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β-Thalassemia Patients Revealed a 
Significant Change of Untargeted 
Metabolites in Comparison to 
Healthy Individuals
Syed Ghulam Musharraf1,2, Ayesha Iqbal2, Saqib Hussain Ansari3, Sadia Parveen3, 
Ishtiaq Ahmad Khan2 & Amna Jabbar Siddiqui1

β-Thalassemia is one of the most prevalent forms of congenital blood disorders characterized by 
reduced hemoglobin levels with severe complications, affecting all dimensions of life. The mechanisms 
underlying the phenotypic heterogeneity of β-thalassemia are still poorly understood. We aimed to 
work over metabolite biomarkers to improve mechanistic understanding of phenotypic heterogeneity 
and hence better management of disorder at different levels. Untargeted serum metabolites were 
analyzed after protein precipitation and SPE (solid phase extraction) from 100 β-thalassemia patients 
and 61 healthy controls using GC-MS. 40 metabolites were identified having a significance difference 
between these two groups at probability of 0.05 and fold change >1.5. Out of these 40 metabolites, 
17 were up-regulated while 23 were down-regulated. PCA and PLS-DA model was also created that 
revealed a fine separation with a sensitivity of 70% and specificity of 100% on external validation of 
samples. Metabolic pathway analysis revealed alteration in multiple pathways including glycolysis, 
pyruvate, propanoate, glycerophospholipid, galactose, fatty acid, starch and sucrose metabolism along 
with fatty acid elongation in mitochondria, glycerolipid, glyoxylate and dicarboxylate metabolism 
pointing towards the shift of metabolism in β-thalassemia patients in comparison to healthy 
individuals.

β​-Thalassemia is a common congenital haematological disorder which is characterized by dysregulation in the 
synthesis of the β​-globin chain, one of the major constituents of adult haemoglobin (HbA)1. It is anticipated that 
annually 70,000 children are born with various types of thalassemia, and majority of these births are affected by 
severe forms of β​-thalassemia2,3. Hundreds of mutations in the β​-globin gene and/or regulatory elements associ-
ated with the β​-globin gene are known to be the cause of this genetic haemoglobinopathy4. While in Pakistan, the 
most common mutation responsible for causing this blood disease is IVS1-55.

In β​-thalassemia, there is an imbalance in α​/β​-globin ratio and excessive α​-globins possibly causes oxidative 
damage to membrane lipids and proteins of red cell in the form of irreversible hemichromes and also increases 
intracellular calcium, causing the significant increase in destruction of RBCs and ultimately anaemia6. Anaemia 
stimulates the erythropoietin production with subsequent intensive but ineffective expansion of the bone mar-
row (up 25 to 30 times normal), which sequentially causes the typical described bone deformities. Prolonged 
and severe anaemia and increased erythropoietic activity also result in hepatosplenomegaly, extramedullary 
erythropoiesis, iron induced dysfunctions of various organs, thrombosis, diabetes, severe infection, and growth 
retardation7.

Revealing alteration of metabolites in the course of a disease in body fluids and tissues is an emerging appli-
cation in the field of biomedical research as this area has the possibility to act as an effective tool for predict-
ing disease phenotype at early stage, and also predicting response of a treatment and survival8. In recent times, 
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metabolomics has been used as potential biomarkers in organ transplantation and immunosuppressant toxicity9, 
assessing pathogenesis of lung diseases10,11, toxicology12, drug discovery and precision medicine13 and cancer 
biology14–16.

Many techniques have been used for screening and diagnosis of haemoglobin variants and thalassemia17. 
Determination of the genetic makeup of the person in question and characterization of human blood using com-
plete blood cell count (CBC) are the most reliable methods for diagnosis of thalassemia. Still there is a limitation 
in the analysis of data due to a large number of possible candidate characteristics and various types of thalassemia 
and thalassemia trait18. Moreover, using such methods, there would be no information about alterations in the 
patterns of metabolites present in the biological materials that can give valuable phenotypic information and 
mechanistic insight into the biochemistry of disease processes and related abnormalities. Limited studies for 
markers identification in the blood or urine of β​-thalassemia patients have been done which include the anal-
ysis of haemoglobin variants to diagnose thalassemia19, marker for lipid peroxidation-induced DNA damage20, 
plasma substance P and soluble P-selectin as biomarkers of β​-thalassemia induced hypercoagulability21, adipo-
cytokines related to haemolytic and inflammatory biomarkers22, biomarkers of iron and oxidant-antioxidant 
homeostasis23,24, nuclear magnetic resonance-based screening of thalassemia with quantification of some haema-
tological parameters25 and quantification of the free α​-Hb26. Various studies have been done showing that meta-
bolic disorders are common in patients with β​-thalassemia27,28 but to date, there is a lack of metabolomics based 
biomarkers that may play role in diagnosing the phenotype of β​-thalassemia and convey prognostic approach 
with various management possibilities26.

This study focuses on the untargeted metabolomic analysis of β​-thalassemia to gain insights into the molec-
ular and cellular pathogenesis to aid in understanding the pathophysiology of disease at molecular level and to 
identify biomarkers/biomarkers pattern. Various powerful data mining and statistical bioinformatics methods 
were used for identifying, prioritizing and classifying robust and generalizable biomarkers with high discrimina-
tory ability. No paper has been published so far regarding the profiling and identification of serum metabolomics 
of β​-thalassemia patients. It is expected that findings of this study will strengthen the knowledge of molecular 
mechanisms involved in β​-thalassemia that will ultimately help in the identification of the characteristic mole-
cule(s) as well as improvement of possible therapy of the disease.

Material and Method
Patient’s Selection.  The selection of patients for present study was carried out in National Institute of 
Blood Disease and Bone Marrow Transplantation (NIBD), Karachi, Pakistan after the ethical approval of the 
Institutional Review Board (IRB), ethic committee of hospital while the experimental protocols were approved 
by the primary research institute (International Center for Chemical and Biological Sciences, ICCBS). This study 
included 100 cases of β​-thalassemia with following inclusion criteria: Patients have been registered at NIBD, diag-
nosed as case of β​-thalassemia major (defined as Hb <​7 g/dL, high HbF, absent or very low HbA, and more than 8 
transfusions a year), sampling was carried out prior to blood transfusion if patient requires blood transfusion, and 
in 4–8 hours fasting condition. Exclusion criteria included: Patients having any evidence of other chronic illnesses 
unrelated to thalassemia and unwillingness to enrol in the study. Healthy volunteers were also recruited at Dr. 
Panjwani Center for Molecular Medicine and Drug Research (PCMD) for this study, basic details of patients and 
healthy controls are mentioned in supplementary information (Table S1). Written informed consent was obtained 
from all the participants of this study including control and patients. A thorough questionnaire consisting of 
questions for information required for study was also filled from all the patients.

Sample Collection.  Sample collection was carried out in accordance with relevant guidelines and regula-
tions. Blood was collected from participants after 8 hours fasting but for infants and toddlers sample was collected 
when they felt need for food. About 5 cc of blood was drawn from participants by venepuncture and collected 
in gel-based BD vacutainer tubes (BD Franklin Lakes NJ, USA, REF: 367381), interior coated with silicone for 
clot activation. Serum was separated by centrifugation at 2000 rpm for 10 minutes at 4 °C. And then serum was 
aliquoted and stored immediately at −80 °C freezer till further processing of sample.

Reagents and Solvents.  Analytical grade solvents were used for GC-MS analysis. Reagents and solvents 
included methanol, hexane (Tedia, Tediaway, Fairfield, USA), myristic-d27 acid, N,O-bis(trimethylsilyl) trifluo-
roacetamide (BSTFA) with trimethylchlorosilane (TMCS) (Sigma-Aldrich, St. Louis, Missouri, USA), methox-
ylamine hydrochloric (Acros Organic, New Jersey, USA), Pyridine (Lab-Scan, Bangkok, Thailand) and Mill-Q/
deionized water (Millipore, Billerica, MA, USA).

Sample Preparation and Derivatization.  Protocol used for preparation of samples in this study for pro-
filing of metabolites has been reported previously in detail and it include methods that were performed in accord-
ance with the relevant guidelines and regulations29. In short, first proteins were precipitated by adding 800 μ​L of 
chilled methanol in 100 μ​L serum containing 20 μ​L of myristic acid (2 mg/mL) as internal standard. Supernatant 
was subjected to solid phase extraction using a 96 well plate (Strata C18-E, 55 μ​m pore size, 70 Å particle, 100 mg 
sorbent/1 mL Phenomenex, USA) under vacuum (AHC-7502, Phenomenex, USA). After sample loading, the 
solid phase was washed with 300 μ​L of water and metabolites were eluted with 600 μ​L methanol and collected in a 
96 well collection plate. The eluent was finally dried in vaccum at room temperature. The dried extract was stored 
at 4 °C until analysis. Derivatization of dried samples was carried out by addition of 50 μ​L methoxylamine hydro-
chloride (15 μ​g/μ​L in pyridine) followed by addition of 50 μ​L BSTFA with 1% trimethylchlorosilane for formation 
of trimethylsilyl derivatives. Then sample was centrifuged and analyzed on GC/MS.

GC-MS Analysis.  GC-MS analysis of derivatized samples was executed as mentioned previously with minor 
modifications in the GC method30. Analysis was carried out on 7890 A GC (Agilent technologies, USA), fitted 
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with a GC auto sampler 120 (PAL LHX-AG12–Agilent Technology) autosampler and coupled to Agilent 7000 
Triple Quad system (Agilent Technologies, USA). A fused-silica capillary GC column, HP-5MS 30 m x 0.25 mm 
ID (Agilent J&W Scientific, Folsom, CA, USA), chemically bonded with a 95% dimethylpolysiloxane 5% diphenyl 
cross-linked stationary phase (0.25 mm film thickness) was used. The serum sample was injected in the splitless 
mode using helium as carrier gas. Initially the oven temperature was fixed at 50 °C for 1 min then temperature 
was raised in three steps. In first step temperature raised at a rate of 10 °C per minute to 80 °C for 3 min then again 
10 °C per min to 180 °C for 3 min and in final step 15 °C per min raise to 300 °C for 5 min. After maintaining 
the temperature at 300 °C for five minutes, it was further increased to 305 °C for one minute which referred as 
post run. Retention time was locked to the internal standard at 20.070 min. Electron impact ionization (EI) was 
used as an ionization source for the GC/MS analysis at 70 eV. Data acquisition was done in full scan mode from 
50–650 m/z in 0.5 seconds scan time. A blank was run between samples to remove contamination. Mass calibra-
tion was done with perfluorotributylamine (PFTBA).

GC-MS Data Preprocessing and Statistical Analysis.  Agilent Mass Hunter Qualitative Analysis soft-
ware (version B.04.00) was used for data processing. Peak integration and deconvolution parameters have been 
previously reported29,30. Mass spectra of the peaks were compared with NIST mass spectral (Wiley registry NIST 
11) library leading to presumptive identification of metabolites with a ≥​ 70% similarity index. The GC-MS spectra 
were uploaded on Mass Profiler Professional (MPP) software 12.5. Filtering of the data involved using all available 
data and minimum absolute abundance of 5,000 counts with 3 number of ions minimum. Match factor 0.3, reten-
tion time tolerance 0.05 and delta MZ (low resolution) 0.2 were set as alignment parameters. External scalar was 
used for normalization of data. Z transform was selected as base lining option treating all the compounds equally 
irrespective of their intensity. A total of 711 compounds were detected in the entire samples after alignment of 
data. Statistical significance analysis was done using student T-test unpaired for healthy versus β​-thalassemia 
patients of fold change (FC) 1.5. A PLSDA model was built for healthy versus β​-thalassemia patients using auto 
scaling, N fold validation type, three number of folds and ten number of repeats. Blind samples (n =​ 20) were also 
run for external validation. Sensitivity and specificity of the constructed model were also measured.

Results
Metabolite profiling of total 161 serum samples including healthy volunteers (n =​ 61) and β​-thalassemia patients 
(n =​ 100) were analysed by using GC-EI-MS. After performing GC-MS analysis as described above, identifica-
tion of metabolites was carried out using Agilent Mass Hunter Qualitative Analysis software and NIST library. 
Statistical and multivariate data investigation i.e. Heatmap, PCA plot and PLSDA plot was carried out using 
MPP software in order to identify comparative and statistically significant metabolites between healthy and 
β​-thalassemia samples. Significant testing and fold change was carried out on total of 711 entities found in this 
experiment. Student’s T-test unpaired, asymptomatic p-value computation and multiple testing correction by 
Benjamini Hochberg FDR was applied. A list of 40 compounds was generated at probability of 0.05 and fold 
change >​1.5. Out of these 40 metabolites, 17 metabolites were up-regulated and 23 were down-regulated in 
β​-thalassemia patients in comparison to healthy controls as listed in Tables 1 and 2, respectively with their CAS 
registry numbers. Among these 40 metabolites, 8 were showing a fold change of 2 among disease and healthy 
group as shown in Fig. 1. Twenty one out of forty low molecular weight metabolites; geraniol, palmitic acid, 
α​-glyceryl palmitate, lactic acid, α​-glyceryl stearate, M-pyrol, citronellyl formate, sucrose, triethanolamine, 
5-ethyl-5-methyldecane, 2,3-dimethyl-2,3-butane-diol, boric acid, phosphoric acid, hexadecane, methylbis(phe-
nylmethyl)benzene, dodecane, 4,6-dimethyl, phthalic acid, glycerol, stearic acid, n-pentatriacontane and ethylene 

S. No. Compound (CAS No.)
Compound Found in No 
of Disease Samples/100

Compound Found in No 
of Healthy Samples/61

Retention 
Time

p (Corr) ([Disease] Vs 
[Healthy]) :Normalized

Log FC (abs) ([Disease] Vs 
[Healthy]) :Normalized

1 Geraniol (106-24-1) 98 26 14.18871 1.65E-19 1.365947

2 Palmitic Acid (55520-89-3) 100 60 23.55566 0.002264404 0.6102581

3 α​-Glyceryl Palmitate (1188-74-5) 100 49 27.26245 1.04E-06 0.8656348

4 Lactic Acid (17596-96-2) 70 26 9.07812 0.00308354 0.5949775

5 α​-Glyceryl stearate (1188-75-6) 100 61 28.265228 7.23E-06 0.80729926

6 M-Pyrol (872-50-4) 53 1 8.527779 7.22E-11 1.082454

7 Citronellyl formate (105-85-1) 81 17 12.806128 4.35E-11 1.0938886

8 Sucrose (19159-25-2) 73 17 27.751137 3.00E-08 0.9526255

9 Triethanolamine (20836-42-4) 84 3 17.671268 1.88E-30 1.5848455

10 5-Ethyl-5-methyldecane (17312-74-2) 28 1 16.734486 3.86E-04 0.68131626

11 2,3-dimethyl-2,3-butane-diol (76-09-5) 57 6 11.471427 9.78E-09 0.97938067

12 Boric Acid (4325-85-3) 36 0 7.138889 1.26E-06 0.85958195

13 Phosphoric Acid (10497-05-9) 20 0 12.92 0.002640698 0.6035476

14 312.0@21.099983 72 26 21.099983 0.002248546 0.61144674

15 147.0@6.300002 39 0 6.300002 1.91E-07 0.9072522

16 151.0@6.0 32 3 6 6.99E-04 0.6602574

17 71.0@9.700005 45 5 9.700005 1.06E-05 0.7957854

Table 1.   List of up-regulated metabolites in β-thalassemia patients in comparison to healthy controls.



www.nature.com/scientificreports/

4Scientific Reports | 7:42249 | DOI: 10.1038/srep42249

glycol; were putatively determined by comparing the mass spectra of the peaks with those available in the NIST 
mass spectral (Wiley registry NIST 11) library at ≥​ 70% similarity index while the remaining were not identified 
at this similarity index. The identified compounds are shown with their name while unidentified with their base 
peak and retention time in Tables 1 and 2. The EI/MS spectra of remaining nineteen unidentified compounds 
are shown in supplementary information (Figure S1). Principal component analysis (PCA) was also carried out 
on our data to make sure that the difference in metabolic pattern is due to difference in health status and not 

S. No. Compound (CAS No.)
Compound Found in No 
of Disease Samples/100

Compound Found in No 
of Healthy Samples/61

Retention 
Time

p (Corr) ([Disease] Vs 
[Healthy]) :Normalized

Log FC (abs) ([Disease] Vs 
[Healthy]) :Normalized

1 Hexadecane (544-76-3) 10 22 23.89688 9.40E-04 −​0.6479106

2 Methylbis(phenylmethyl)benzene (999383-38-3) 0 14 25.5 6.50E-06 −​0.8112275

3 Dodecane, 4,6-dimethyl (61141-72-8) 15 30 17.23111 3.91E-05 −​0.75676084

4 Phthalic acid (117-81-7) 6 33 27.08717 1.49E-11 −​1.11504

5 Glycerol (6787-10-6) 49 50 12.99899 0.001520142 −​0.6268371

6 Stearic acid (57-11-4) 0 21 24.59524 1.61E-09 −​1.0188797

7 n-Pentatriacontane (630-07-9) 3 14 20.94118 8.19E-04 −​0.65371585

8 Ethylene glycol (7381-30-8) 0 14 7.350001 6.50E-06 −​0.8115035

9 77.0@19.5 1 27 19.5 3.94E-12 −​1.1401991

10 77.0@19.200005 0 22 19.20001 4.89E-10 −​1.0456579

11 73.0@8.100001 1 21 8.100001 1.22E-08 −​0.9731995

12 55.0@24.399998 0 9 24.4 0.001147105 −​0.63986087

13 71.0@22.799995 5 22 22.8 3.09E-06 −​0.8342981

14 71.0@25.899998 1 19 25.9 1.43E-07 −​0.91528964

15 73.0@12.899999 2 11 12.9 0.002962446 −​0.5973833

16 71.0@13.600004 11 25 13.6 1.45E-04 −​0.7139679

17 57.0@24.600004 2 11 24.6 0.003284676 −​0.59084994

18 69.0@12.799999 2 23 12.8 8.59E-09 −​0.9838301

19 57.0@11.699998 1 17 11.7 2.23E-06 −​0.8439079

20 73.0@14.199998 0 12 14.2 5.17E-05 −​0.74642193

21 73.0@18.5:1 24 32 18.5 0.003341812 −​0.5893601

22 73.0@9.199999 5 15 9.199999 0.003284676 −​0.5910041

23 57.0@27.100002 0 8 27.1 0.00271492 −​0.60159874

Table 2.   List of down-regulated metabolites in β-thalassemia patients in comparison to healthy controls.

Figure 1.  Eight metabolites at FC >2, out of which 4 are down-regulated (bar below the baseline of 0) 
while 4 are up-regulated (bar above the baseline of 0) in β-thalassemia patients as compared to healthy 
group. 
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attributable to age or weight. We found that samples were not separating on the basis of age or body mass shown 
in supplementary information (Figures S2 and S3) therefore excluding these confounders.

PCA was carried out and a model was generated which revealed a vibrant and noteworthy difference between 
the non-averaged healthy samples and β​-thalassemia samples. The PCA scores are shown in Fig. 2 in which each 
sample is denoted by a single point. The 50% cumulative variance of samples was observed at component 6 and 
variance of first three components on X, Y and Z axis are found to be 23%, 7.18% and 6.05% respectively. So this 
indicates that there are many factors responsible for discriminating metabolites between the healthy and disease 
group. A prediction model of healthy versus disease group was built by multivariate data analysis that include 
all analysed samples i.e. 100 β​-thalassemia and 61 healthy samples and on the basis of forty metabolites having a 
statistically important difference in expression between these two clusters. Samples were classified into discrete 
classes also by supervised Partial Least Square Discriminant Analysis (PLSDA). Two parts of the input data were 
randomly assigned to the training set and remaining into the testing set. Auto-scaling was applied which involves 
subtracting the variable mean from each variable (data column) and dividing each by its standard deviation. This 
process was repeated ten times, each time using a different part for testing thus using each row once in training 
and testing generate a Confusion Matrix, which gives accuracy of prediction for each class. Plots obtained by 
PLS-DA scores are shown in Fig. 3 exposing an unblemished separation trend between the two sets of our exper-
iment. Sensitivity of the constructed model was calculated from the proportion of β​-thalassemia samples that 
were predicted correctly and referred as true positives, while specificity was determined from the proportion 
of control samples which were correctly predicted and these are stated as true negatives. Sensitivity of our built 
model was found to be 92.0% and specificity was 95.0%, respectively, while the overall accuracy of the model was 
93.1% as mentioned in Table 3. The predictive capacity (i.e. sensitivity and specificity) of the model was meas-
ured also by external validation using 20 serum samples consisting of 10 samples each from healthy controls and 
β​-thalassemia patients. But these samples were decoded prior to preparation and analysis by GC-MS therefore 
these were an independent or blind test set of samples. External validation correctly predicted the presence of 
β​-thalassemia in 7 out of 10 patients and healthy controls in 10 out of 10 patients resulting in a sensitivity of 70% 
and specificity of 100%. Sample prediction reports are shown in Figure S4 of supplementary information.

To identify metabolic pathways those are disturbed in β​-thalassemia we used web based software 
MetaboAnalyst 3.0 (www.metaboanalyst.ca/) in which previously mentioned list of identified metabolites was 

Figure 2.  PCA score plot of healthy and β-thalassemia patients based on forty (40) significantly 
differentiated metabolites i.e. having a fold change >1.5. Variance on X, Y and Z axis is also shown within 
brackets.

Figure 3.  PLSDA scores scatter plots discerning among healthy controls and β-thalassemia patients based 
on forty (40) significantly differentiated metabolites i.e. having a fold change >1.5. 

http://www.metaboanalyst.ca/
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entered. On the basis of several databases such as KEGG (Kyoto Encyclopedia of Genes and Genomes) (http://
www.genome.jp/kegg/)31,32 and HMDB (Human Metabolome Database) (http://www.hmdb.ca/) this online soft-
ware helps in identifying the pathways with significant alterations. The summaries of pathway analysis created on 
the basis of hypergeometric test and relative-betweeness centrality in pathway topology analysis by this program 
using up-regulated and down-regulated metabolites are shown in Figures S5 and S6, respectively. The images of 
distinguishing identified pathways are provided in supplementary data i.e. Figure S7.

Discussion
The innovative omics technology has opened up exciting opportunity for screening and identification of novel 
biomarker that can acts as an indicator for the physiological alteration of body. Evolving technologies of metab-
olomics profiling hold potential for lighting biology and human diseases. Metabolites have a wide range of 
functional groups are present from volatile alcohols, ketones, amines, organic acids to complex lipids, carbo-
hydrates and other secondary metabolites. β​-thalassemia is one of the very frequent and extremely disabling 
genetic disease. Different pathological and environmental stresses change expression level of certain genes and 
hence concentrations of metabolites of corresponding pathways. Therefore, we aimed to determine these changes 
in metabolome of β​-thalassemia patients for disease prognosis and to understand unclear pathophysiological 
mechanisms of thalassemia, as field of metabolomics has proven itself a promising technique in understanding 
pathophysiology of many other various diseases also including genetic diseases such as sickle cell anaemia33–36. 
However, our results are limited by the fact that the type of mutation was not known in patients.

The comparison of serum metabolites between β​-thalassemia patients and normal subjects revealed evident 
alterations of metabolites in the disease group. The close image of heat map using non-average samples with 
normalized intensities of forty (40) significant metabolites are shown in Fig. 4 in which the identified metabo-
lites are stated by their name while unidentified with their base peak and retention time. From this heat map it 
is quite clear that β​-thalassemia metabolite profile is totally different from the control group and it can also be 
observed that the concentration of some of the metabolites is increased while of some is decreased. This change 
in metabolite profile indicates that in β​-thalassemia patients metabolism is shifted from the normal state and it is 
also reported in literature that metabolism is disturbed in this genetic disease37. Hence, knowledge related to these 
altered metabolites play an important role in understanding of disease progression at molecular level. Significance 

Β-Thalassemia 
Predicted

Healthy 
Predicted Accuracy

True Β​-Thalassemia 92 8 92.00

True Healthy 3 58 95.08

Overall Accuracy 93.17

Table 3.   Confusion Matrix of Model generated from healthy controls (n = 61) and β-thalassemia patients 
(n = 100).

Figure 4.  Image of heatmap using non-average samples with normalized intensities of 40 significant 
metabolites that showed significant difference among healthy & disease group. The arrows indicate the up-
regulation and down-regulation of metabolites.

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.hmdb.ca/
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of the transformed metabolite profile in β​-thalassemia can be described by referring it to the human metabolome 
database (HMDB)38–40.

Up-regulated metabolites.  Geraniol also named as rhodinol is a monoterpenoid and an alcohol which 
occurs in essential oils of several aromatic plants. Its bio-functions include cell signalling, storage and source of 
fuel or energy and integrity of membrane. It possess anti-cancer, antimicrobial, anti-oxidant, anti-inflammatory 
and some vascular effects41, therefore it is possible that geraniol is increased as a result of oxidative stress, inflam-
mation and decreased RBCs membrane integrity in β​-thalassemia. Palmitic acid or hexadecanoic acid is one of 
the most common saturated fatty acids found in animals, a saturated fatty acid found in fats, waxes and body 
lipids. It is involved in various metabolic pathways in body and its altered levels are also reported in colorectal 
cancer, breast cancer, eosinophilic esophagitis and gastroesophageal reflux disease. Palmitic acid plays important 
functions other than providing energy42. One of their functions is to induce apoptosis, so their high levels may be 
responsible for early degradation of RBCs in β​-thalassemia patients. α​-Glyceryl palmitate and α​-glyceryl stearate 
are forms of fatty acid, both are one fatty acid chain containing glycerides, covalently bonded to a glycerol mole-
cule through an ester linkage. Both of these are source of energy as well as required also in maintaining stability 
of membrane so its increase levels can be due to more destruction of red cells. Lactic acid is a crucial metabolite 
which is involved in various biochemical processes and its production take place due to extreme activity in mus-
cles. It is a component of various metabolic pathways such as cysteine, propanoate and pyruvate metabolism. As it 
is a product of anaerobic glycolysis therefore its enhancement in β​-thalassemia can be predicted as these patients 
have low Hb levels which cause less supply of oxygen to tissues and leading to more anaerobic glycolysis. The sec-
ond reason for more lactic acid levels, that it may be due to poor hepatic function a consequence of iron overload 
in these patients as abnormal concentrations of lactic acid are found in hepatic biliary malignancies in addition to 
other cancers. M-pyrol is a product of GABA (γ​-aminobutyric acid) a neurotransmitter, its altered levels are seen 
in bladder infection and urinary tract infections are common in β​-thalassemia because of predisposing factors of 
such as splenectomy, iron overload, anaemia, and granulocyte dysfunctions43. Sucrose is a non-reducing disac-
charide of glucose and fructose and is linked to various metabolic pathways of glucose and other sugars. As it is 
broken down into its constituents fructose and glucose and its increase in blood indicates metabolic syndrome, 
mostly in β​-thalassemia patients glucose homeostasis is abnormal this may result in its elevation28. Citronellyl 
formate and triethanolamine are metabolites found in cytoplasm as well as extracellularly. Both of them are 
produced endogenously in addition to dietary source. Phosphoric acid is another important metabolite which 
we found to be up-regulated in the disease group. It is present in cytoplasm and it act as an osmolyte and enzyme 
cofactor in biological system. It is also involved in signalling and a list of metabolic pathways such as ammonia 
recycling, arginine, proline, cysteine, purine, pyruvate, inositol metabolism and various glucose metabolic path-
ways. Therefore, it can be stated that increase phosphoric acid levels are indicator that various metabolic pathways 
are up-regulated in this disease.

Down-regulated metabolites.  Hexadecane is a 16 carbon atoms chain that has been shown to exhibit 
anti-inflammatory, anti-bacterial, anti-oxidant and thermogenic functions. Because in β​-thalassemia all these 
activities are increased so low levels of hexadecane can be co-related with its more utilization and less availabil-
ity in serum freely. Phthalic acid is a toxin or pollutant found in blood and when found in tissues or biofluids, 
it arises from exposure to phthalate products. Phthalate is an environmental chemical of high public concern 
because reports of its potential risk to male reproductive health so it can be said that iron load is a major reason of 
infertility in these patients and not the environmental toxins44. Glycerol is a major component of phospholipids 
and triglycerides that can be converted into glucose by liver to fulfil energy requirements. It is a component of 
glycerolipid and glycerophospholipid metabolism. And its abnormal levels have been quantified and identified in 
various disorders45,46, so it is obvious that in β​-thalassemia glycerol is more consumed for energy production due 
to metabolic stress. Octadecanoic acid or Stearic acid is a beneficial saturated fatty acid involved in mitochon-
drial beta-oxidation of long chain saturated fatty acids and plasmalogen synthesis. These both pathways mainly 
contribute to maintain dynamics of membrane and cell signalling so low levels of stearic acid in body further 
contribute to decrease strength of RBCs membrane and altered cell signalling. Ethylene glycol also known as pol-
yethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight is an oligomer or polymer 
of ethylene oxide. It functions in biosystem as a nutrient, anesthetic, anti-microbial, laxative and radical scavenger 
and its low levels may further aggravate the oxidative stress and increase susceptibility to infections.

Pathway Analysis.  Pathways were produced from MetPA (Metabolomic Pathway Analysis) software that 
showed dysregulation in β​-thalassemia patients (Table 4). Using MetPA identified metabolites were analysed that 
contains pathways from the KEGG metabolic pathways database and HMDB. Pathway enrichment with topology 
analysis, and an interactive visualization system is also used to find pathways that are most substantially altered 
under the conditions of particular experiment. In metabolic networks, more severe effects are produced due to 
changes in more “vital” locations on the pathway compared to variations occurring in bordering or comparatively 
isolated positions. In our analysis, we identified several pathways some were generated from list of metabolites 
that were up-regulated in β​-thalassemia, including fatty acid elongation in mitochondria, glycolysis or glucone-
ogenesis, pyruvate, propanoate, glycerophospholipid, galactose, fatty acid biosynthesis and metabolism, starch 
and sucrose metabolism that may be amplified in these patients. While the metabolites that were down-regulated 
in β​-thalassemia patients showed abruption in glycerolipid, galactose, glyoxylate and dicarboxylate metabolism 
and fatty acid biosynthesis. Metabolites involved in dysregulation of these pathways are palmitic acid, lactic acid, 
sucrose, triethanolamine, glycerol and ethylene glycol. The detail results of pathway analysis are shown in Table 4 
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illustrating all matched pathways according to p-values from pathway enrichment analysis and pathway impact 
values from pathway topology analysis.

The pathways with considerable impact include glycerolipid, pyruvate, galactose, starch/sucrose and fatty acid 
metabolism while metabolites blameable for these deviations are glycerol, lactic acid, sucrose and palmitic acid 
respectively. We also noted that two pathways are found in both lists of pathways altered either due to increase 
or decrease of metabolites. One of them is fatty acid biosynthesis so it can be assumed that increase in palmitic 
acid is compensated by body with decrease in stearic acid to sustain the regulation of fatty acid biosynthesis path-
ways. Other is galactose metabolism in which increase sucrose is responsible for this pathway alteration which is 
compensated by decrease in glycerol. But this compensation is not sufficient enough by body because decreased 
glycerol has no such significant impression on this pathway as compared to increased sucrose. Therefore, it can 
be anticipated that diabetes an important complication of β​-thalassemia is linked to imbalanced and aggravated 
galactose metabolism.

Conclusion
This study showed that genetic abnormalities in β​-thalassemia also give rise to disturbance in metabolism of body 
that can be observed by alteration in serum metabolomic profile of β​-thalassemia patients as compared to the pro-
file of healthy group. Our research demonstrated that metabolite profiling by GC-EI-MS is a reproducible, sensi-
tive and less invasive method that can be used for establishment of a profile distinguishing between β​-thalassemia 
patients and healthy controls with a good sensitivity and specificity. A model was fabricated on forty significantly 
expressed metabolites precisely classifying β​-thalassemia patients and healthy controls on external validation. In 
addition to this many important pathways are identified that were found to be impaired in β​-thalassemia and may 
play role in disease progression. Moreover, our approach is the first to report differences in the serum metabo-
lome between healthy and β​-thalassemia patients, a molecular level understanding that can be used in improving 
treatment options for the sufferers as well as diagnosing phenotype of patients.
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