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Cryptic bioactivity capacitated by synthetic
hybrid plant peptides
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Evolution often diversifies a peptide hormone family into multiple subfamilies, which exert

distinct activities by exclusive interaction with specific receptors. Here we show that

systematic swapping of pre-existing variation in a subfamily of plant CLE peptide hormones

leads to a synthetic bifunctional peptide that exerts activities beyond the original subfamily by

interacting with multiple receptors. This approach provides new insights into the complexity

and specificity of peptide signalling.
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S
tem cell activities in plants are controlled by intercellular
signalling through CLE (CLV3/ESR) family of peptide
hormones. Precursor proteins encoded by CLE genes are

posttranslationally processed into mature 12 or 13 amino-acid
CLE peptides1–3. Among 32 genes in the Arabidopsis thaliana
CLE family, different sets of members are expressed in the three
types of stem cell tissues: shoot, root and vascular meristems,
regulating the homeostasis of stem cell populations4. Notably,
the CLE genes acting for the shoot and root meristems (CLV3 and
CLE40, respectively) are functionally exchangeable as revealed
by a promoter-swapping analysis5,6 and indeed chemically
synthesized 12 amino-acid CLV3 acts on both tissues; its
overdose diminishes the growth of shoot and root3. In contrast,
CLE41 peptide, also called tracheary element differentiation
inhibitory factor (TDIF), promotes the stem cell activity in
the vascular meristem without affecting stem cells in the shoot
and root1,7,8. CLV1 and TDR are transmembrane receptors
for CLV3 and CLE41/TDIF, respectively, and the difference
between their bioactivities lies in the specificity in ligand-receptor
interaction7,9,10, although the structural basis of the specificity
has not been fully understood11–13.

Results
Identification of a bifunctional CLE peptide. CLV3-like
activities have also been reported in other 18 CLE peptides.
Some of them, including CLE25, are more effective than CLV3 in
the root-shortening assay14. We analysed the structure–activity
relationship between CLV3 (Fig. 1a, peptide 1) and
CLE25 (Fig. 1a, peptide 2) by swapping the residues at
2nd, 5th, 10th and 12th positions (Fig. 1a, peptide 3–16).
Both 1mM CLV3 and CLE25, but not CLE41 (Fig. 1a, peptide 17),
showed root-shortening activities with quantitatively
different degrees (Fig. 1b). Although all the chimera peptides
shortened the root, only the peptide 15, hereafter called
KIN, showed a CLE25-like hyperactivity, indicating that the
K2nd, I10th and N12th are responsible for the strong activity of
CLE25 (Fig. 1b). A dose–response assay supported the finding
that KIN acts in a similar manner to CLE25 rather than CLV3;
CLV3 attenuates the root growth in a lower concentration than
CLE25 and KIN, whereas the effect of KIN was comparable
to that of CLE25 (Supplementary Fig. 1). The size of the
root apical meristem (RAM) was reduced in CLV3-, CLE25- and
KIN-treated plants, which was not observed in CLE41-treated
plants (Fig. 1c). We further examined the effect of KIN on
the growth of the shoot apical meristem (SAM). The dome-
shaped SAM disappeared after a 10-day treatment of 10 mM
CLV3, which promotes differentiation of stem cells2,15 (Fig. 1d).
KIN also showed a SAM-consuming activity, whereas CLE41
did not (Fig. 1d). In the KIN-treated plants, a small residual
SAM was observed, suggesting that KIN has a slightly weaker
activity compared with CLV3 (Fig. 1d). Coinciding with the
loss of the SAM, the expression of WUS, a downstream gene for
CLV3 signalling15,16, disappeared on the KIN treatment,
indicating that KIN activates the CLV3 signalling pathway
(Supplementary Fig. 2).

During the peptide treatment assays, we noticed that CLV3 and
CLE25 reduce the thickening of vascular tissues in the hypocotyl.
As shown in Fig. 1e, plants grown in liquid medium containing
10 mM CLV3 exhibited reduced radial growth of the stele.
Contrary to expectations, KIN promoted the stele thickening,
which is completely opposite to the effect of CLV3 (Fig. 1e).
Such a stele-thickening activity was previously reported for
CLE41/TDIF (refs 7,8) and indeed the CLE41-treated stele was
thickened in our condition (Fig. 1e). Importantly, among the
swapped peptides (3–16), only KIN showed the stele-thickening

activity similar to CLE41 (Fig. 1f), even though KIN was created
by the swap of amino-acid residues between the two CLV3-type
peptides, CLV3 and CLE25. We further analysed dose–response
relationships in this assay (Fig. 1g). CLV3 exerted a negative effect
on the stele growth at as low as 30 nM, whereas CLE41 showed
a positive effect in higher concentrations (41mM). Interestingly,
KIN exhibited negative effects in lower concentrations, whereas
conversely it displayed positive effects in higher concentrations,
demonstrating that KIN exerts both CLV3 and CLE41 types of
activities by itself.

Genetic dissection of bifunctional CLE bioactivity. The
dual activity of KIN could be attributed to its target receptors.
CLV1 and CLV2 are receptor genes involved in CLV3 signalling
and the SAMs of their loss-of-function mutants are resistant to
CLV3 treatment9,17,18. Unlike the wild-type SAM (Fig. 1d), the
mutant SAMs were maintained even after a 10-day treatment of
10 mM CLV3 and KIN (Fig. 2a), suggesting that KIN acts through
intrinsic CLV1/CLV2 pathways. Furthermore, CLV2, but not
CLV1, is responsible for the root-shortening activity of CLV3
peptide18. Indeed, the clv2-101 mutant was resistant to KIN and
to CLV3 as well in terms of both the root length and RAM size
(Supplementary Fig. 3a,b), indicating that KIN exerts the
root-shortening activity via CLV2.

We next examined responses of these mutants to the peptides
in the stele-thickening assay. As described above, a lower
concentration (100 nM) of CLV3 or KIN reduced the stele
width of wild-type plants, whereas a higher concentration
(10 mM) of CLE41 or KIN thickened the stele (Figs 1g and 2b).
In contrast to our assays where plants were exposed to CLV3
soon after germination, the CLV3-type inhibitory activity was
not observed in the previous report in which 3-day-old seedlings
were treated with the peptide8, suggesting that sensitivity
to CLV3 might differ by plant age. The response pattern of
clv1-101 mutant was similar to that of the wild type, suggesting
that CLV1 does not participate in CLE signalling in
stele thickening. In contrast, clv2-101 mutant was insensitive to
the inhibitory activity of 100 nM CLV3 and KIN (Fig. 2b).
Strikingly, 10mM KIN showed a stronger effect than CLE41 in the
clv2-101 mutant (Fig. 2b). This phenomenon was similar to the
previously reported synergistic effect of the simultaneous
treatment of CLV3 and CLE41, which does not require
functional CLV2 (ref. 8). Simultaneous treatment of 10 mM
CLV3 and 10 mM CLE41 showed a strong activity similar to
the KIN treatment in clv2-101, although these activities were
not observed in wild type in our experimental conditions
(Fig. 2b). As clv2-101 is insensitive to the inhibitory activity
of CLV3 in stele thickening (Fig. 2b), this mutant serves as an
ideal genetic background to detect the positive effect of
CLV3-type peptides. Indeed, the dose–response assay in
clv2-101 showed that, in the presence of 10 mM CLE41,
both CLV3 and KIN increase the stele thickening at
concentrations above 1 mM (Supplementary Fig. 4). These data
further support the notion that KIN exerts both activities of
CLV3 and CLE41 by itself.

CLE41 treatment causes discontinued xylem strands in
leaf vein due to its inhibitory activity on differentiation
of undifferentiated vascular cells into xylem cells7. To further
confirm whether KIN behaves similar to CLE41, we examined
xylem strands after the KIN treatment. In this analysis, we
used clv2-101, because the mutant is resistant to growth-
inhibitory effects caused by CLV3 and KIN, and therefore we
could obtain leaves at a comparable growth stage between
different peptide treatments. We found that, similar to CLE41,
the application of KIN caused inhibition of xylem differentiation,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14318

2 NATURE COMMUNICATIONS | 8:14318 | DOI: 10.1038/ncomms14318 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


which was not observed in CLV3 treatment (Fig. 2c). In
summary, KIN possesses both CLV3- and CLE41-like activities
in all assays examined (Fig. 2d).

To address whether KIN exerts the CLE41-like activity through
the interaction with TDR, the only known receptor for CLE41, we
performed peptide treatment experiments using tdr-1 and cle41-1

mutants (Fig. 3a). Both of these mutants show reduction in stele
width due to the loss of intrinsic CLE41-TDR signalling8,19.
Application of CLE41 complemented the cle41-1 mutant
phenotype. As the KIN application also rescued the cle41-1
mutant defect (Fig. 3a), KIN could function as CLE41. On the
other hand, the receptor mutant tdr-1 was insensitive to
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exogenous KIN and to CLE41 as well (Fig. 3a), suggesting that
KIN acts through TDR to promote stele growth.

Binding of bifunctional CLE peptide with CLV1 and TDR. Our
genetic analyses emphasize that the KIN peptide is capable
of acting through both CLV1 and TDR. To examine the
direct interaction between KIN and the receptors, we synthesized
[125I]-radiolabelled [(4-azidosalicyl)Lys2]KIN (ASA-KIN) for
photo-affinity labelling (Fig. 3b) and applied it to the membrane
fractions containing receptor ectodomains expressed in tobacco
cells. Although the bioactivity of ASA-KIN was reduced com-
pared with the original KIN (Supplementary Fig. 5a–c),
both of the CLV1 and TDR ectodomains were covalently
labelled by [125I]ASA-KIN (Fig. 3c). Under the same experi-
mental condition, no interaction was detected between
[125I]ASA-KIN and the ectodomain of CLV2 (Supplementary
Fig. 6), which is consistent with the previous study20. The
interaction between the [125I]ASA-KIN and CLV1 was
competitively inhibited by excess amount of non-labelled CLV3
and KIN but not by CLE41, indicating that KIN specifically
interacts with CLV1 at the CLV3-binding site. On the other hand,
the binding of [125I]ASA-KIN to TDR was competed by
non-labelled CLE41 and KIN but not by CLV3, showing
the specific binding of KIN to TDR at the CLE41-binding site.
KIN exhibits a CLV3-type activity in a lower concentration,
whereas it behaves as CLE41 in a higher concentration (Fig. 1g).
This phenomenon might be caused by different binding
manners of KIN to the two receptors, CLV1 and TDR. To
address this possibility, we carried out competitive displacement
of [125I]ASA-KIN binding to the receptors with various
concentrations of KIN according to the previously performed
method21. [125I]ASA-KIN binds to these receptors in a similar
manner (Supplementary Fig. 7), suggesting that the binding
of KIN to each receptor is not likely to be the major determinant
of the difference in effective concentration for CLV3- and
CLE41-type bioactivities. The difference is likely to be caused by
other factors such as locations of target tissues and downstream
signal transduction pathways.

Role of specific residues for bioactivities of CLE peptides. To
elucidate the structural basis of the dual activity exerted by the
hybrid peptide KIN, we examined the function of specific residues
of CLE peptides. The amino-terminal residue of CLE peptides,
which is conserved as R in CLV3-type peptides or H in CLE41-
type peptides, has been recognized as an essential residue for their
activities according to the previous Ala-scan assays1,2,22.
Consistently, deletion of the N-terminal residue from
KIN reduced its bioactivity at B100-fold (Supplementary
Fig. 8a–d, peptide 18). However, KIN exerts both CLV3 and
CLE41 activities even though its N terminus is R, raising
a possibility that the N terminus may not be important for the
specificity of CLE activities. Indeed, KIN-H1st peptide also

showed a dual activity similar to KIN, both in stele-thickening
and root-shortening assays (Supplementary Fig. 8a,b,e,f, peptide
19), indicating that the N-terminal residue is not responsible for
the specificity. This was further supported by the fact that CLE41-
R1st retained the CLE41 activity with no CLV3 activity
(Supplementary Fig. 8a,b,e,f, peptide 20).

In addition to H1st, CLE41 has the characteristic S11th, which is
conserved only among CLE41-type peptides in the CLE family23.
We found that CLE41-H11th exhibited a dual activity, whereas
CLE41-H12th showed only CLE41 activity (Supplementary
Fig. 8a,b,e,f, peptides 21 and 22). CLE41-H11thH12th showed
CLV3 activity but lost CLE41 activity (Supplementary Fig. 8a,b,e,f,
peptide 23). On the other hand, CLV3-S11th exhibited neither
CLV3 nor CLE41 activity (Supplementary Fig. 8a,b,e,f, peptide
24). This H-to-S substitution also reduced the CLV3-type activity
of KIN, although the effect was moderate (Supplementary Fig. 8a–
d, peptide 25). Collectively, CLV3 requires H11th for its activity
and the S11th of CLE41 prevents the peptide from displaying the
CLV3 activity.

In the recently published crystal structures of the CLE41-TDR
complex, the Og atom of S11th forms a hydrogen bond with the
e-amino group of K397th of TDR12,13. We analysed the stability
of the hydrogen bond at room temperature (300 K) in molecular
dynamics (MD) simulations based on the atom coordinates of
the CLE41-TDR complex12. We considered multiple alternative
models for protonation states of titratable residues at 300 K,
especially H1st of CLE41 and D303rd of TDR (Supplementary
Information). The overall structure of CLE41 peptide was
considerably more flexible at 300 K compared with the
simulation at 77 K (mimicking the crystal), as shown by
reduced fractions of native contacts (Supplementary Fig. 9a).
The fraction of native contacts was lower in simulations with
protonated D303rd of TDR (Dþ 303rd versus D303rd) at 300 K,
while not influenced significantly by the protonation states of
H1st of CLE41 (Hþ 1st versus H1st, Supplementary Fig. 9a). The
higher flexibility was observed especially around the carboxy
terminus of CLE41 as shown in Supplementary Fig. 9b by the root
mean squared fluctuation of each Ca-atom. Consequently,
the duration of the hydrogen-bond formation between S11th

and TDR was reduced at 300 K (45% and 16% of the entire
simulation time with unprotonated and protonated D303rd,
respectively), compared with the stable hydrogen bond at 77 K
(Supplementary Information). Collectively, it is likely that the
interaction of S11th with TDR is significantly reduced at room
temperature compared with the X-ray structure, which may
explain why the mutation on S11th had little effect on the
bioactivity of CLE41 in the previous report1. In contrast, N12th,
which is essential for the bioactivity1, interacted with TDR 495%
of the time (Supplementary Information), in spite of the increased
flexibility at 300 K, which is due to the formation of a flexible
network of hydrogen bonds with several residues of TDR.

The MD simulations raised a possibility that the side chain
of the 11th residue of CLE peptides might not contribute

Figure 1 | Identification of a bifunctional CLE peptide. (a) Sequence alignment of CLE peptides. CLV3 (1), CLE25 (2) and CLE41 (17) are endogenously

encoded sequences, whereas the others, including KIN (15), are intermediate sequences between CLV3 and CLE25. Residues changed from CLV3 to CLE25

are coloured red. (b) Effects of 1mM peptides on 14-day-old root length. The upper scale is for treatment 1–16 and the lower scale is for treatment 17 and

mock. The grey dashed lines indicate the levels for CLV3/CLE25 peptide treatment. (c) Effects of 1mM peptides on 4-day-old RAM morphology. The

arrowheads indicate the RAM areas. Lower panels show magnification of the boundary areas. (d) Effects of 10mM peptides on 10-day-old SAM

morphology. An arrowhead indicates a residual SAM. (e) Effects of 10mM peptides on stele morphology in 10-day-old hypocotyls. Red bars indicate the

stele width. (f) Effects of 10 mM peptides on 10-day-old hypocotyl stele width. (g) Dose–response relationships in 10-day-old stele width. Photos in c–e are

representatives among three or more biologically independent samples. Data in b,f and g represent mean values±s.d. (n¼ 13–20 in b, 13–16 in f, 12–16 in g,

see Supplementary Data 1 for individual sample sizes). In b,f, means sharing the superscripts are not significantly different from each other in Tukey’s HSD

test, Po0.05. Asterisks in g indicate a significant difference from mock treatment (0 M) in two-tailed Welch’s t-test, Po0.05. Scale bars, 100 mm (c,e) and

50mm (d).
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significantly to their affinities with their intrinsic receptors.
To unequivocally address this, we examined the interaction
between mutated peptides and receptors by the competitive
displacement assay with [125I]ASA-KIN. As expected, CLV3-S11th

retained the interaction with CLV1 (Supplementary Fig. 10, left),
indicating that the H-to-S substitution does not compromise the
binding of CLV3 with CLV1, even though it abolishes the
bioactivity. Thus, the S11th of CLE peptides hampers CLV1
misactivation at a level other than the direct ligand–receptor
interaction. Conversely, CLE41-H11th, which is a bifunctional
CLE peptide (Supplementary Fig. 8), interacted with both
TDR and CLV1, although the interaction with CLV1 was not
strong (Supplementary Fig. 10), showing the contribution of
H11th to the interaction between CLE peptides and CLV1. The
S11th of CLE41 is highly conserved in a number of flowering
plants23 and even in gymnosperms and ferns24, although it is not
required for CLE41 activity according to the previous Ala-scan
assay1, implying that unwanted dual activity, which may be
detrimental to organized growth, has been selectively avoided
during the molecular evolution of CLE41 genes.

Discussion
Here we demonstrate that the bifunctional CLE peptides, which
have not been identified in nature, can be artificially engineered
by using genetic variation among natural CLE peptides. Plant
peptide hormones are typically encoded in a gene family, which
contains small variations in the mature ligand sequences and each
variation can have a unique role in exerting specific bioactivities.
Some variations, such as S11th of CLE41, can be important to
avoid unwanted cell signalling. In principle, sequence variations
in natural peptide hormones are products under selection
pressures in each evolutionary path. Importantly, peptides can
take multiple mutational routes to reach or avoid specific
bioactivities, as demonstrated in the engineering of bifunctional
CLE peptides using different natural CLE peptides as starting
materials. Thus, we propose that the hybrid synthesis of artificial
peptides would provide a powerful methodology to use the
natural genetic diversity as a source to mine cryptic bioactivities
evolutionarily hidden in the genome and to engineer artificial cell
signalling. For instance, given that genetic diversities in some
peptide hormone families determine species-specific reproductive
barriers25,26, our approach could be used as a means to overcome
reproductive barriers for the production of new beneficial plant/
crop species.

Methods
Preparation of peptides. Peptides were synthesized by Fmoc chemistry with
a peptide synthesizer (CS136XT, CSBio). Hydroxyprolines were not included
in the peptides used in this study. [125I]ASA-KIN was synthesized as described
previously10. Fmoc-KIN (3.5 mg), 4-azidosalicylic acid succinimidyl ester
(1.6 mg, Pearce) and NaHCO3 (1.0 mg) were dissolved in 200ml of 50% acetonitrile
for 12 h in the dark with shaking at room temperature. Fmoc-ASA-KIN was
purified by reverse-phase HPLC, lyophilized and deprotected in 25% piperidine in
water for 1 h in the dark with gentle shaking at room temperature. The deprotected
peptide was purified by reverse-phase HPLC to yield 1.8 mg of analytically pure
ASA-KIN. ASA-KIN was further radioiodinated by the chloramine T method, as
described previously10. The labelled peptide was purified by reverse-phase HPLC,
to yield analytically pure [125I]ASA-KIN with specific radioactivity of
93 Ci mmol� 1.

Photo-affinity labelling. Aliquots (1,000 mg) of microsomal proteins for
Halo-tagged receptors (CLV1-HT10, TDR-HT7 and CLV2-HT20) from tobacco
BY-2 cells were suspended in 250ml binding buffer (50 mM MES-KOH pH 5.5 with
100 mM sucrose) containing 30 nM [125I]ASA-KIN in the presence or absence of
various concentrations of competitor peptides indicated in corresponding figure
legends and then incubated for 10 min on ice. The bound and free [125I]ASA-KIN
were separated by layering the reaction mixture onto 900 ml of wash buffer (50 mM
MES-KOH pH 5.5 with 500 mM sucrose) and centrifuging for 5 min at 100,000 g at
4 �C. After discarding the supernatant, the pellet was irradiated on ice for 20 min

with an ultraviolet lamp (model ENF-260C/J (365 nm), Spectronics Co. Ltd) at a
distance of 1 cm. The cross-linked membrane proteins were solubilized,
immunoprecipitated by using HaloTag antibody and separated
by SDS–PAGE on a 7.5% acrylamide gel. The dried gels were exposed to the
bio-imaging plate (MS 2,025, Fujifilm) for 2 days at room temperature and the
plates were analysed using a bio-imaging analyser (Typhoon FLA 900, GE).

Plant materials. Col-0 accession of A. thaliana was used as wild type.
Loss-of-function mutants used in this study (clv1-101/WiscDsLox489-492B1,
clv2-101/GK-686A09, tdr-1/SALK_002910 and cle41-1/CS92206) were described
previously7,17,18. To express the b-glucuronidase (GUS) reporter gene under
WUS promoter, 3.4 kb WUS promoter sequence was amplified with primers
(50-CAACGTCGACCACTCCTATGTTATTAGCTAAAATGTTTAG-30 and
50-CGGGATCCGTGTGTTTGATTCGACTTTTGTTC-30), and ligated into
SalI–BamHI restriction sites of the binary vector pBI101.1. Col-0 plants were
transformed with Agrobacterium tumefaciens (GV3101 Mp90) using the floral dip
method27.

Bioassay. For root-length measurement, plants were germinated and grown
vertically on half-strength Murashige and Skoog (MS) medium supplemented with
1% sucrose and peptide/control solution at 22 �C under continuous light. To
observe the RAM, 4-day-old roots were excised and mounted in clearing solution
(chloral hydrate/glycerol/water¼ 8:1:2) before imaging with light microscope
(Axio Imager.A2, Zeiss).

To observe the SAM, plants were germinated and grown at 22 �C under
continuous light on half-strength MS medium supplemented with 1% sucrose and
10 mM peptide/control solution. To make sections, roots and leaves were cut off
from 10-day-old seedlings, then fixed in FAA solution (50% ethanol:10%
formalin:5% acetic acid in water) and embedded into Technovit 7,100 resin
according to the manufacturer’s instructions (Heraeus Kulzer). Four-micrometre-
thin sections were made using a microtome (RM2235, Leica), stained with 0.05%
toluidine blue and mounted in Entellan New (Merck) before observation with a
light microscope (Axio Imager.A2, Zeiss).

For the observation of stele and leaf vein, seeds were germinated and cultured
with shaking at 110 r.p.m. at 22 �C under continuous light in liquid half-strength
MS medium supplemented with 1% sucrose and peptide/control solution.
10-day-old seedlings were fixed in a 1:3 mixture of acetic acid/ethanol, washed with
water and mounted in clearing solution (chloral hydrate/glycerol/water¼ 8:1:2)
before imaging with a light microscope (Axio Imager.A2, Zeiss).

GUS staining. Plants were fixed in 90% acetone at � 20 �C overnight, washed
twice with 100 mM sodium phosphate buffer (pH 7.2), and then incubated in
X-gluc solution (1mM 5-bromo-4-chloro-3-indolyl-b-D-glucronic acid (Wako),
100 mM sodium phosphate pH 7.2, 10 mM EDTA, 0.1% Triton X, 10 mM
potassium ferrocyanide and 10 mM potassium ferricyanide) for 2 h at 37 �C. The
GUS-stained samples were cleared with 70% ethanol and mounted with clearing
solution (chloral hydrate:glycerol:water, 8:1:2) before imaging with light micro-
scope (Axio Imager.A2, Zeiss).

Statistical analysis. Statistical analysis was performed with Excel (Microsoft)
or R (www.R-project.org). Two-sided Welch’s t-test was performed with Excel. For
the multiple comparison, analysis of variance and Tukey’s honest significant dif-
ference test were performed with R-package ‘agricolae’. The sample size was
determined based on the previous studies7,13. Exact sample size for each data is
shown in Supplementary Data 1.

MD simulation. Detailed methods of structure preparation for simulation and
calculation of pKa of titratable residues are provided in Supplementary Note 1.

Data availability. The authors declare that all data supporting the findings of this
study are available within the manuscript and its Supplementary Information files
or are available from the corresponding authors upon request.
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