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Abstract

Despite extensive research into executive function (EF), the precise relationship between brain 

dynamics and flexible cognition remains unknown. Using a large, publicly available dataset (189 

participants), we find that functional connections measured throughout 56 minutes of resting state 

fMRI data comprise five distinct connectivity states. Elevated EF performance as measured 

outside of the scanner was associated with greater episodes of more frequently occurring 

connectivity states, and fewer episodes of less frequently occurring connectivity states. Frequently 

occurring states displayed metastable properties, where cognitive flexibility may be facilitated by 

attenuated correlations and greater functional connection variability. Less frequently occurring 

states displayed properties consistent with low arousal and low vigilance. These findings suggest 

that elevated EF performance may be associated with the propensity to occupy more frequently 

occurring brain configurations that enable cognitive flexibility, while avoiding less frequently 

occurring brain configurations related to low arousal/vigilance states. The current findings offer a 

novel framework for identifying neural processes related to individual differences in executive 

function.

Keywords

cognitive flexibility; dynamic functional network connectivity; executive function; human 
connectome project; resting-state fMRI

*Corresponding authors: Jason S. Nomi, Ph.D. Department of Psychology. University of Miami. P.O. Box 248185. Coral Gables, FL 
33124, USA, Tel: +1 305-284-3265. fax: +1 305-284-3402. *Corresponding authors: Lucina Q. Uddin, Ph.D. Department of 
Psychology. University of Miami. P.O. Box 248185. Coral Gables, FL 33124, USA. Tel: +1 305-284-3265. fax: +1 305-284-3402. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2018 February 15.

Published in final edited form as:
Neuroimage. 2017 February 15; 147: 861–871. doi:10.1016/j.neuroimage.2016.10.026.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Executive function (EF) allows individuals to plan for, and flexibly adjust to, changes in the 

environment to pursue certain courses of action over others. Neural networks underlying EF 

have traditionally been investigated using static functional network connectivity approaches 

(sFNC) that assume invariant temporal coupling between brain areas throughout a functional 

magnetic resonance imaging (fMRI) scan. Such approaches have identified several brain 

networks related to EF processes. These include the attention, salience, and cognitive control 

networks (Dajani and Uddin, 2015) that are composed of frontal, insular, cingulate, and 

parietal regions (Niendam et al., 2012) engaged during working memory, interference 

control, and cognitive flexibility (Diamond, 2013). Additionally, the default mode network 

(DMN) tends to disengage during cognitively demanding tasks (Shulman et al., 1997), and 

individual differences in behavioral performance variability are related to competitive 

relationships between the DMN and “task-positive” networks (Kelly, Uddin et al, 2008 

Neuriomage). Just as earlier models proposed that distributed brain networks give rise to 

neurocognitive functions such as attention, language, and memory (Mesulam, 1990), EF 

appears to rely on several large-scale brain networks working in cooperation or opposition to 

execute goal-directed behaviors (Dajani and Uddin, 2015).

Although sFNC analyses have increased our understanding of the neural substrates of EF, 

temporal coupling between brain regions is increasingly viewed as time-variant rather than 

time-invariant (Hutchison et al., 2013a). New techniques such as dynamic functional 

network connectivity (dFNC) take into account the mutability of functional connections 

across time, rather than focusing only on the dominant patterns of connectivity for any 

particular brain region or network (Allen et al., 2014; Chang and Glover, 2010). This 

network science approach that identifies time-varying functional relationships between brain 

regions has recently been described as the “chronnectome” approach (Calhoun et al., 2014). 

Due to multifarious neural network involvement underlying EF, chronnectomic approaches 

are vital for a more nuanced understanding of network interactions supporting these abilities.

A limited number of studies have investigated the relationship between dynamic brain 

organization and EF by focusing on individual networks and brain areas. Recently, Braun et 

al. (2015) applied dynamic graph theoretical metrics to fixed-length sliding windows to 

investigate dynamic functional coupling across working memory tasks. They demonstrate 

similar node network allegiance changes across occipital-parietal and frontal networks 

during a 0-back task, but increased node network allegiance changes in frontal compared to 

occipital-parietal networks in a 2-back task. Jia et al. (2014) used multi-level adaptive 

evolutionary clustering of variable-length sliding windows to examine how dynamic 

functional coupling between individual brain areas during resting state fMRI (rsfMRI) was 

related to EF task performance completed outside of the scanner. They found that lower 

functional coupling transition time between brain areas, indicating greater functional 

dynamics or neural flexibility, predicted more variance in EF performance than sFNC 

functional coupling measures. Yang et al. (2014) used hierarchical clustering of fixed sliding 

windows to examine how dynamic functional connections of the posteromedial cortex 

during rsfMRI were related to an EF task completed outside of the scanner. They found that 

individuals who spent a greater amount of time in a dynamic state indexing the functional 

connections of a visual subregion of the posteromedial cortex performed better on a mental 

flexibility task.
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The current study explores how chronnectomic characteristics of whole brain functional 

connectivity states are related to individual differences in EF. We applied k-means clustering 

to fixed-length sliding windows utilizing functional coupling metrics derived from a data-

driven whole brain independent component analysis (ICA) parcelletion to identify brain 

states comprised of large-scale neural networks. Brain state characteristics such as frequency 

of occurrence, dwell time, and number of transitions between states were identified, and the 

neural flexibility of each state was quantified by measuring the variability of functional 

coupling between independent components within that state. Based on previous work 

showing that neural flexibility is related to cognitive performance (Braun et al., 2015; Jia et 

al., 2014), we predicted that characteristics of brain states showing greater functional 

coupling variability would be related to individual differences in EF performance. This 

approach allows examination of the hypothesis that individuals exhibiting specific intrinsic 

neural flexibility signatures as indexed by dFNC may be more adept at behaviors requiring 

flexible cognition.

Materials and Methods

Participants and Data

Data from a parcellated connectome consisting of 489 subjects was downloaded from the 

Human Connectome Project (HCP) website (https://db.humanconnectome.org/data/projects/

HCP_500, labeled as the “HCP Parcellation+Timeseries+Netmats (PTN)” release). Subjects 

that were left-handed or related to each other were eliminated from the subject pool, 

resulting in 189 subjects (all right-handed; 97 female; 22–35 years old, M = 28.62, SD = 

3.86). The data were preprocessed and subjected to an independent component analysis 

(ICA) by the HCP team as briefly described below.

The resting state fMRI (rsfMRI) data were acquired on a 3T Siemens “Connectome Skyra” 

scanner (TR = 0.72 secs) while participants were instructed to lie still with their eyes open 

and fixated on a cross in the center of a screen. Multiband slice acquisition was utilized (9 

groups of 8 slices were acquired simultaneously for a total of 72 slices; TE = 33ms; field of 

view = anterior – posterior at 208 mm, left-right or right-left using a 104 x 90 matrix, 

inferior-superior at 144 mm; resolution = 2 x 2 x 2 mm) to acquire 4 separate 14 minute 

sessions (1200 volumes per session; 4800 volumes total); phase encoding was 

counterbalanced so that 1 left-right and 1 right-left session was acquired on day one (28 

mins), and another left-right and right-left pair was acquired on day two (28 mins). For more 

details, see (Smith et al., 2013).

Minimal data preprocessing was applied consisting of removal of spatial distortions, 

realignment, co-registration to a structural image, bias field reduction, and standardization to 

MNI 2 x 2 x 2 mm space. ICA-Fix was also applied to remove non-neuronal noise signals 

from the resting state data. Additional regression of 24 movement parameters (6 rigid-

parameter time series, their temporal derivatives, plus all 12 regressors squared) was also 

conducted. For more details, see (Glasser et al., 2013; Salimi-Khorshidi et al., 2014).
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Independent Component Analysis

The data from 489 subjects were subjected to an ICA in FSL using various model orders of 

25, 50, 100, 200, and 300 independent components (ICs) by the HCP team. The 100 model 

order ICA was chosen for this study as it consisted of ICs that represented individual brain 

areas of networks that were not separated in lower model orders of 25 and 50, but were not 

extremely parcellated as in model orders of 200 and 300. The main difference between 

model orders of 100, 200, and 300 was the observation of additional extreme parcellation of 

visual and cerebellar areas in model orders of 200 and 300. Additionally, previous research 

shows that ICA model orders over 100 show lower repeatability than lower model order 

numbers (Abou - Elseoud et al., 2010). Thus, the model order of 100 ICs was chosen for this 

study as it represented a balance between a necessary parcellation of major neural networks 

in order to map the dynamic connections between individual brain areas, and the avoidance 

of the extreme parcellation of visual and cerebellar brain areas. Finally, the FSL dual-

regression function was used to extract individual time series from each subject related to 

each component (see http://humanconnectome.org/documentation/S500/

HCP500_GroupICA+NodeTS+Netmats_Summary_28aug2014.pdf).

Post-Processing

Time courses were downloaded as a 4800 (volumes) x 100 (independent components) matrix 

for each of the 189 subjects of interest and were post-processed using the GIFT toolbox 

(http://mialab.mrn.org/software/gift/) that included detrending, despiking (using AFNI’s 

3dDespike algorithm), and lowpass filtering (0.15 Hz). Despiking replaces data points larger 

than the absolute median deviation with a third order spline fit to the clean portions of the 

data. This is similar to the “scrubbing” method (Power et al., 2012) with the advantage that it 

does not eliminate volumes that would disrupt temporal continuity that is vital for a dFNC 

analysis. Previous research has shown that despiking decreases outlier impact on functional 

connectivity analyses (Allen et al., 2014). An average of 0.0415% of volumes were despiked 

for each subject. The average percent of consecutive windows despiked across all subjects 

can be found in Supplementary Table 1. In order to determine the influence of these post-

processing steps, additional analyses were conducted without detrending, despiking, or 

filtering (See supplementary materials).

Static Functional Network Connectivity

Pearson correlations were calculated between independent components using the post-

processed data, resulting in 4,950 functional connections that were fit into a 100 x 100 

correlation matrix.

Dynamic Functional Network Connectivity

Dynamic functional network connectivity (dFNC) was calculated using the GIFT toolbox 

using sliding windows of 64 volumes (46.08 seconds) and slid in steps of 1 TR. The choice 

of window length was based on previous research also utilizing window sizes between 30–

60 seconds (Allen et al., 2014; Hutchison and Morton, 2015; Nomi et al., 2016; Rashid et 

al., 2014; Yang et al., 2014), and research showing that such window sizes capture 

variability not found in longer windows (Allen et al., 2014; Hutchison et al., 2013b). All 
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dFNC analyses were repeated using sliding windows of 128 volumes (See Supplementary 

Materials). To account for possible noise due to limited time points in each window, a 

tapered window (rectangle convolved with a Gaussian) was utilized to calculate covariance 

values (Allen et al., 2014; Nomi et al., 2016; Rashid et al., 2014; Yang et al., 2014). This 

produced a covariance matrix that was 4,736 (sliding windows) x 4,950 (paired connections) 

per subject. To further account for possible noise due to limited time points, the covariance 

matrix was regularized using a L1 constraint by optimizing the regularization parameter 

lamba (λ) to each subject in a cross-validation framework where the log-likelihood of 

unseen data (windowed covariance matrices) was evaluated separately for each subject in 

order to produce a correlation matrix (Allen et al., 2014; Nomi et al., 2016; Rashid et al., 

2014; Yang et al., 2014). Correlation matrices of all sliding windows were then concatenated 

across subjects and subjected to k-means clustering.

The optimal number of clusters (k) was chosen by applying the elbow criterion to a subset of 

sliding windows called subject exemplars. Subject exemplars are defined as the sliding 

windows from each subject representing local maxima of functional connectivity variance, 

resulting in 178.92 +/− 11.67 (mean, SD) windows per subject (range: 144 – 212) for 33,816 

windows. Subject exemplars are used in order to cut down on processing costs associated 

with choosing the optimal number of k. Random subsets of subject exemplars were 

subjected to k-means clustering using values of 2–20. The elbow criterion was then applied 

to the cluster validity index, the ratio comparing within- and between-cluster distances, to 

identify the optimal number of k. This method has identified the optimal number of clusters 

in simulated and real data using bootstrap and split-half resampling approaches (Allen et al., 

2014). Twenty iterations of k-means clustering using values 2–20 were conducted with each 

iteration identifying the optimal number of clusters as being k=5. K-means clustering using 

k=5 (see Supplementary Materials for results obtained with 4, 6, and 7–10 cluster solutions) 

was then conducted on the concatenated matrix consisting of all sliding windows from all 

189 subjects using the “city block” distance function (Allen et al., 2014). This produced 5 

brain states found throughout the 56 minute rsfMRI data, with each sliding window being 

assigned to a particular brain state. Importantly, this approach has been shown to reliably 

identify clusters of meaningful information, as this exact methodology applied to Fourier 

domain phase randomized IC time-courses produces unstructured clusters of brain states 

(Allen et al., 2014).

Additional dFNC measures were then calculated on the resulting brain states for each 

participant consisting of a) frequency of occurrence, b) dwell time, c) the number of overall 

transitions between states, and d) the probability of transitions between specific states. 

Frequency was calculated as the percent that a brain state occurred throughout the duration 

of the rsfMRI data. Dwell time was calculated as the average length of time, measured in 

sliding windows, that a participant stayed in a given brain state. The number of transitions 

signifies the average amount of times that individuals switched between each brain state 

during the rsfMRI scan. Finally, the probability of transitions between specific states is the 

likelihood of switching from a specific state to another specific state (e.g., the probability of 

switching from state 1 to state 2).
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Within-subject variance was calculated by acquiring individual subject standard deviation 

values of Fisher-z transformed correlations for each sliding window for each brain state. For 

each subject, five matrices each consisting of n (sliding windows that assigned to a particular 

state) x 4950 (connections) were calculated representing each brain state. The standard 

deviation for each connection was then calculated for each subject for each state resulting in 

five 1 (standard deviation) x 4950 (connections) vectors. For each state, standard deviations 

for each connection pair were then averaged across all subjects to create five standard 

deviation matrices.

Correlation between behavioral measures and dFNC measures

Five behavioral measures related to executive function were correlated with the results of the 

dFNC results. The 5 cognitive tasks measure executive function/cognitive flexibility 

(Dimensional Change Cart Sort), executive function/inhibition (Flanker Task), fluid 

intelligence (Penn Progressive Matrices), processing speed (Pattern Completion Processing 

Speed), and working memory (List Sorting). Fluid intelligence and processing speed were 

included in the behavioral tests because it is still unclear exactly how these processes are 

related to executive function; some researchers have argued for a relationship with executive 

function (Duncan et al., 1996; Obonsawin et al., 2002; Salthouse, 2005), while others have 

argued that they are separate constructs (Ardila et al., 2000; Crinella and Yu, 1999; 

Friedman et al., 2006) (for a review see, (Jurado and Rosselli, 2007)). More information on 

each task can be found in (Barch et al., 2013). Age-adjusted values (except for Penn 

Progressive Matrices) acquired from the HCP website were utilized in the current study.

Pearson correlations were calculated between behavioral values and the dFNC measures 

related to frequency of occurrence, dwell time, overall number of transitions, and the 

probability of transitioning between specific states. Alpha values were Bonferroni corrected 

for each comparison; frequency of occurrence (5 states x 5 behavioral tests, 0.05/25 = 

0.002), dwell time (5 states x 5 behavioral tests, .05/25 = 0.002), number of transitions (5 

states, 0.05/5 = 0.01), and transition probability (25 transitions, 0.05/25 = 0.002). Because 

all scores were age adjusted and the age range of participants was small, only gender was 

utilized as a nuisance covariate in the correlation analysis.

First- and Second-Half Analyses

The 56 minute resting state data used in the current study was collected over 2 days with 28 

minutes of rsfMRI data collected on the first day and 28 minutes collected on the second 

day. Separate analyses were conducted to determine if correlations found in the overall 

analysis were replicated in each 28-minute data set. In order to assess possible differences 

between dFNC brain states between the first and second days, test-retest reliability intra-

class correlations (ICC) (Shrout and Fleiss, 1979) were calculated using the Statistical 

Package for the Social Sciences (SPSS) for frequency of occurrence, dwell time, and 

number of transitions.
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Results

Independent Component Analysis

The efficient reduction of non-neuronal signals from ICA + Fix resulted in no visible noise 

components produced from the ICA related to movement, white matter, or cerebral spinal 

fluid. Thus, all 100 components were analyzed, as each IC represents a functionally relevant 

brain area. Spatial maps representing the 100 independent components (ICs) can be seen in 

Figure 1 and have been grouped into ten functional domains to facilitate correlation matrix 

interpretation: subcortical, default mode network (DMN), sensorimotor, temporal/parietal, 

brain stem, visual, frontal, salience network (SN), central executive network (CEN), and the 

cerebellum, mirroring the groupings used in previous dFNC studies utilizing ICA 

approaches (Allen et al., 2014; Nomi et al., 2016; Rashid et al., 2014).

Static Network Functional Connectivity

The sFNC analysis replicates previous work showing positive within-network correlations 

for ICs within somatosensory, visual, default mode network (DMN) and cerebellar networks 

and anti-correlations between DMN/cerebellar components with other brain systems (Allen 

et al., 2014; Damaraju et al., 2014; Nomi et al., 2016) (Supplementary Figure 1).

Dynamic Functional Network Connectivity

The dFNC analysis results are depicted in Figure 2. Frequency of occurrence, mean dwell 

times, and number of transitions for the overall 56-minute data set can be found in Figure 3. 

In general, more frequently occurring states have a larger number of correlations centered 

around zero, while less frequently occurring states have more dispersed correlation 

distributions. That is, correlation magnitudes are attenuated in more frequently occurring 

states and stronger in less frequently occurring states. Additionally, the functional 

connections within each dynamic state showed marked differences within and across 

networks. For example, the positive and negative DMN connections with other networks are 

similar in states 1 and 2, but are different in the other three states. Strong anti-correlations 

between the subcortical network with temporal, sensorimotor, and visual networks appear in 

states 4 and 5 while strong positive correlations appear with the cerebellar network in state 

5. Strong integration can be seen for the sensorimotor and temporal network in states 4 and 

5, the cerebellar network in state 5, and the visual network in states 3, 4, and 5. Finally, 

different sub-clusters of the cerebellar network appear in states 1 and 2 as opposed to the 

other three states.

Within subject variability was calculated by acquiring the standard deviation across all 

sliding windows related to a specific brain state for each functional connection, then 

averaging SD values across subjects. Standard deviation matrices show that frequently 

occurring states tend to have greater variance for any given connection than less frequently 

occurring states. More specifically, standard deviations within and across higher-level 

cognitive networks such as frontal, CEN, SN, and DMN networks are larger in states 1 and 2 

compared with the other three states. Additionally, standard deviations within the cerebellar 

and visual networks as well as between cerebellar and visual networks are much lower in 

state 5 compared with other states.
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Correlations between dFNC and behavioral measures

Behavioral scores consisted of correct responses (Penn Progressive Matrices and Processing 

Speed), correctly recalled items (List Sort), and a combination of accuracy and reaction time 

(Card Sort and Flanker). For all tasks, higher scores represent better performance (Table 1). 

Correlations between behavioral measures showed that the Flanker Task, Processing Speed, 

and Card Sort had higher correlations with each other than with other tasks (r’s > 0.40) 

(Table 2).

Card Sort task performance was negatively correlated with frequency of occurrence for state 

3 (r = −0.226; p = 0.002) and marginally positively correlated with frequency of occurrence 

for state 2 (r = 0.209; p = 0.004). In other words, better Card Sort task performance was 

correlated with increased state 2 and decreased state 3 occurrences.

List Sort task performance was positively correlated with frequency of occurrence for State 

1 (r = 0.228; p = 0.002) and negatively correlated with frequency of occurrence for state 5 (r 
= −0.236; p = 0.001). Thus, better List Sort task performance was correlated with increased 

state 1 and decreased state 5 occurrences (Supplementary Figure 2).

The probability of transitioning between specific states showed two significant correlations 

with EF performance (Supplementary Figure 3). There was a positive correlation with the 

transition from state 1 to state 2 for the Card Sort task (r = 0.222, p = 0.002) and a positive 

correlation when participants remain in state 1 for the List Sort task (r = 0.216, p = 0.003). 

Thus, participants who performed better on the Card Sort task were more likely to transition 

into state 2 from state 1. This is in accordance with the state frequency correlation where 

participants who performed better in the Card Sort task had greater incidences of state 2. 

Participants who performed better on the List Sort task were more likely to stay in state 1 

and is in accord with the state frequency correlation where participants who performed 

better on the List Sort task had greater incidences of state 1. Correlations between behavioral 

performance and dynamic brain state characteristics revealed no significant relationships 

with the number of state transitions (p’s > 0.01) or dwell time (p’s > 0.006) for any measure 

(Bonferroni corrected at 5 states x 5 behavioral tasks: 0.05/25 = 0.002). All other 

correlations between tasks and state frequency (p’s ≥ 0.008) or between specific state 

transition probabilities ( p’s ≥ 0.006) did not survive multiple comparison correction.

Relationship Between States

To investigate the relationship between states 2 and 3 (implicated in the Card Sort task), and 

between states 1 and 5 (implicated in the List Sort task), correlations were calculated 

between state-pairs across all 189 subjects. This is because one set of subjects could be 

responsible for the positive correlations and another set of subjects could be responsible for 

the negative correlations in the previous analysis. Calculating a difference score ensures that 

the increase in one state frequency and the decrease in another state frequency, and its 

relation to EF performance, is consistent across subjects. Both state-pairs showed strong 

negative correlations (states 2 and 3 were negatively correlated: r = −0.619, p = 2.65e-21; 

states 1 and 5 were negatively correlated: r = −0.687, p = 1.44e-27) demonstrating that as 
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state 2 frequency went up, state 3 frequency went down, and as state 1 frequency went up, 

state 5 frequency went down across all subjects.

To determine the relationship of these correlations with cognitive performance, frequency of 

occurrence difference scores were calculated by subtracting state 3’s frequency values from 

state 2 and also by subtracting state 5’s frequency values from state 1 for each subject. These 

difference scores were then correlated with cognitive performance to directly relate cognitive 

performance with the relationship between states 2 and 3 (Figure 4), and between states 1 

and 5 (Figure 5). As expected, there was a positive difference score correlation for states 2 

and 3 with Card Sort task performance (r = 0.242, p = 0.001) (Bonferroni corrected to an 

alpha level of 0.5/5 = 0.01) and a positive difference score correlation for states 1 and 5 with 

List Sort task performance (r = 0.25, p = 0.001). This demonstrates that larger difference 

scores were related to better task performance. That is, state 2’s increase in frequency was 

related to state 3’s decrease in frequency across subjects, with larger differences between 

states related to better Card Sort task performance. Similarly, the state 1’s increase in 

frequency was related to state 5’s decrease in frequency across subjects, with larger 

differences between states related to better List Sort task performance.

First- and Second-half Analyses

As in the overall dFNC analysis, the optimal cluster solution for each 28 minutes of data was 

determined by applying the elbow criterion to random subject exemplar subsets producing 

an optimal cluster solution of k=5 for each half of data. The resulting correlation matrices 

are virtually indistinguishable from the overall correlation matrices (Supplementary Figures 

3 and 4).

Test-retest correlations for frequency of occurrence, dwell time, and number of transitions 

(Table 3) show that frequency had higher test-retest correlations than dwell time and number 

of transitions. This suggests that how often a brain state appears (frequency) is more stable 

across days than the average time spent in a brain state, or transitions between states.

Correlations between frequency of occurrence and behavioral scores demonstrated the same 

general trends found in the overall analysis in both the first- and second-half of the data 

(Supplementary Figure 2). Performance on the Card Sort task was negatively correlated with 

frequency of occurrence for state 3 and positively correlated with state 2, while List Sort 

task performance was positively correlated with frequency of occurrence for state 1 and 

negatively correlated with state 5.

The main results of interest were the difference score correlations that were applied to each 

half of the data replicating the overall results. The first 28 minutes showed negative 

correlations between states 2 and 3 (r = −0.610, p = 1.64e-20) and between states 1 and 5 (r 
= −0.672, p = 4.27e-26) across subjects. Correlations between difference scores and 

cognitive performance also showed the same patterns in the overall analysis. Difference 

scores between states 2 and 3 were positively correlated with Card Sort task performance (r 
= 0.219, p = 0.002) while difference scores between states 1 and 5 were positively correlated 

List Sort task performance (r = 0.256, p = 0.0004) (Figures 4 and 5).
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The second 28 minutes showed the same pattern with negative correlations between states 2 

and 3 (r = −0.581, p = 2.16e-18) and between states 1 and 5 (r = −0.635, p = 1.37e-22) 

across subjects. The difference scores between states 2 and 3 were positively correlated with 

Card Sort task performance (r = 0.224, p = 0.002) while difference scores between states 1 

and 5 were positively correlated with List Sort task performance (r = 0.186, p = 0.011) 

(Figures 4 and 5). This demonstrates the same pattern of results in each half of data as in the 

overall analysis that included all 56 minutes of data.

Additional Cluster Solutions, Window Size, Alternate K-means Distance Functions, and 
Post-processing

Because both optimal cluster solution amount (Leonardi et al., 2014) and window size 

(Leonardi and Van De Ville, 2015) and can influence results, additional analyses were 

conducted using different cluster solutions for the original analysis (4, 6, and 7–10 cluster 

solutions), and a different window size (92 seconds; 128 volumes with cluster solutions of 4, 

5 and 6). To examine how different k-means algorithms influence the results, alternate k-

means distance functions (Euclidean, correlation, cosine) were also employed for the overall 

56 minutes of data using a cluster solution of five. Finally, in order to determine if the 

inclusion of post-processing steps in conjunction with the already applied ICA-FIX 

denoising influenced the results, additional analyses were conducted for the 46 second 

windows using cluster solutions of 4, 5, and 6 (cityblock k-means distance function) without 

the inclusion of despiking, detrending, and filtering.

Correlation matrices, histogram distributions of correlations, and standard deviation matrices 

for each analysis replicated the main findings showing that more frequently occurring states 

tend to have more correlations centered around zero with larger standard deviations 

(Supplementary Figures 5–20). Follow up analyses replicated the overall findings where 

individuals who perform better on Card Sort and List Sort tasks have increased incidences of 

more frequently occurring states and decreased incidences of less frequently occurring states 

(Supplementary Figures 21–36) The main difference was that processing speed showed 

similar patterns of significance as the Card Sort task in some analyses. These additional 

results demonstrate that the general findings of the current study are not restricted to a 

particular window size, specific cluster solution, specific k-means distance function, or the 

presence of the despiking, detrending, and filtering post-processing steps.

Consideration of Motion Artifacts

As previous research has shown that motion artifacts can impact the strength of functional 

connections (Power et al., 2012), relative root mean square (RMS) motion parameters for 

each subject were acquired from the HCP database and compared to executive function 

performance and dynamic brain states. Relative RMS was negatively correlated with 

executive function performance for all 5 tasks (r’s = −0.109 to −0.069) such that individuals 

who perform better on executive function tasks have less scanner movement, but these 

correlations were not significant (p’s > .08). Additionally, the proportion of windows 

exhibiting relative RMS values greater than the mean (M = 0.0895) for each state was 

calculated (Supplementary Table 2). There were no systematic relationships between state 

frequency and relative RMS (i.e., more frequent states were not characterized by increased 
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movement, and vice versa) indicating that movement was not a confounding factor in the 

analysis.

Discussion

Individuals vary widely in their ability to flexibly adapt their behaviors. We tested the 

hypothesis that EF ability is related to the intrinsic ability of the brain to dynamically 

reconfigure into states characterized by greater variability and flexibility of functional 

connections. The current study utilized a chronnectomic systems approach where whole-

brain states are determined by both positive and negative functional connections across brain 

regions. Such an approach offers insights into how intrinsic dynamic shifts within and 

between large-scale brain networks are related to executive function abilities across 

neurotypical individuals.

The analysis revealed 5 distinct brain states in neurotypical adults across 56 minutes of 

rsfMRI data. Results show that the brains of individuals who perform better on measures of 

cognitive flexibility and working memory are characterized by the tendency to occupy more 

frequently occurring states that presented with a larger number of correlations near zero and 

larger variability, rather than less frequently occurring states with more dispersed correlation 

distributions and lower variability. Additionally, there were no strong relationships with 

dwell time or the number of transitions between brain states with measures of behavioral 

performance. This suggests that the frequency of brain state occurrence is important for 

certain EF tasks, rather than time spent in a state, or the amount of switching between states. 

Finally, cognitive flexibility (Card Sort), processing speed, and working memory tasks (List 

Sort) were associated with brain state frequency, while fluid intelligence (Ravens) and 

inhibition/attention (Flanker Task) tasks were not, demonstrating the specificity of the brain 

state findings to measures of EF.

Brain State Frequency, Metastability, and Arousal

The frequently occurring states implicated in EF performance were generally characterized 

by distributions consisting of a larger number of correlations centered around zero and larger 

standard deviations than less frequently occurring states. One explanation for why these 

characteristics may enable better EF task performance is that they allow for more flexible 

functional coupling configurations between brain regions. This is because correlations near 

zero with greater standard deviations allow for a range of connections from positive to 

negative, as opposed to correlations further from zero with smaller standard deviations. That 

is, correlations far from zero with less variability are less likely to fluctuate from positive to 

negative and are likely to stay either positive or negative. Thus, the more frequently 

occurring brain states allow for a greater range of either integration (positive correlations) or 

segregation (negative correlations) between neural networks and individual brain areas. This 

in turn allows for greater neural flexibility via reconfiguration of general brain state 

organization.

This proposal mirrors previous findings showing that neural flexibility during a task is 

advantageous for cognitive processes such as learning (Bassett et al., 2011; Braun et al., 

2015; Cole et al., 2013). It is also in line with previous reports showing that intrinsic 
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flexibility of individual brain areas can be related to cognitive performance (Jia et al., 2014; 

Yang et al., 2014). The current study extends these findings to intrinsically occurring 

dynamic brain states, suggesting that the flexibility in the general organization of the brain 

facilitates cognitive performance on certain EF tasks.

The characteristics of the more frequently occurring brain states also relate to a field called 

Coordination Dynamics (Tognoli and Kelso, 2014) that is concerned with how metastable 

properties of functional brain networks are related to cognitive function (Kringelbach et al., 

2015). Metastable brain states allow for the flexible reconfiguration of neural networks 

while avoiding extreme integrative or segregative brain configurations (Hellyer et al., 2015). 

Thus, a metastable brain state resides in the middle of a continuum situated between chaos 

and extreme rigidity. In the current study, more frequently occurring states have 

characteristics of metastable brain states, as they fluctuate between weak and moderate 

integrative and segregative neural network configurations (correlations close to zero and 

increased variation in functional connections), while less frequently occurring states have 

characteristics of extreme rigidity (extreme correlations representing high segregation and 

integration, and small variations in functional connections). Thus, the current study supports 

the notion that metastability and cognitive flexibility may arise from similar brain 

configurations, as brain states exhibiting metastable tendencies are also those states that 

allow for greater cognitive flexibility necessary for successful completion of executive 

function tasks.

Dynamic-FNC investigations utilizing simultaneous EEG-rsfMRI data have shown that less 

frequently occurring brain states characterized by strong visual-sensorimotor integration and 

subcortical-cortical segregation are associated with EEG signatures of low arousal states 

(Allen, Submitted). Other research investigating arousal states in monkeys has shown local 

field potentials and eyelid behavior indexing reduced arousal is also characterized by cortical 

integration and subcortical-cortical segregation (Chang et al., 2016). These findings are 

consistent with other research showing subcortical-cortical segregation is associated with 

states of increased daytime sleepiness (Killgore et al., 2015). Because optimal EF requires 

sustained attention and focus, entering into states of low arousal and vigilance would most 

likely be detrimental to task performance. In the context of the current study, it may be the 

case that brains intrinsically avoiding low arousal states at rest may be better equipped to 

avoid entering low arousal states that would interfere with EF task performance. This 

suggests that one trait of intrinsic brain function enabling elevated EF performance is the 

propensity of the brain to be in configurations enabling cognitive flexibility, while also 

avoiding configurations related to lower states of arousal.

Differences Among Tasks

Although the cognitive flexibility task (Card Sort), inhibition/attention task (Flanker), and 

processing speed tasks showed correlations with each other (r’s = 0.41 to 0.48), only 

cognitive flexibility task performance and processing speed were related to brain state 

frequency. While arguments exist for a single ability underlying all EF abilities (de Frias et 

al., 2006), the current study suggests that this underlying feature is not related to individual 

intrinsic dynamic brain state organization, and parallels other views proposing that 
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contradistinctive constructs regulate various EF abilities (Godefroy et al., 1999). Also, there 

were no relationships between fluid intelligence (Penn Progressive Matrices) and any of the 

dFNC measures. This is in accord with previous work suggesting that the EF and fluid 

intelligence can be both related (Duncan et al., 1996; Obonsawin et al., 2002; Salthouse, 

2005) and unique constructs (Ardila et al., 2000; Crinella and Yu, 1999; Friedman et al., 

2006).

First- and Second-Half Analyses

The correlations linking overall brain state difference scores to EF tasks completed outside 

of scanner were replicated in each half of the data. This demonstrates that the overall pattern 

of results could be reproduced on separate days using smaller rsfMRI data sets. This 

supports the argument that it is the propensity of certain flexible brain states to occur that 

relates to EF performance, and not random day-to-day brain state frequency fluctuations. 

Accordingly, the test-retest reliability calculations for frequency of occurrence (r’s = 0.62 – 

0.83) were higher than dwell time (r’s = 0.57 – 0.70) and the number of transitions (r = 

0.54), suggesting that frequency was the most reliable measure. This may be why EF task 

performance was correlated with frequency but not dwell time or number of transitions. 

These findings also build on previous research showing reproducibility of static neural 

networks (Zuo and Xing, 2014) and dynamically reoccurring brain states (Yang et al., 2014).

Limitations

One limitation of the current study is that a context-based approach that explores brain states 

does not identify any specific brain area or brain network that would be most important in 

driving the effects in the current study. However, it has previously been suggested that the 

function of any single brain area or neural network relies on the functional connections of 

adjacent brain areas and neural networks (McIntosh, 2004; Pessoa, 2014) emphasizing the 

importance of a brain state approach. Recent work has also shown that graph-theory 

measures of brain areas during a rsfMRI scan, found outside of the frontal-parietal network, 

are associated with EF task performance outside of the scanner (Reineberg and Banich, 

2016) showing the importance of a whole brain approach to investigating EF. Thus, if EF 

performance relies on general whole brain dynamics, then ignoring the context of the entire 

brain would be detrimental to identifying general mechanisms of cognitive performance. 

Additionally, EF relies on a number of neural networks related to maintenance, 

manipulation, attention, switching, and inhibition processes. The current study cannot 

determine if one specific aspect of performance related to EF tasks were driving the 

relationship between brain state frequency and task performance.

Another limitation is that we chose a parcellation scheme based on an ICA. Although ICA 

has multiple benefits including the identification of only functionally independent brain 

areas specifically related to the current data set, the ability to account for overlapping 

networks, and the filtering of artifacts. Alternative functional parcellation schemes 

(Craddock et al., 2012; Gordon et al., 2014; Power et al., 2011; Yeo et al., 2011) should be 

explored in the future.
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Finally, the current fixed-sliding window dFNC approach adopted in the current study uses 

the k-means clustering algorithm and focuses on metrics such as state frequency, dwell time, 

probability of state transitions, and number of overall transitions. All of these metrics are 

based on identifying differences among sliding windows within a single dimension (i.e., the 

cluster that each sliding window belongs to). Other fixed-sliding window dFNC approaches 

have utilized methods to recast each sliding window as a weighted sum of connectivity 

patterns that places each sliding window in the context of a multi-dimensional state-space. In 

this approach, the trajectory of sliding-windows can be traced through more than one 

dimension (Yaesoubi et al., 2015). This would allow one to investigate if a subject has a 

smaller multi-dimensional state space than another subject, or if they traverse smaller 

distances through multi-dimensional state space than another subject. Smaller multi-

dimensional state space and restricted movement through multi-dimensional state space has 

been associated with schizophrenia compared to typical controls, along with additional 

advanced concepts such as that of an “absorbing hub”, which has been found to be 

associated with negative symptoms in schizophrenia (Yaesoubi et al., 2015). Future work 

should consider how different types of dFNC approaches identify different aspects of brain 

function related to executive function.

Conclusions

The current study demonstrates a relationship between EF abilities and the brain’s 

propensity to occupy a specific functional connectivity configuration, or state. Thus, 

performance on a cognitive task may not be based entirely on the changes occurring during 

the specif(Allen et al., 2014) task itself, or the dynamic functional coupling of any single 

brain area, but it may also depend on the intrinsic organization of dynamic shifts between 

entire brain states or systems. Additionally, not all behavioral measures were related to brain 

state frequency, demonstrating differences in the relationship between various EFs and 

intrinsic dynamic brain states. Finally, the current study suggests an intrinsic brain trait 

enabling elevated EF performance may be the propensity to occupy brain configurations 

enabling cognitive flexibility and avoid configurations related to low arousal/vigilance. 

Taken together, these results demonstrate the unique way that chronnectomic approaches 

contribute to our understanding of the neural basis of individual differences in EF in the 

neurotypical population and can serve as a framework for future investigations exploring EF 

in clinical populations.
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Figure 1. 
Spatial maps of the 100 independent components.
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Figure 2. Dynamic functional network connectivity matrices, histograms, and standard deviation 
matrices for the overall analysis
Five reoccurring brain states are ordered from most frequently occurring (state 1) to least 

frequently occurring (state 5) (top); percent occurrence is listed next to each state in 

parenthesis. Histograms (middle) represent Fisher-z transformed correlation distributions 

demonstrating that more frequently occurring states have distributions centered around zero 

while less frequently occurring states have more dispersed distributions. Standard deviation 

matrices (bottom) show the average standard deviation for each subject is generally larger 

for more frequently occurring states. SC, subcortical; T/P, temporal/parietal; SM, 

sensorimotor; CEN, central executive network; SN, salience network; DMN, default mode 

network; CB, cerebellum; BS, brainstem.
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Figure 3. 
Group averages for frequency of occurrence, dwell time, and number of transitions for the 

overall, first-half, and second-half analyses. Frequency of occurrence, dwell time, and 

number of transitions are similar for the first- and second-half analyses. Error bars represent 

standard error of the mean.
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Figure 4. Frequency of occurrence difference scores
State 2 minus state 3 (x axis) correlated with behavioral performance (y axis) for the overall, 

first-half, and second-half analyses for all 189 subjects. Greater difference scores are 

positively correlated with better performance on the Card Sort task for all three analyses.
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Figure 5. Frequency of occurrence difference scores
State 1 minus state 5 (x axis) correlated with behavioral performance (y axis) for the overall, 

first-half, and second-half analyses for all 189 subjects. Greater difference scores are 

positively correlated with better performance on the List Sort task for all three analyses.
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Table 1

The five tasks of interest are listed with their task name and associated cognitive process that is measured.

Cognitive Process Task Mean (SD) Range

Processing Speed Processing Speed 100.02 (18.13) 47.35–144.38

Inhibition/Attention Flanker 102.72 (9.89) 73.64–123.56

Cognitive Flexibility Card Sort 102.18 (9.92) 67.32–122.65

Fluid Intelligence Penn Progressive Matrices 16.84 (4.68) 6–24

Working Memory List Sort 102.11 (13.80) 60.09–132.49

Note: all means are age adjusted (M = 100) except for Progressive Matrices
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