

homologue PSH1 [58]. The authors noted that this hole is large enough to allow passage of 

small ions [58]. Interestingly, PSH1 monomer in this crystal structure adopts a fold similar 

to the seven-helix fold of the ClC chloride channel family [59]. These latest evidence 

provide additional support to the “ER Ca2+ leak channel hypothesis”.

Ryanodine receptors in AD

There are several lines of evidence supporting dysregulation on RyanR-mediated Ca2+ 

signaling in AD. Post-mortem hippocampal brain specimens from early-stage AD patients 

display increased [H]3ryanodine binding, indicative of increased RyanR protein levels 

hippocampal regions (subiculum, CA2 and CA1) compared to non-demented controls [60]. 

These results were recently supported in a study where post-mortem analysis of brain from 

individuals with mild cognitive impairment (MCI) at high risk for developing AD revealed 

the up-regulation of RyanR2 [61]. Recent data suggest that RyanRs are increased in 

expression and function in FAD models, particularly in the hippocampus and cortex of PS1-

M146V knock-in (KI) mice [37, 40, 50] and in transgenic CRND8 (APP695(KM670/671NL 

+ V717F) mice [62]. The up-regulation of RyanRs may be a part of AD pathology, but it 

may also be a protective and/or compensatory response to neuronal Ca2+ dysregulation 

(reviewed in [63]).

One approach used to dissect this issue is to obstruct the effects of RyanRs using 

pharmacological inhibitors or functional blockers. In our previous studies, we observed that 

long-term feeding of the RyanR inhibitor dantrolene exacerbated amyloid plaque formation 

and resulted in the loss of hippocampal synaptic markers and neuronal deterioration in 8 

month old APPPS1 mice [50]. In contrast, studies from other groups showed that short term 

treatment with dantrolene was able to stabilize Ca2+ signals, ameliorate cognitive decline 

and reduce neuropathology, amyloid load and memory impairments in various AD mouse 

models [64–66], suggesting that blocking RyanR activity may actually be beneficial in the 
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context of AD. One potential problem with interpreting these results is that specific RyanR 

inhibitors do not exist and the drug dantrolene, used in most studies, has additional targets 

such as store-operated Ca2+ channels [67]. Moreover, dantrolene is specific for skeletal 

muscle isoform RyanR1 [68], and does not block neuronal RyanR2 and RyanR3 effectively.

To resolve this issue, in the recent studies we took a genetic approach and generated 

APPPS1x RyanR3−/− mice [69]. We compared the phenotype of APPPS1x RyanR3−/− to the 

phenotype of WT, RyanR3−/− and APPPS1 mice. In this analysis we discovered that 

RyanR3 appears to play a dual role in the context of AD pathology, rather than an invariable 

positive or negative effect. In the young APPPS1 mice (≤3 month old) deletion of RyanR3 

was detrimental and enhanced AD pathology [69]. We concluded that RyanR3 plays an 

important protective role in early stages of AD by helping to reduce neuronal excitability 

and activity-dependent Aβ production. These data support the hypothesis that blockade of 

RyanRs in the early stages of AD progression would produce a more aggressive AD 

phenotype compared to the placebo group, as we previously suggested [50, 63, 70]. In 

contrast, in older APPPS1 mice (≥6 month old) deletion of RyanR3 resulted in beneficial 

effects and reduced AD pathology [69]. These results consistent with reports that dantrolene 

exerted beneficial effects in several AD mouse models [64–66] and suggested that blocking 

RyanR is a viable therapeutic strategy. This idea is reviewed in depth by Dr. Grace 

Stutzmann and her colleagues in the accompanying review article [71].

Disruption of nSOC signaling in mouse models of AD

Another Ca2+ signaling defect in AD neurons is related to dysfunction of neuronal store-

operated Ca2+ entry (SOC) pathway. The neuronal function of SOC pathway is poorly 

understood, however key molecular components of SOC are expressed in the brain and 

enriched in hippocampus. SOC activation is mediated by STIM proteins, which act as ER 

Ca2+ sensors. STIM2 protein is highly enriched in hippocampus and STIM1 is enriched in 

cerebellum. Recent report demonstrated impaired spatial memory in forebrain-specific 

double knockout of STIM1 and STIM2 proteins [72]. Differential role of STIM1 and STIM2 

proteins in control of neuronal SOC was demonstrated [73]. In our studies we discovered 

that expression of STIM2 is downregulated in hippocampal neurons PS1-M146V-KI and 

APP-KI neurons and in post-mortem samples from AD patients [23, 24]. We reasoned that 

reduction in STIM2 expression level is a compensatory response to ER Ca2+ overload in 

these models. We further proposed that downregulation of STIM2 and synaptic SOC is 

responsible for loss of mushroom spines in PS1-M146V-KI and APP-KI in hippocampal 

neurons [23, 24] (Fig 1). Indeed, expression of STIM2 resulted in rescue of mushroom spine 

loss in PS1-M146V-KI and APP-KI hippocampal neurons [23, 24] and in neurons exposed 

to Aβ oligomers [26].

Based on these results we propose that positive modulators of nSOC activity may be 

considered as potential therapeutics agents for preventing synaptic and memory loss in AD 

[21, 23, 24, 26, 74]. However, in order to develop effective drug the knowledge of molecular 

identity of nSOC channels is necessary. The candidates for such role are members of Orai 

and/or TRPC families. Expression of Orai2 is enriched in hippocampus [75]. Association of 

neuronal STIM2 with Orai1 was demonstrated in biochemical experiments [76] and the 
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functional role of Orai1 protein in control of synaptogenesis in hippocampal neurons has 

been recently described [77]. TRPC proteins have been demonstrated to play a role in 

neuronal Ca2+ signaling in multiple studies [78, 79]. Brain overexpression of TRPC6 

channels resulted in spine proliferation and enhanced memory performance in transgenic 

mice [80], suggesting a potential role for TRPC6 in mediating nSOC. Interestingly, TRPC6 

is activated by hyperforin [81] and it has been demonstrated in the previous studies that 

hyperforin and its derivatives were able to prevent beta-amyloid neurotoxicity and spatial 

memory impairments in AβPPSwe/PSEN1 E9 (AβPP/PS1) transgenic mice [82–84]. 

TRPC6 was also recently demonstarted to interact directly with APP and to affect APP 

cleavage by γ-secretase [85]. Future studies will determine the potential role of Orai and 

TRPC channels in supporting STIM2-gated nSOC and will help to establish if positive 

modulators of these channels exert beneficial effects in AD.

CaMKII and CaN “tug of war” and AD pathogenesis

Another possibility for the development of disease preventing therapies is to target signaling 

pathways downstream from synaptic Ca2+ dysregulation. Spine Ca2+ signaling sets up a 

balance between activities of Ca2+-calmodulin-dependent kinase II (CaMKII) and Ca2+-

dependent phosphatase calcineurin (CaN). Both CaMKII and CaN are enriched in the brain 

and extremely abundant in synaptic locations [86, 87]. CaMKII is a holoenzyme of 12 

subunits, each derived from one of four genes (α, β, γ and δ). In the brain αCaMKII and 

βCaMKII are the most abundant subunits, expressed at the ratio 3:1. The total concentration 

of CaMKII in the hippocampal spines was estimated to be on the order of 100 μM [88, 89]. 

CaMKII holoenzymes are activated by the binding of Ca2+/CaM. Following activation, 

CaMKII can undergo inter-subunit autophosphorylation at residue T286 (for αCaMKII), that 

results in “locking” CaMKII in an active state independently from Ca2+ levels. Presence of 

p(T286)-αCaMKII at synaptic locations is essential for LTP and it has been proposed to be 

critical for memory formation [90, 91], an idea supported by observation of LTP and 

memory defects in T286A αCaMKII mutant mice [92]. The role of αCaMKII T286 

autophosphorylation in memory maintenance is less clear [91, 93]. CaN (PP2B) is a protein 

phosphatase composed of a large catalytic (CaNA) and a small regulatory subunit (CaNB). 

Increase in Ca2+ concentration leads to Ca2+ association with EF hand motifs in CaNB, 

partial activation of CaN and exposure of Ca2+-CaM binding site on CaNA. Association of 

Ca2+/CaM with CaNA then causes full activation of CaN [86, 94]. Activation of CaN in 

hippocampal neurons is essential for induction of LTD [95, 96]. Overexpression of CaN in 

the forebrain of mice impaired the transition from short-term to long-term memory as well 

as an intermediate form of LTP [97]. Conditional genetic knockout of CaN in mouse 

forebrain resulted in impairment of hippocampal-dependent tasks including working and 

episodic memory and blocked LTD [98].

As it is clear from this brief description, both CaMKII and CaN play key and opposing roles 

in synaptic plasticity and both enzymes are regulated by spine Ca2+ in a complex manner. 

Experimental evidence indicated that CaMKII functions as a high-frequency activity 

detector that stabilizes the spines (by LTP-like mechanism), whereas CaN is responsive to 

low frequency stimulation and destabilizes the spines (by LTD-like mechanism) [96, 99]. A 

proposed allosteric model suggests that CaM is more likely to activate either CaN or 
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CaMKII depending on local Ca2+ concentration [100]. Intense and transient Ca2+ increase 

through NMDARs following tetanic stimulation result in the preferential activation of 

CaMKII within the dendritic spines. However, as Ca2+ decreases, but before it returns to 

baseline, CaM is more likely to bind and activate CaN [100]. CaN activates PP1, and PP1 in 

turn dephosphorylates CaMKII, consequently decreasing its kinase activity [95].

Because both CaMKII and CaN are Ca2+-dependent, subtle changes in synaptic Ca2+ 

signaling cause shift in the balance of CaMKII and CaN activities. The balance between 

activities of CaMKII and CaN appear to be shifted in AD synapses in favor of CaN (Fig 1) 

[11, 101]. Consistent with this hypothesis, a shift in the balance between LTP-like and LTD-

like mechanisms has been recently reported based on the analysis of synaptic plasticity in 

mouse model of AD [102]. It has been proposed that deranged synaptic Ca2+ signaling 

causes aberrant metaplasticity in AD by shifting a balance in induction of LTP and LTD 

[103]. In support of these functional arguments, biochemical analysis revealed alterations in 

CaMKII localization and expression in AD brains. It was discovered that p(T286)-αCaMKII 

is reduced at synaptic locations in hippocampus of AD patients and in mouse hippocampal 

neurons treated with Aβ [104]. The degree of p(T286)-αCaMKII loss at synaptic locations 

correlated with severity of the disease [104]. These results suggested that reduction in 

synaptic CaMKII activity may play an important role in AD pathogenesis [105]. In our 

experiments we observed direct correlation between reduced nSOC, levels of synaptic 

p(T286)-αCaMKII and mushroom spine loss in mouse models of AD [23, 24, 26] (Figure 

1). Importantly, STIM2 overexpression rescued p(T286)-αCaMKII levels [23, 24, 26]. The 

exact mechanism how nSOC influences synaptic CaMKII function is unclear. Dendritic 

spines have a poor intrinsic buffering capacity for Ca2+, and action potentials may increase 

Ca2+ only very briefly. It is possible that nSOC activity is necessary to support CaMKII 

autophosphorylation when high-frequency stimulation ceases. While activity of synaptic 

CaMKII is reduced in AD, activity of CaN appear to be enhanced. Superactivation of CaN in 

human AD samples was reported in biochemical experiments [106, 107]. Activation of CaN 

in AD human samples appears to occur due to calpain-mediated cleavage and 

hyperactivation. Importance of CaN in AD has been highlighted by previous studies in AD 

cellular and animal models. It has been shown that CaN mediates both the neurotoxic and 

cognitive effects of Aβ oligomers [108–114]. Beneficial effects of CaN inhibition have been 

demonstrated in several AD mouse models [108, 110, 111, 114–116]. It has been shown that 

CREB phosphorylation and LTP expression, which are disrupted by Aβ oligomers, are 

restored following FK506 treatment in hippocampal slice experiments [111]. These findings 

lead to proposal that CaN overactivation in one of the driving forces of AD pathology [117]. 

Very importantly, recent analysis revealed significantly reduced incidence of AD in 

transplant patients treated with calcineurin inhibitor FK506 [118]. These findings provide 

strong support to the hypothesis that excessive activation of CaN plays a key role in spine 

loss in AD.

Future directions

Synaptic Ca2+ dysregulation appears to play an important role in synaptic loss in AD. This 

knowledge provides a number of potential therapeutic targets for prevention of memory loss 

in AD (Fig 1). Potential approaches include modulation of RyanR2 activity and activity of 
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nSOC channels. Molecular identity of nSOC channels needs to be established to facilitate 

these efforts. Pharmacological tools aimed at restoring the balance between CaMKII and 

CaN activities in synaptic spines may also provide a potential for therapeutic interference. It 

is necessary to establish if beneficial effects can be achieved following inhibition of CaN 

without immunosuppression side-effects. It is also important to identify downstream relevant 

targets of CaMKII and CaN at the synapse.
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Highlights

Synaptic loss is a basis for memory loss in Alzheimer’s disease (AD)

Dysregulation of synaptic calcium (Ca2+) signaling plays an important role in 

synaptic loss in AD

Function of ryanodine receptors and store-operated calcium channels is abnormal 

in AD neurons

There is a shift in the balance of Ca2+-calmodulin-dependent kinase II (CaMKII) 

and Ca2+-dependent phosphatase calcineurin (CaN) activities at the synapse

Balance between long-term potentiation (LTP) and long-term depression (LTD) 

synaptic mechanisms is tilted in AD spines, causing elimination of synapses by 

LTD-like mechanism
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Figure 1. Ca2+ dysregulation in AD and synaptic loss
Amyloid β-peptide (Aβ) is generated by sequential cleavages of amyloid-precursor protein 

(APP) by β-secretase (β) and γ-secretase (γ). Aβ is able to form Ca2+-permeable pore in 

cell membrane. Aβ affects activity of synaptic NMDAR and mGluR5. Glutamate stimulates 

activation of mGluR1/5 receptors, production of IP3 and IP3R1-mediated Ca2+ release from 

the ER. Presenilins (PSEN) acts as Ca2+-leak pore. Many familial AD mutations disrupt this 

function of presenilins, which leads to ER Ca2+ overload and subsequent downregulation of 

neuronal store-operated calcium entry (nSOC) gated by STIM2. Increased ER Ca2+ levels 

result in enhanced Ca2+ release through IP3R1 and RyanR2. Dysregulated spine Ca2+ 

signals lead to reduction in CaMKII activity and enhanced CaN activity, subsequent 

facilitation of LTD and inhibition of LTP and loss of synapses. Abbreviations used in figure: 

AD - Alzheimer’s disease, NMDAR - N-methyl-D-aspartate receptor, mGluR1/5 - 

metabotropic glutamate receptor type 1 or 5, IP3 - inositol trisphosphate, IP3R1- inositol 

trisphosphate receptor, ER - endoplasmic reticulum, RyanR2 - ryanodine receptor type 2, 

CaMKII - Ca2+/calmodulin-dependent protein kinase II, CaN – calcineurin, LTD - long-term 

depression, LTP - long-term potentiation, Glu - glutamate.
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