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Abstract

Background—Measuring the thickness of the stratum corneum (SC) in vivo is often required in 

pharmacological, dermatological, and cosmetological studies. Reflectance confocal microscopy 

(RCM) offers a non-invasive imaging-based approach. However, RCM-based measurements 

currently rely on purely visual analysis of images, which is time-consuming and suffers from inter-

user subjectivity.

Methods—We developed an unsupervised segmentation algorithm that can automatically 

delineate the SC layer in stacks of RCM images of human skin. We represent the unique textural 

appearance of SC layer using complex wavelet transform and distinguish it from deeper granular 

layers of skin using spectral clustering. Moreover, through localized processing in a matrix of 

small areas (called ‘tiles’), we obtain lateral variation of SC thickness over the entire field of view.

Results—On a set of 15 RCM stacks of normal human skin, our method estimated SC thickness 

with a mean error of 5.4 ± 5.1 μm compared to the ‘ground truth’ segmentation obtained from a 

clinical expert.

Conclusion—Our algorithm provides a non-invasive RCM imaging-based solution which is 

automated, rapid, objective, and repeatable.
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Measuring the thickness of stratum corneum (SC) in vivo is often required in 

pharmacological, dermatological, and cosmetological studies. For example, SC thickness 

must be measured to normalize drug permeation profiles in dermatopharmacokinetic 

approaches to assessing bioequivalence of topical products (1). In vivo imaging techniques 

such as reflectance confocal microscopy (RCM) (2), optical coherence tomography (OCT) 

(3–5), and Raman spectroscopy (RS) (6–9) offer a non-invasive approach for this task and 

are commonly used by researchers.
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Optical coherence tomography-based methods (3) typically distinguish between signal 

intensity from cornified SC and living stratum granulosum (SG) below, to delineate the SC 

layer in orthogonally oriented (perpendicular to skin surface) scans. The SC shows up as a 

thin bright layer, whereas the underlying living epidermis is darker in appearance, which 

creates distinguishable contrast between two layers. However, depending on skin conditions, 

this contrast may be difficult to distinguish due to low signal-to-noise ratio and speckle, in 

many cases. Moreover, traditional OCT does not provide cellular resolution, and therefore, 

only relatively low spatial resolution thickness maps can be obtained. (Note, however, that 

newer approaches such as full field-OCT can provide cellular-level resolution and may 

provide higher resolution maps.)

Raman spectroscopy is more limited, as it provides only point measurements of SC 

thickness (6). The gradient of water vs. protein concentration ratio as a function of skin 

depth is used to estimate the thickness of SC. Intensity measurements of Raman bands at 

3390 per cm (water) and 2935 per cm (protein) are used to calculate this ratio metric. 

However, collecting a set of such Raman spectras from a single point at a given depth takes 

around 3 s, and therefore, measuring SC thickness at more than a few locations is time-

consuming. Thus, such point measurements may not always allow adequate sampling in a 

timely manner.

The advantage of RCM imaging is that it provides both optical sectioning and high spatial 

resolution. Therefore, it allows for determination of the thickness combined with the 3D 

cellular-level structure of the SC. However, the measurements are currently carried out in a 

manual fashion. Researchers typically distinguish SC from the other layers beneath it using 

its unique morphological, textural, and intensity properties. Two factors, one macroscopic 

and the other microscopic, govern this manual (i.e. purely visual) process. First, field 

curvature in RCM imaging can result in some images showing both SC and SG layer (Fig. 

1). This happens mainly near the transition between the two layers, with the SG being seen 

in the center of the image, whereas SC around the edges. Second, the SC presents a 

microscopically uneven surface and the thickness varies with lateral location. Therefore, 

researchers often conduct localized visual analyses on smaller regions (typically enclosing 

as small as 40–50 μm in extent) in order to delineate SC thickness over the lateral field of 

the RCM stack.

With image processing and machine learning algorithms, this process may be automated and 

conducted in a quantitative and objective way. Machine learning-based quantitative analysis 

approaches for RCM images of skin are already being developed for several dermatological 

applications (10–15). Initial approaches have been focused on delineation of the dermal–

epidermal junction, segmentation of nuclei in the epidermis, and classification of malignant 

vs. benign features in melanocytic lesions. In this paper, we describe an image processing 

and machine learning-based algorithm that can automatically measure the thickness of SC 

layer in RCM stacks of in vivo skin.

The overall structure of the algorithm is as follows. First, we register the RCM images 

collected at different depths of skin (Sec. 4.1). Then we perform low-pass filtering to reduce 

speckle noise (Sec. 4.2). We then automatically locate the wrinkle areas using a clustering-
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based segmentation approach (Sec. 4.3). Then we divide these preprocessed stacks into 

small regions called tiles for further localized processing, and represent the unique texture of 

the skin in each tile using complex wavelet transformation-based feature extraction (Sec. 

5.1). Finally, we classify each tile into SC vs. rest (non-SC) classes using spectral clustering 

on features (Sec. 5.2). We measured the performance of this approach on a set of 15 RCM 

stacks of normal human skin and present the results in Sec. 6.

Data Acquisition

Data acquisition was performed using a commercial version of the reflectance confocal 

microscope (Vivascope 1500, Caliber I.D. (formerly Lucid), Rochester, NY, USA). The 

Vivascope 1500 is capable of collecting RCM images with a field of view (FOV) of 0.5 mm 

× 0.5 mm, with lateral resolution of 0.5 μm and optical sectioning thickness of 3 μm. The 

microscope images through a skin-contact window that localizes the area of interest and 

provides stabilization during imaging.

Three image acquisition modalities are available with this version of the microscope. The 

first modality is for acquiring an RCM stack, which is a collection of images captured at 

varying depths (with discrete steps ≥1.5 μm) in skin and centered at a given lateral location 

(Fig. 2). In the second modality, one can fix the depth of imaging and acquire a two 

dimensional matrix of non-overlapping RCM images in raster fashion. Images collected in 

this fashion can be concatenated or stitched together into RCM mosaics. A mosaic displays 

wider FOV up to 10 mm × 10 mm. One can collect mosaics at consecutive depths. Such a 

collection of mosaics with depth is called a ‘RCM cube’.

In this study, we used 15 RCM stacks that were available, each collected with 1.5 μm depth 

spacing between images. The dataset contains RCM image stacks collected from the trunk, 

inner arms or leg of the subjects in vivo. The skin type of the subjects varied between type II 

(white to fair) to type IV (light brown). The data were not originally collected for this study, 

so number of slices varies in each stack. To standardize the data, we used only the first 30 

images in each stack. All the stacks were labeled by consensus of at least two expert readers. 

The labeling was performed manually using an open source segmentation tool called Seg3D 

(16). Using the paintbrush tools provided by Seg3D, we performed manual segmentation at 

pixel level resolution. The RCM stacks were labeled by the experts into two groups; SC vs. 

rest (non-SC). This expert labeling was used as the ‘ground truth’ for testing and validation 

purposes.

Notation

We will use the following notation throughout the paper. A typical RCM image collected at 

depth z can be represented as Iz(x, y), x, y∈{1, 2, . . ., 1000}, where x, y are spatial locations 

of the pixels in the image. A stack, S = {Iz}z=z0,..., zn, is a set of RCM images that are 

collected in sequence at increasing depths. In this notation, n is a user-defined parameter that 

defines the number of collected images.

To mimic (as mentioned in the introduction) the currently manual (visual) process of 

localized analyses in small regions, we divide each RCM image into smaller, disjoint regions 
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called tiles Tz(i, j) (Fig. 2). Each tile is independently processed in our automated method. A 

tile stack T(i, j) is a collection of tiles Tz(i, j) in depth direction that is defined as

where δx, δy are the dimensions of the tile.

We then represent the morphology in each tile using textural features. In SC delineation, the 

key structures are polygonal-shaped corneocytes, which are as dimensionally large as 10–30 

μm. Therefore, we choose our tile size as 32 × 32 pixels (δx, δy ∈ [−16,16]) after 

downsampling the image to one-fourth of its original size (for computational ease). In this 

way we can capture representative textures for corneocytes.

Preprocessing of RCM Stacks

Before applying the main algorithm, we apply three preprocessing steps to the RCM stack: 

registration, downsampling with denoising, and wrinkle detection. In the following 

subsections, we will give the details of these steps one by one.

Registration

Our algorithm relies on changes in the textural patterns between RCM images of consecutive 

layers of skin, especially between the SC and underlying granular cell layers. As seen in Fig. 

1, each layer has distinct textural appearance. We utilize this property by extracting textural 

features from each tile in a RCM tile stack and comparing them against each other to locate 

the transition depths between SC and deeper granular layers. This approach requires 

consecutive images in a stack to be aligned in depth direction. As subject motion often 

causes misalignment between consecutive images, images in the depth direction are 

registered before further processing. For registration, we use an ImageJ (17) plugin called 

StackReg (18), which utilizes the mean square difference between pixel intensities of the 

consecutive images.

Denoising

Due to the turbid nature of skin, RCM imaging with coherent light results in detection of 

randomly phased scattered light patterns originating from the structures in the illuminated 

voxel (point spread function). This produces speckle noise in the image. Speckle noise is a 

major source of variance in textural features. Increasing the pinhole size minimizes speckle 

noise at the expense of optical sectioning (19). The pinhole used in the Vivascope 1500 is 

usually 3–5 times larger than the size of the lateral resolution, resulting in reasonable 

averaging of speckle noise and enhancement of contrast.

We further reduce the noise, using a half-band low-pass filter. There are other available 

filters that have been specifically designed for reducing speckle noise (20, 21). However, 

these are computationally complex, slow and not particularly necessary for our needs. Half-
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band low-pass filtering approach for denoising is a simple and rapid operation, which does 

not affect the textural information crucial for SC delineation.

Wrinkle detection

The final preprocessing step is detection of wrinkles and dermatoglyphics. Wrinkles appear 

as dark (or even black) structureless regions (asterisks in Fig. 1). In order to detect the 

wrinkle areas in an RCM image, we developed an entropy filtering-based method to quantify 

the structure inside a region. The detection algorithm works as follows.

We calculate tile-wise Shannon entropy in each RCM image. The entropy (H) of a tile Tz(i, 
j) is calculated as

where p(m) is the probability of seeing a pixel with value m in the tile Tz(i, j). This 

probability can be estimated using the histogram of the intensity values in the corresponding 

tile. Tiles with highly varying intensity values have larger entropy (typically contain higher 

spectral frequencies) compared to tiles that contain relatively less varying intensity values 

(typically lower frequencies).

The topmost layers of the skin are mainly SC, which has high entropy as it is composed of 

highly varying intensity values, and wrinkles with low entropy. In order to distinguish 

between these, the tile-wise entropy values in the topmost image of the RCM stack are 

grouped into two clusters; wrinkle and non-wrinkle tiles. We use K-means clustering with 

entropy of tiles as features. As mentioned earlier, wrinkles appear as dark, structureless 

areas, and therefore entropy in those regions is very low. If the mean entropy of both clusters 

is greater than an empirically determined threshold, the algorithm determines that there is no 

wrinkle in the RCM stack. Otherwise, we look at the mean intensity value of each cluster 

(cluster center) and pick the one with lower amplitude as the wrinkle area. The mean entropy 

value calculated for wrinkle cluster in the first RCM image is used as a threshold to 

determine the wrinkle areas in the deeper en face sections. Tiles in deeper images, where 

entropy is smaller than or equal to this threshold value, are classified as potential wrinkle 

areas (wrinkle tile candidate).

After the clustering, as a post processing step, we examine the segmentation results in a top-

to-bottom fashion and refine the results. Our assumption is that a wrinkle appears in the 

topmost RCM images and disappears as we image deeper. Therefore, starting from the 

second image in the RCM stack, we compare each wrinkle tile candidate against its 

immediate neighbor above it and check if it is a wrinkle tile. If so, the current candidate tile 

is finally classified as wrinkle area. We process each wrinkle tile candidate in this fashion.
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Delineation Algorithm

In this section, we present the technical and scientific details of the automated SC thickness 

detection algorithm. The algorithm is based on two assumptions; (i) SC is present in the 

topmost image in RCM stacks, and (ii) SC and the SG layer below it, differ in textural 

appearance and contrast. The SC appears as a bright region with large polygonal-shaped 

corneocytes without any nuclei (Fig. 1a and b), whereas granulosum appears darker and 

consists of a honeycomb pattern of circular-or elliptical-shaped granulocyte cells with dark-

appearing nuclei. (Fig. 1b and c). Given these observations, we use textural feature-based 

classification combined with intensity-based post processing, to delineate the border 

between SC and SG layers. The main steps of the algorithm are: feature extraction and 

spectral clustering-based classification followed by intensity-based refinement. Finally, we 

apply median filtering-based smoothing on the resulting thickness map in order to smooth 

the stepwise boundary produced by the tile-wise processing.

Feature extraction

For feature extraction, we use the Complex Wavelet Transform (CWT) approach. Dual-Tree 

Complex Wavelet Transform (DT-CWT)(22) is a method that calculates CWT stage by stage 

using a tree data structure. Using this tree, it is possible to decompose the input image into 

directional sub-bands. After a single stage of DT-CWT image decomposition, the image is 

decomposed into directional sub-bands with orientations in ±15, ±45 and ±75 degrees. It is 

almost shift-invariant, directionally selective. It introduces minimal redundancy (4:1 for 

images) and is computationally efficient (22). CWT has been preferred over discrete wavelet 

transform in several texture representation and classification problems due to such properties 

(23–26).

Construction of dual trees requires a filter bank. Among the several choices of wavelet filter 

banks, we use Kingsbury’s 6-tap filter (27) and Farras filters (28), which are two of the most 

commonly used filters for CWT. As DT-CWT produces output images with different sizes at 

each tree level due to decimation, and these sizes depend on the input image size, it is not 

feasible to use output images of DT-CWT directly. Instead we use statistical features of 

outputs of complex wavelet tree. As statistical features we use the first and the second 

moments (i.e. mean and variance), because they are computationally more efficient and 

more robust to noise than higher order moments. Using several levels of complex wavelet 

tree, we find that the classification accuracy does not change noticeably after three level 

trees. Overall, our feature vector includes mean and variance values of 18 output images (six 

outputs per level of a three level complex wavelet tree), resulting in a 36-element feature 

vector.

Spectral clustering-based border delineation and intensity distribution-based refinement

As mentioned earlier, we assume that SC and SG below it can be distinguished through 

textural appearance. Therefore, we base our algorithm on grouping consecutive tiles in axial 

(depth) direction with similar textural appearance and using the border between the groups 

as potential SC-SG boundary locations.
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We cluster the consecutive tiles into groups with similar appearance using spectral 

clustering. Spectral clustering methods operate over the proximity graph of the data, which 

is obtained using the neighborhood relation between the samples (29). In this way, the axial 

neighborhood relation between tiles is preserved to some extent. In our algorithm, we 

implemented one of the most widely used variations (29).

We represent each tile in a tile stack using the CWT features extracted as described in 

section 5.1. We use the feature representation of the tiles to construct the affinity matrix, 

which represents the similarity between tiles in a tile stack. Affinity matrix A is a N × N 
square matrix defined as

(1)

where Azz′ is the truncated Euclidean distance between the feature representations of the 

tiles Tz(i, j) and Tz′(i, j) in a tile stack. In our application we empirically limited the 

neighborhood span Tneighbor to five tiles. Using a larger span may lead to loss of the effect of 

neighborhood information on the clustering, whereas smaller span will lead very small 

clusters, which will eventually cause over-segmentation. Then we form the Laplacian of the 

affinity matrix as L = D−1/2 AD1/2. In this representation, D is a diagonal matrix where Dij = 

ΣjAij. We then find the eigenvalues of the Laplacian matrix, and sort them into a descending 

sequence. We heuristically choose the number of clusters k as index of the eigenvalue that 

maximizes the eigengap, i.e. k = argmax(λk−1 − λk). Once k is set, we form the X matrix by 

stacking the corresponding k eigenvectors and normalizing them. Each row of the X matrix 

can be used as representation of a tile. We apply K-means clustering on this representation 

and form the tile groups.

After grouping the tiles in the depth direction, we find the boundary between each group. As 

the contrast of SC and SG differ, the first light tile-to-dark tile transition corresponds to the 

SC-SG boundary. We find this boundary by comparing the average brightness of 

neighboring groups starting from the top and determining where the brightness decreases at 

least 20%. Once we obtain the boundaries for each tile stack, we can create a thickness map 

for the whole stack by counting the number of the tiles in axial direction from the top of the 

RCM stack (or the last wrinkle depending on the existence of wrinkle at a particular 

location) to the respective SC-SG boundary level in the tile stack.

Postprocessing

The spatial resolution of the algorithm is defined by the size of the tiles used for processing. 

Due to tile-wise processing, the resulting SC thickness map appears coarse. We smooth it by 

applying median filtering in the spatial direction. Support of the median filter is twice the 

size of tiles so that resulting thickness map becomes smooth.
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Testing and validation

The algorithm gives a binary decision for each pixel, corresponding to SC or not-SC, which 

results in a 3D segmentation. Example rendering for stack 1 is presented in Fig. 3. At each 

lateral location, this mask can be converted into a thickness value by accumulating the 

binary labels in axial direction.

We compare our algorithm with ground truth using two metrics. For first metric, we divide 

GT mask into tiles the same way we divide the image into tiles in our algorithm, and assign 

SC label to a tile if there are more SC and non-SC in that tile. Then we look at number of 

tiles with matching labels. This gives us an estimate of the accuracy of our delineation 

algorithm in terms locating the SC layer in imaged 3D volume. In order not to bias the 

results with imbalanced labels, we crop the masks at deepest instance of SC in GT masks. 

For second metric, we calculate thickness maps from GT segmentation as we calculated in 

the algorithm, and look at error for each pixel in the maps.

Results

We tested the performance of the algorithm on 15 RCM stacks of human skin in vivo and 

present the experimental results in Table 1. The results show that between 79% and 92% of 

tiles are correctly classified. For comparison, note that Huzaira et al. manually measured 

epidermal keratinocyte layers at various arterial sites, reporting the average SC thickness 

between 8 and 14 μm (2). Across 15 stacks, we found the average thickness of SC layer to 

be 9.8 μm, consistent with findings in the literature.

A sample 2D GT thickness map is given in Fig. 4a and the thickness map automatically 

generated using the algorithm is given in Fig. 4b. Using these thickness maps, we can obtain 

a thickness error map as shown in Fig. 4c. The absolute value of the error is gray-scale color 

coded in the figure, where lighter color means relatively high error and darker color means 

lower error where the GT and output map are in good accordance.

We also looked at the distribution of the error among the stacks. As the SC is located at 

depths of 0–15 μm from the skin surface in normal skin (30), we also looked into the 

percentile of the error that is between 0 and 5/8/10 μm for each stack. The results that are 

presented in Fig. 5 show that, on average, we locate the SC layer with ≤±5 μm precision 

with 66.78% probability. This probability increases to 84.77% and 91.54% as the error 

bound increases to ≤±8 μm and ≤±10 μm, respectively.

Looking at mean and standard deviation of absolute error may be misleading as distribution 

of absolute error resembles an exponential distribution rather than a Gaussian. Looking at 

median error instead of mean absolute error may provide better insight. Figure 6 shows an 

error plot for all stacks. The bars around each point indicate the range containing 70% of the 

errors. For most of the stacks, the median error is smaller than 5 μm.

Discussions

Reflectance confocal microscopy is an imaging technique that offers the assessment of skin 

conditions in a non-invasive manner. Such a technique is very useful in many settings, 
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especially for assessment of benign in vivo skin, where biopsy followed by histology is 

neither ethical nor practical. Assessment of SC thickness is a good example of an application 

where a non-invasive imaging technique can be useful.

Through our method, one can objectively estimate SC thickness with high accuracy, 

precision, and repeatability. Furthermore, this method offers the combined advantages of 

existing techniques in literature, such as providing localized (tile-based) measurements, 

similar to those from RS (6–8) as well as surface topography, similar to that from OCT, and 

both relatively quickly and with high cellular-level resolution that is inherent to RCM 

imaging. Our method presents a way to rapidly obtain SC thickness maps in the examined 

FOV (0.5 μm × 0.5 μm in our test set) through localized tile-wise processing. Obviously, the 

choice of tile size is important. Selecting larger tiles may decrease the resolution for SC 

delineation, whereas using smaller ones may result in missing the textural and corresponding 

morphological information. It should also be mentioned that using smaller and/or 

overlapping tiles may result in increased processing time as more tiles are needed to cover 

the same FOV.

Similar to tile size, neighborhood size is an important parameter in the wrinkle detection 

step of the algorithm. This step relies on detecting the distinguishable contrast and texture of 

the wrinkle regions compared to other layers of skin beneath it. The choice of the tile size is 

a trade-off as larger tiles leads to better entropy estimation, but, on the other hand, smaller 

tile size leads to higher resolution in wrinkle segmentation. In our algorithm, entropy is 

calculated for each pixel using its 15 × 15 pixel neighborhood (corresponds to 7.5 μm × 7.5 

μm), which gives a good trade-off between resolution and robust entropy measurement.

Our test set was formed by randomly choosing 15 stacks from a larger set, and it contains a 

large range of variability, so we can say our test set reasonably accounts for the expected 

variability in larger sets (see Sec. 2 for details). For example, Figs 5 and 6 show that 

algorithm fails at stack 7. This was an outlier, and further investigation revealed stack 7 to be 

a case of parakeratosis. Parakeratosis is identified by the presence of dark-appearing nuclei 

within bright-appearing corneocytes under RCM. Therefore, the texture seen in RCM 

images is very different from that normally seen in a healthy SC (30), which explains the 

low performance of the algorithm.

Finally, we emphasize the importance of standardizing the imaging procedure. In this study, 

some stacks in our set were found to display ring artifacts in the topmost images. Ring 

artifact is a bright ring which appears while focusing through the objective lens window due 

to back-reflection in the glass and field curvature in the scanning of the microscope. 

Currently, our algorithm handles ring artifacts in preprocessing stage via signal processing 

methods (namely, zero phase tophat filtering). The proper method to remove such artifacts 

should be to standardize the imaging procedure. A standardized procedure will also 

minimize variations between stacks due to imaging, such as registration, and improve 

consistency between results.
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Fig. 1. 
Due to field curvature in RCM imaging, and non-uniform shape of skin, some images from 

adjacent layers (e.g. stratum corneum and granulosum layers) may appear in an en face 

section. This happens particularly at depth locations near the transition between the two 

layers. On the left (a), the image shows stratum corneum (exemplar areas shown by black 

arrows) and wrinkles (asterisk). In the center (b), the image shows a granular cell layer 

(exemplar regions shown using white arrows) in the center surrounded by stratum corneum 

(black arrows) around the edges. A honeycomb-patterned network of bright cells with dark 

nuclei (white arrows) is visible. On the right (c), the image shows a spinous cell layer 

surrounded by a bit of granular cell layer (white arrows) and we can still see corneocytes 

from SC layer toward lower right edge of the image. Again, a honeycomb-patterned network 

of bright cells with dark nuclei is seen.
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Fig. 2. 
(a) RCM is capable of imaging en face optical sections of skin at depths of up to 150 μm. (b) 

Each RCM image captures a field of view of 0.5 mm × 0.5 mm, which, in our case, 

corresponds to 1000 × 1000 pixels. (c) To account for the effects of field curvature and 

variation of SC thickness with lateral location (as explained in the introduction), we divide 

each RCM image into smaller regions, called tiles (32 × 32 pixels in our case), for 

processing, with the content in each tile uniquely displaying either the stratum corneum or 

stratum granulosum.
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Fig. 3. 
3D reconstruction of SC and wrinkle masks. (a) 3D reconstruction (b) 3D reconstruction, 

upside down for better visibility.
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Fig. 4. 
Results for Stack 1. (a) Ground truth (GT) thickness map, (b) Thickness map generated by 

our algorithm, and (c) Absolute difference between GT and output maps in (a) and (b).
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Fig. 5. 
Stacked bar graph of percentiles corresponding to errors up to 5, 8, 10 μm.
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Fig. 6. 
Error bar graph for thickness map. Error bars correspond to ranges containing 70% of the 

errors.
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TABLE 1

Mean absolute error (MAE) and percentage of correctly classified tiles

Stack MAE (μm) Correctly classified tiles (%)

1 2.9 ± 3.3 91.7

2 3.6 ± 3.5 84.4

3 4.9 ± 4.9 87.3

4 5.5 ± 5.2 86.6

5 4.5 ± 4.8 85.3

6 5.4 ± 4.4 78.9

7 9.5 ± 6.4 62.8

8 5.2 ± 4.7 87.0

9 6.8 ± 4.8 66.6

10 5.2 ± 4.8 83.9

11 4.9 ± 4.9 87.5

12 5.4 ± 5.9 86.7

13 3.8 ± 4.9 90.0

14 5.6 ± 6.3 84.8

15 8.6 ± 8.3 79.9

Average 5.4 ± 5.1 82.9
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