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The ever-growing availability of high-quality genotypes for a multitude of species has enabled researchers to explore the
underlying genetic architecture of complex phenotypes at an unprecedented level of detail using genome-wide association
studies (GWAS). The systematic comparison of results obtained from GWAS of different traits opens up new possibilities,
including the analysis of pleiotropic effects. Other advantages that result from the integration of multiple GWAS are the ability
to replicate GWAS signals and to increase statistical power to detect such signals through meta-analyses. In order to
facilitate the simple comparison of GWAS results, we present easyGWAS, a powerful, species-independent online resource
for computing, storing, sharing, annotating, and comparing GWAS. The easyGWAS tool supports multiple species, the
uploading of private genotype data and summary statistics of existing GWAS, as well as advanced methods for comparing
GWAS results across different experiments and data sets in an interactive and user-friendly interface. easyGWAS is also
a public data repository for GWAS data and summary statistics and already includes published data and results from several
major GWAS. We demonstrate the potential of easyGWAS with a case study of the model organism Arabidopsis thaliana,
using flowering and growth-related traits.

INTRODUCTION

The growing number of high-quality genotypes andphenotypes for
manyplant and animal species has created a uniqueopportunity to
improve our understanding of the genetic basis of complex traits
and diseases. Over the last decade, genome-wide association

studies (GWAS) have become a key technique for exploiting this
wealth of data, by detecting associations between a phenotype of
interest and genetic variants present in a group of individuals (Bush
and Moore, 2012). Unlike classic linkage mapping, GWAS can
survey hundreds of thousands or evenmillions of single nucleotide
polymorphisms (SNPs),which in turn givesGWASgreater power to
detect small effects (Cordell and Clayton, 2005). Moreover, GWAS
offer a higher resolution than linkagemappingbecauseof the larger
number of recombination events that will have occurred in natural
panels used for associationmapping (Nordborg andWeigel, 2008).
Theutility ofGWAShasbeendemonstrated in a variety of plants

and crops, including Arabidopsis thaliana (Atwell et al., 2010; Filiault
and Maloof, 2012; Meijón et al., 2014), rice (Oryza sativa; Zhao et al.,
2011), wheat (Triticum aestivum; Liu et al., 2015), and tomato (Sola-
num lycopersicum; Lin et al., 2014), and in various animal species,
such as fruit flies (Mackay et al., 2012), mice (Kirby et al., 2010), and
humans (Scott et al., 2007; Chasman et al., 2011; Freilinger et al.,
2012). These studies are accompanied by a steady improvement in
thelevelofdetailof thegenotypic information.Whileearlystudiesused
SNPs to represent entire genomic regions (Atwell et al., 2010), recent
studies have provided large panels of whole-genome information in
species such as Arabidopsis (1001 Genomes Consortium, 2016).
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The wealth of information provided by independent GWAS,
many of which were conducted on related traits, offers unique
opportunities for comparing and integrating findings across
experiments. This integration makes it possible to detect genes
with pleiotropic effects on multiple traits and traits with a shared
geneticbasisand to replicatefindingsor increasestatistical power
in association mapping throughmeta-analyses of several studies
(Frankeet al., 2010;Chasmanet al., 2011;Andreassenet al., 2013;
Evangelou and Ioannidis, 2013; Pickrell et al., 2016).

To exploit the full potential of comparative GWAS analyses, we
present easyGWAS, a powerful platform for computing, storing,
sharing, and comparing the results of GWAS in both inbred and
outbred plant and animal species. easyGWAS offers tools to
conductGWASand,more importantly,makesavailable additional
data and functionality to facilitate the in-depth annotation, anal-
ysis, publishing, andcomparisonofGWAS results. Thereare three
main aspects of easyGWAS, which together make it a unique online
resource. Thefirst aspect is its use asa repository of results obtained
from private and public GWAS, which are either computed in
easyGWAS or imported from external tools such as PLINK (Purcell
et al., 2007). The second key component is the functionality to
conductGWAS in a standardizedway to ensure amaximumdegree
of comparability between studies. This leads to easyGWAS’s third
key feature, which is its ability to compare the results of different
GWAS and conduct meta-analyses. While existing GWAS online
resources, such as EMMA (Kang et al., 2008), DGRP2 (Mackay
et al., 2012), Matapax (Childs et al., 2012), and GWAPP (Seren
et al., 2012) allow for the computation, analysis, and annotation of
GWAS, they focus exclusively on a single species and, most
importantly, do not provide functionality to compare and integrate
the results of already conducted GWAS.

A summary of themain contributions of easyGWAS is highlighted in
Figure1.Theplatformisuniqueinfiveways: (1) It isnot limitedtoacertain
species; (2) it allows users to upload and manage their own genotype
and gene annotation data for a species of choice; (3) it supports the
uploading of summary statistics of GWAS obtained from third-party
tools; (4) it provides a variety of differentmethods to correct formultiple
hypothesis testing; and, most importantly, (5) it integrates advanced
methods for comparing results of GWAS across different data sets.

Furthermore, easyGWAS supports state-of-the-art sharing and
publishing functionalities: Users can choose between sharing the
data and results associated to a genome-wide association study,
either with a restricted set of collaborators or with the entire scientific
community.

As a case study, we use easyGWAS on a large number of Ara-
bidopsis accessions from the latest efforts of the 1001 Genomes
Project (2016), in which we measured several flowering time and
growthrelatedtraits.Weintegratetheresults fordifferent traitsusing
the platform’s new comparison functionality. easyGWAS is avail-
able online at https://easygwas.ethz.ch.

RESULTS

Overview

easyGWAS consists of two main web components: a Data
Repository and the GWAS Center. Each of them provides a user-
friendly graphical front end that is divided into a publicly accessible

area and a private area for registered users. The GWAS Center
provides state-of-the-art methods to perform GWAS and meta-
analyses, as well as an interactive results viewer for in-depth
analysis of specific genomic regions. There is also an easy-to-use
interface for interactive comparisons of the results of already
computed GWAS or uploaded summary statistics.

Data Repository

The data repository comprises various functions related to data
integration, storage, management, and representation. As men-
tioned above, the data repository is divided into a publicly ac-
cessible area and an area that is restricted to registered users.
Published and publicly available data can be accessed via the
PublicDataview,while users’privatedataare stored ina restricted
and secure environment that can only be accessed through the
Private Data view (Supplemental Figure 1 or at https://easygwas.
ethz.ch/data/public/species/). Refer to Methods for details about
data sets already integrated into thePublicData view.Data shared
between collaborators or with subsets of other users will be
displayed in the Private Data view. The data repository contains
general information, meta-information, and graphics about the
species, data sets, phenotypes, covariates, and samples. The
DownloadManagergives access to all publicly available data sets
in the widely used PLINK format (Purcell et al., 2007). Users can
easilymake their private data available to the scientific community
at a later time point. The Upload Manager supports users in the
secure integrationofnewgenotype,phenotype,covariate, orgene
annotation data into easyGWAS. Furthermore, easyGWAS sup-
ports the automatic import of public phenotypes from AraPheno
(https://arapheno.1001genomes.org), a central repository for
population-scale phenotype data from Arabidopsis (Seren et al.,
2016). Users can also upload their custom summary statistics of
GWAS performed in different environments, for example, from
offlineanalyseswithPLINK (Purcell et al., 2007)orother third-party
tools (Kang et al., 2010; Lippert et al., 2011; Rakitsch et al., 2013;
Azencott et al., 2013; Sugiyama et al., 2014; Llinares-López et al.,
2015), for visualization, subsequentmeta-analysis, or comparison
with GWAS results that have already been deposited in easy-
GWAS. Detailed descriptions of the different views can be found
in the supplemental data (Supplemental Figures 2 to 6 and
Supplemental Text 1).

GWAS Center

The GWAS Center offers a variety of different methods related to
computing, analyzing, andmanaging GWAS;meta-analyses; and
comparisons of results. Nonregistered users can investigate and
download the results of published and publicly available projects,
while registered users can perform their private analysis on data
for a given species. As mentioned above, a user can conduct (1)
GWAS, (2) meta-analyses, and (3) comparisons of results. For
each of these tasks, there are step-by-step workflows, also re-
ferred to as “wizards,” which facilitate and standardize their ex-
ecution. Eachwizard guides the user through all necessary steps,
such as selecting a species, phenotypes, transformations, and
appropriate algorithms. The wizard analyzes the user’s input at
different steps and only suggests suitable algorithms and
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transformations (for example, it excludes transformations or
algorithms that cannot be used for specific data types). To
avoid an overload of the easyGWAS server, a user is limited
to five concurrent experiments. Submitted experiments are
distributed to different computation queues in the back-end
and the user receives automatic email notifications after the
computations have finished (see the Runtime Analysis section
for performance comparisons). Details about implemented
genome-wide association (GWA) mapping methods, meta-
analysis methods, transformations, and genotype encodings
can be found in Methods. Please see the supplemental data
for additional details about the wizards (Supplemental Text 2
and Supplemental Figure 7) as well as the easyGWAS online
FAQ (https://easygwas.ethz.ch/faq/).

By default, results are kept for 48 h in the user’s profile and
trashed afterwards. To store experiments permanently, users can
save and group individual experiments into GWAS projects
(Supplemental Text 3 and Supplemental Figures 8 to 11). Private
projects can be easily shared with other collaborators or users
using the project sharing functionality (Supplemental Figure 10),
which reduces the need to send large results and data files via
e-mail to collaborators. In addition to restricted data sharing with
others, users can make their private GWAS projects available to
the scientific community. We have added a hand-curated inquiry
step to control the quality of publicly available projects and data
(Supplemental Figure 11).

Result Views

Results of computedGWASandmeta-analyses canbe viewed
by clicking on the experiment name in either the temporary or
permanent history. The results window is divided into several
panels, as illustrated in the screenshot shown in Figure 2
(Supplemental Text 4). Figure 2A shows the general “GWAS

Center”menu panel. To navigate through different sections of
the results, users can click on the different tabs shown in
Figure 2B. The panels in Figures 2C and 2D are the default
panels when displaying the results of each experiment. The
panel in Figure 2D shows interactive Manhattan plots. The
green line in eachManhattan plot illustrates the globalmultiple
hypothesis correction threshold. Four widely used correction
methods can be applied: Bonferroni (Abdi, 2007), Benjamini
and Hochberg (1995), Benjamini and Yekutieli (2001), and
Storey andTibshirani (2003) (seeMethods; Supplemental Text
10). By default, the conservative Bonferroni correction con-
trols the family-wise error rate with a significance level of a =
5%, but the other methods also provide less stringent false
discovery rate controls. The multiple hypothesis correction
method and the significance level a (1, 5, or 10%) can be
adjusted dynamically in the plotting options, which can be
found in the panel in Figure 2C. All Manhattan plots contain
interactive elements, such as the ability to zoom into regions
of interest to display further information about the local genes.
Manhattan plots can be downloaded as PDF files for use in
manuscripts or presentations. The vertical panels on the left
(Figure 2E and 2F) show a brief summary, including in-
formation about the selected species, data set, and selected
settings. Additionally, the top 10 associated SNPs and their
genes are ranked (if a gene annotation set was selected for the
experiment).
Moreover, each SNP in a Manhattan plot is clickable, such that

users can obtain additional information about the alleles at that
position, box plots about the phenotypic values for each allele, as
well as a detailed map of the linkage disequilibrium (LD) pattern
around the focal SNP (Figure 3; Supplemental Text 4). In addition,
we also provide more detailed information about the selected
variant, such as whether the variant is a missense mutation,
frameshift, or stopcodon.For thispurpose,weautomatically fetch

Figure 1. Illustration of the Functionalities of easyGWAS in Comparison with Other Current Online GWAS Tools.

Squares illustrate supported functionalities, andovals illustratesupporteddata types thatcanbeuploaded toeasyGWAS.Whiteobjectsaresupportedbyall
available web servers, but hatched objects are only partially supported. Blue objects are only supported by easyGWAS.
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Figure 2. Screenshot of the easyGWAS Result Layout.

The screenshot shows the general layout of the easyGWAS result view.
(A) The “GWASCenter”menu with links to different wizards and experiment tables, e.g., to create new GWAS, meta-analysis, or comparative intersection
experiments.
(B) A sub-menu for the GWAS results to navigate between Manhattan plots, QQ-plots, SNP annotations, or an experiment summary.
(C) General options to dynamically adjust the multiple hypothesis testing method or various different plotting options.
(D) The main results of a GWAS, meta-analysis, or intersection analysis. In this screenshot, Manhattan plots are shown.
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the correspondingdata using theEnsembleREST interface for the
Variant Effect Predictor tool (Yates et al., 2014; McLaren et al.,
2010, 2016).

Figure 2B shows different clickable tabs that allow the user to
explore all the results of the experiment. The second tab, “QQ-
Plots,” renders quantile-quantile plots and provides information
about the genomic control factor (Devlin and Roeder, 1999)
(Supplemental Text 5).

The third tab, “SNPAnnotations,” lists gene annotations for the
top associated SNPs per chromosome. Users can dynamically
change the number of top SNPs displayed or the multiple hy-
pothesis correctionmethodusedandsearch for genesupstreamor
downstreamof eachSNP (Supplemental Text 5). For eachSNP,we
again redirect to the same detailed SNP view as described above.

The last tab in Figure 2B, “Summary/Downloads,” provides
a detailed summary of the experiment, including all selected
settings, information about the experiment’s owner, selected
trait/covariate distributions, as well as associated publications
(Supplemental Text 5). Adding toomany covariates to regression-
based models can easily lead to overfitting (Hastie et al., 2009).
Therefore, it is important to find a good balance between good-
ness of fit R2 and model complexity. To this effect, three model
selection parameters are implemented to measure the relative
quality of each model: Akaike information criterion (AIC), Akaike
information criterion with correction for finite sample sizes (AICc),
and Bayesian information criterion (BIC) (Schwarz, 1978). A
general distinction between AIC and AICc is that the latter gives
preference tomodelswith fewerparameters.The thoughtbehind it
is that amodel with fewer parameters will generalize better. BIC is
based on the assumption that a true model exists and is present
among the models to be compared (Burnham and Anderson,
2002; Aho et al., 2014). It is important to note that neither of these
criteria is equivalent to hypothesis testing. Instead, they simply
provide guidance on which model to choose.

easyGWAS also provides variance-explained estimates for
the null model when using linear mixed models, such as EMMAX
(Kang et al., 2010) or FaST-LMM (Lippert et al., 2011) (Supplemental
Text 6).

Comparative GWAS Intersection Analysis View

easyGWAS offers two types of comparative analyses of GWAS.
Thefirst type is thesearch for associationsat theSNPorgene level
that were found to be significant in more than one data set; in the
following, we refer to this form of comparative search for inter-
secting association hits as “intersection analysis.” The second
type includes meta-analyses that aggregate evidence from sev-
eral data sets to find associations that are jointly supported by
these data sets. Here, we describe easyGWAS’s Comparative
Intersection Analysis View for intersection analyses. More in-
formation on the available meta-analysis approaches can be
found in the “Meta-Analysis Methods” section in Methods.

easyGWASenables intersection analyses on the results of a set
of GWAS and provides three comparison views: the “Pairwise
Comparison View” for comparing results on pairs of GWAS in-
cluding overlaid Manhattan plots; the “Shared Associations
View,” which represents shared SNPs among the top-x associ-
ated SNPs of all GWAS; and the “SharedGenes View,”which lists
all genes containing a significantly associated SNP in at least one
GWAS. The pairwise comparison provides several dynamic vis-
ualizations to support the investigation of results for all possible
pairs from a set of GWAS results (Figure 4; Supplemental Text 4).
Initial insights into whether traits might have a common genetic

basis come from assessing how different traits in a population
correlate with each other, as shown in easyGWAS’s phenotype-
phenotype correlation plot. The cause for this correlation may be
population structure; that is, systematic ancestry differences
between different phenotypic classes. To make the user con-
scious of this source of confounding, easyGWAS highlights
phenotypes that are significantly associated to kinship in red (for
computational details, see Supplemental Text 7).
The phenotype-phenotype scatterplot (Figure 4B), sample

overlap diagram (Figure 4C), and the phenotype-phenotype
Manhattan plot (Figure 4D) are dynamically updated according to
the position of the cursor on the correlation plot (Figure 4A).
Users can dynamically investigate results from different GWAS
experiments.
The second tab at the top of Figure 4, “Shared Associations,”

shows all shared associations between selected experiments for
the top x-associated SNPs per GWAS experiment as a chord
diagram, where x is a parameter that can be chosen by the user
dynamically (Supplemental Text 5). The third window gives an
overview of all genes across all experiments that contained an
associated hit (Supplemental Text 5). Again, users can dynami-
cally change the multiple hypothesis correction method in all
windows.

Runtime Analysis

We compared the runtimes of four popular genome-wide asso-
ciation tools and methods, including a linear regression (PLINK
v1.0.7; Purcell et al., 2007), logistic regression (PLINK v1.0.7;
Purcell et al., 2007), EMMAX (Kang et al., 2010), and FaST-LMM
(Lippert et al., 2011), to those implemented in the easyGWASCore
framework. We used real genotype data from the 1001 Genomes
Project in Arabidopsis (1001 Genomes Consortium, 2016) and
randomcontinuous andbinary phenotypes for the analysis. For all
experiments, thenumberofSNPsvaried from10,000 tofivemillion
and the number of samples from 100 to 500. Data in PLINK format
were used to conduct a fair comparison between all tools and
methods.RealCPU runtime in secondswas reportedover a single
AMDOpteron CPU (2048 kb, 2600 MHz) with 512 GB of memory,
running Ubuntu 12.04.5 LTS (Supplemental Figure 13). We ob-
serve that all algorithms implemented in easyGWAS, except for

Figure 2. (continued).

(E)and (F)Abrief summaryof themost importantexperimental parameters isshown (E). Thiscanbeeither asummaryofa regularGWASexperiment, ameta-
analysis, or a comparison of several GWAS. If available, the top 10 associated hits of a GWAS are shown in (F).
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Figure 3. Screenshot of the easyGWAS Detailed SNP View.

The “Detailed SNP” view of a SNP gives more detailed information and annotation about the selected SNP and its close neighborhood, illustrated in this
screenshot.
(A) A donut diagram with the allele distribution of the selected SNP.
(B) A box plot with the trait values for each allele is shown.
(C) The distribution of genes and the LD pattern around the focal SNP. The panel at the bottom shows more detailed annotations for the focal SNP, e.g., if
a SNP is a missense variant, frameshift, or stop codon.

10 The Plant Cell



logistic regression, are at least as efficient as the tools towhichwe
compared them. The results show that easyGWAS can compute
GWASwithstandardmodelssuchas linear regressionwithina few

minutes for up to five million SNPs and up to 500 samples. More
complex models, such as FaST-LMM or EMMAX, only take mi-
nutes for ;100 samples and a few hours for up to 500 samples.

Figure 4. Screenshot of the easyGWAS Pairwise Comparison View.

The screenshot illustrates the general layout of the pairwise comparison view of different GWAS.
(A) A phenotype-phenotype correlation plot is shown, while phenotype names highlighted in red are significantly associated with population structure.
(B)Hoveringover anycorrelationpoint in theplotwill dynamically update thephenotype-phenotype scatterplot. Thephenotype-phenotype scatter diagram
plots the measurements of both phenotypes against each other.
(C) A Venn diagram is shown to illustrate the sample overlap between the two phenotypes.
(D) The Manhattan plots for both GWAS on top of each other.

easyGWAS 11



Case Study in Arabidopsis

To demonstrate the usability of easyGWAS, we analyzed nine
flowering time- and growth-related traits of Arabidopsis. Phe-
notypes were scored for up to 936 of 1135 accessions (1001
Genomes Consortium, 2016; see Methods). We first used
a standard linear mixedmodel (FaST-LMMby Lippert et al., 2011)
to perform GWAS on these nine phenotypes while accounting for
potential confounding effects due to population stratification (see
Methods). All results, including Manhattan plots and QQ-plots,
are publicly available online at https://easygwas.ethz.ch/gwas/
myhistory/public/14/.

Next, we used the comparison functions of easyGWAS to
combine the results for all traits. We identified a total of six sig-
nificantly associated hits, when using Bonferroni correction to
control the family-wiseerror rateata=5%(Supplemental Table1).
Multiple testing correction methods based on the false discovery
rate (Storey and Tibshirani, 2003) are less conservative than
Bonferroni correction and are often used in GWAS. Using Storey
and Tibshirani’s approach (a = 5%), we identified a total of
254 significantly associated hits across all experiments, that is,
associated with at least one phenotype. A total of 87 significantly
associated hits are shared by at least two of the following five
different phenotypes: flowering time as days until emergence of
visible flowering buds in the center of the rosette from time of
sowing (DTF1), flowering time as days until the inflorescence stem
elongated to 1 cm (DTF2), flowering time as days until first open
flower (DTF3), rosette leaf number (RL), and cauline leaf number
(CL) (Supplemental Data Set 1).

This is not surprising given that these fivephenotypes are highly
correlated with each other (Pearson’s r2 between 0.67 and 0.99),
as shown in Figure 5 or online at: https://easygwas.ethz.ch/
comparison/results/manhattan/view/2c8da231-96ff-4f28-a17e-
fd0e3510d8e1/.

Of the 254 significant hits across all experiments using Storey
and Tibshirani’s multiple hypothesis correction, 250 are located
on chromosomes 4 and 5. Significantly associated hits are dis-
tributed across 30 different genes on four different chromosomes
(1, 2, 4, and 5), as shown in the Shared Genes view in easyGWAS
and in Supplemental Data Set 1. The 87 shared peaks include the
dormancy regulator DOG1 (At5g45830), which has recently been
shown to affect flowering time (Huo et al., 2016); FLOWERING
LOCUS C (FLC; At5G10140), and FRIGIDA (At4G00650), which
are linked to flowering time variation (Michaels and Amasino,
1999, 2001; Méndez-Vigo et al., 2013, 2016; Sanchez-Bermejo
and Balasubramanian, 2016); and ANTHOCYANINLESS2 (ANL2;
At4G00730), which is involved in root development (Kubo and
Hayashi, 2011).

Furthermore, easyGWAS makes it possible to investigate the
LD and gene information in close proximity to a focal SNP. For
example, three significantly associated hits for the RL phenotype
map to chromosome 1 and are in close proximity to the flowering
regulator FLOWERING LOCUS T (FT; AT1G65480), as shown in
Figure 6 and online using the easyGWAS Detailed SNP view:
https://easygwas.ethz.ch/gwas/results/snp/detailed/57a7cf18-
cb0f-408a-8954-49f94d1bfc47/Chr1/24338990/.

FT shows remarkably little variation within its coding sequence.
However, recent quantitative trait loci fine-mapping efforts have

highlighted the contribution of cis-regulatory polymorphisms in
natural variation, including the flowering genes FT and FLC. For
instance, a causal polymorphism was mapped not to the FT
coding region, but to the FT promoter of the Est-1 FT allele,
conferring delayed flowering relative to the Col-0 reference
(Schwartz et al., 2009). A larger study found that FT promoter
length varies and correlates with flowering time, while the FT
coding sequence remains unchanged (Liu et al., 2014).
Similarly,FLC-dependent variation in flowering timeoftenmaps

topromoterelements, resulting inexpressiondifferencesbetween
alleles, both in Arabidopsis and Brassica oleracea (Irwin et al.,
2016; P. Li et al., 2014). Such variation caused by cis-regulatory
polymorphisms isnot limited toflowering time, asadditional cases
have been reported for (1) zinc homeostasis conferred by ex-
pression changes in the FRD3 MATE transporter (Pineau et al.,
2012) and (2) sulfur homeostasis associated with the ATP sul-
furylaseATPS1 (Koprivova et al., 2013). These studies underscore
the potential contribution that cis-regulatory changes can make
to natural variation, which is already reflected in the number of
expressionquantitative trait loci detected in selected recombinant
populations (Cubillos et al., 2012).
Polymorphisms in noncoding regions can also result in phe-

notypic variation, as demonstrated by a naturally occurring SNP

Figure 5. Phenotype-Phenotype Correlation Plot for Case Study.

Phenotype-phenotype correlation plot showing the pairwise Pearson’s
correlation coefficients between all phenotypes for the case study in
Arabidopsis. Five of the phenotypes are highly correlated to each other:
flowering time as days until emergence of visible flowering buds in the
centerof the rosette fromtimeofsowing (DTF1);flowering timeasdaysuntil
the inflorescence stem elongated to 1 cm (DTF2); flowering time as days
until first open flower (DTF3); rosette leaf number (RL); and cauline leaf
number (CL). Phenotypes highlighted in red are significantly associated
with population structure.
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affecting splicing of the FLC antisense transcript COOLAIR in
someArabidopsisaccessions (Li et al., 2015). It is conceivable that
additional examples will be identified in the future, making full use
of whole-genome sequences from thousands of accessions.
Interestingly, the three SNPs reported by easyGWAS for the RL
phenotype are found to overlap within several noncoding RNAs
downstreamofFT (At1NC09610,At1NC09620, andAt1NC09630;
Supplemental Figure 14) (Liu et al., 2012). This raises the possi-
bility that these noncoding RNAs may act as enhancer elements
and play roles in modulating FT expression level, perhaps in
amechanism similar to thePINOID/APOLO regulatory pair of loci,
whereby the lncRNA APOLO regulates the expression of PINOID
via chromatin looping (Ariel et al., 2014). As in anymappingproject
ofEMS-inducedmutationsornatural variation, further analysiswill
help shed light on the mechanisms underlying the phenotype of
interest.

Importantly, easyGWAS eliminates the need for complicated
visualization scripts by providing them automatically and in-
teractively. All plots, including Manhattan plots, LD plots, and the
phenotype-phenotype correlation plot, can be explored by fol-
lowing the link to thispubliceasyGWASproject:https://easygwas.
ethz.ch/gwas/myhistory/public/14/. We also provide a list of links
in Supplemental Table 2 to access the individual experiments
directly.

DISCUSSION

We have introduced easyGWAS, a cloud platform that not only
allows the computation, annotation, and subsequent analysis of
GWAS, but, most importantly, also offers the unique feature of
comparing results from GWAS across different experiments and
data sets (Figure 1).

The constant increase of publicly available genotype and
phenotype data (J.-Y. Li et al., 2014; 1001 Genomes Consortium,
2016) creates a demand for tools that enable biologists to compare
the results of multiple GWAS in order to facilitate the identification
of associations shared between related and/or correlated pheno-
types. Such tools can lead to new biological insights, such as

a common genetic architecture of related phenotypes or the
seemingly unrelated functions of a gene due to pleiotropic effects.
easyGWAS is currently the only tool that offers a variety ofmethods
to compare GWAS. We have also described the publishing
capabilities of easyGWAS that make it possible to share results
between collaborators. Another salient feature is the novel in-
teractive visualizations that aim to explore and compare the results
ofGWAS,notonly for asingleanalysisbutalsoacrossdifferentdata
sets and samples.
While currentwebapplications forGWASare typically limited to

a single species, such as Arabidopsis (Childs et al., 2012; Seren
et al., 2012) or Drosophila melanogaster (Mackay et al., 2012),
easyGWAS supports multiple species in a single platform.
easyGWAS also provides an added functionality that is absent in
the above-mentionedweb applications: Users can upload private
GWAS data sets for any species of choice (genotype, phenotype,
and covariate data), custom gene annotation sets, as well as
summary statistics fromoffline analyses; for example, fromPLINK
(Purcell et al., 2007) or from a custom user tool. While it is tech-
nically possible toalsoanalyzehumandata, humangenotypedata
must only be uploaded if this is explicitly allowedby the legal body
governing data access.
We demonstrated some of the potential of easyGWAS in a case

study in themodel organismArabidopsis on nine newlymeasured
phenotypes and a population of 1135 recently sequenced lines
(1001 Genomes Consortium, 2016). Conducting such an analysis
withouteasyGWASwouldbea time-consumingandcumbersome
process. While performing standard GWAS is nowadays facili-
tated by many tools, such as PLINK (Purcell et al., 2007), EMMAX
(Kang et al., 2010), and FaST-LMM (Lippert et al., 2011), these
tools often ignore the annotation of the results. Web applications
such as GWAPP (Seren et al., 2012) can be used to get on-the-fly
annotations of GWAS results, but they are limited to a specific
species only.
easyGWAS simplifies the execution of GWAS and the com-

parative analysis of their results, even for users who have never
worked on GWAS before. It is important to note, however, that
there are several errors that can be made and biases that can be

Figure 6. Linkage Disequilibrium Plot for SNP Chr1:24338990 for Phenotype RL.

ThreeSNPs for thephenotypeRLare significantly associatedusingStorey andTibshirani’s correction formultiple hypothesis testing. Thesehits are in close
proximity to the FT gene.
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introduced inadvertently when integrating results of different
GWAS. For example, a common assumption in ameta-analysis is
the independence of samples in the studies to be combined. If this
assumption is violated, for example, because of overlap of
a subset of individuals across studies, this may result in spurious
associations (Lin and Sullivan, 2009; Zaykin and Kozbur, 2010).
Similarly, in a comparative study, differences in sample size be-
tween data sets can have an adverse effect in an intersection
analysis. In this case, true associations may be too weak to be
detected in the smaller data sets, whichwill result in false negative
findingswhen the results of the studies are intersected. Therefore,
it is imperative that users of easyGWASmake themselves familiar
with these pitfalls, which we summarize in Supplemental Table 3.
To increase awareness of these issues, easyGWAS notifies each
user of these potential problems before the submission of
a comparative analysis.

In future releases, we will extend the application programming
interface of easyGWAS that currently uses the Representational
State Transfer (REST) web service to facilitate the exchange of
phenotypic and genotypic data between different web platforms
(Supplemental Text 11). This is especially important in order to
keepnotonlypublicphenotypesbutalsogenotypessynchronized
betweeneasyGWASandotherspecies-specificwebapplications,
such as GWAPP (Seren et al., 2012) or AraPheno (Seren, Grimm
et al., 2016). In addition, this application programming interface
will allow users to acquire additional information and meta-
information using their custom scripts or analysis pipelines. A
similar feature that is already available is easyGWAS’s ability to
automatically import public phenotypes from AraPheno, a central
repository for population scale phenotype data from Arabidopsis
(Seren et al., 2016). easyGWAS currently supports comparative
analyses on one-dimensional phenotypes through intersection
analyses and meta-analyses. In future work, we plan to integrate
methods for mapping several phenotypes simultaneously in
multitrait analyses (Korte et al., 2012; Lippert et al., 2014). Further
plans include adding methods for multilocus mapping (Azencott
et al., 2013; Llinares-López et al., 2015), and providing support for
replicated phenotypic measurements as well as complex and
high-dimensional data, such as methylome and transcriptome
data.

METHODS

Genome-Wide Association Mapping Methods

The goal of a genome-wide association study is to detect genomic regions
that are associated with a trait in a cohort of individuals. This is achieved
by computing statistical associations between the trait and genetic
variants in the form of SNPs. Of the many methods used to compute this
statistical association (seeBushandMoore [2012] for acomplete review),
five have been implemented in easyGWAS: aWilcoxon rank-sum test for
homozygous genotype data; a linear regression and logistic regression
for homozygous and heterozygous genotype data; and two linear mixed
models, EMMAX (Kang et al., 2010) and FaST-LMM (Lippert et al., 2011),
to account for confounding due to population stratification, family structure,
and cryptic relatedness. The remainder of this subsection discusses these
methods in detail.

Asmentioned above, theWilcoxon rank-sum test can only be usedwith
biallelic SNPs. The easyGWAS wizard will not offer this method when the
genotype data do not meet this requirement. This test measures the

difference in the distributions of phenotypic values between the alleles,
under the null hypothesis of equal distributions for both alleles.

In a linear regression there is an implicit assumption that the phenotype
is normally (Gaussian) distributed and that it can be modeled as a linear
(additive) combination of a set of terms, where one term is the list of
genotypes of a given SNP and other (optional) terms may include co-
variates to correct for confounders.

Logistic regression makes a similar assumption about the additive
effects of genotype and covariates, but unlike linear regression (which can
be used for continuous phenotypes), logistic regression is applied in
analyses where the phenotype is binary, for example, in case/control
studies.

The default method for association testing in easyGWAS is the linear
mixedmodel,which results in an improvement over linear regression in that
thephenotype ismeasuredasasumoffixedand randomeffects. The linear
mixed model (LMM) has historically been used to identify genetic asso-
ciations between a phenotype of interest and a group of individuals when
the relationship between the individuals is known. This model can effec-
tively quantify the association of a genetic variant to the phenotype (fixed
effect), while correcting for the familial structure in the data (randomeffect).
However, the LMM has gained popularity in recent years in GWAS when
there is no pedigree of the individuals. Although it may be tempting to
assume that the individuals in a study are unrelated, that is, it may be
a requirement in the collection or recruiting process, it is still possible that
cryptic relatedness may be present in the data due to the fact that some
individuals may share a common ancestry. If this relatedness is not taken
intoaccount, spuriousassociationsmayarise (Priceet al., 2006).Tocorrect
for such confounding structure in the data, a LMMwill estimate the genetic
similarity between all pairs of individuals in the study. In easyGWAS, this
similarity is modeled with the kinship matrix, which is estimated by
computing the realized relationship matrix (Hayes et al., 2009) for both
EMMAX (Kang et al., 2010) and FaST-LMM (Lippert et al., 2011). easyGWAS
also enables users to include principal components as part of a linear re-
gression, logistic regression, or LMM.When only population stratification is
present, this strategy of adding principal components into the model has
been shown to yield more power than a standard LMM (Zhao et al., 2007;
Widmer et al., 2014).

In addition to the standard implementation of the above-mentioned
algorithms, easyGWAS offers permutation-based versions of linear
regression, logistic regression, and EMMAX. The added value of this
additional functionality is that it allows for anempirical estimationof the true
null distribution. Covariates can be easily added to any model (except for
the Wilcoxon rank-sum test) to account for confounding effects, such as
environmental factors or sex.

Finally, easyGWASprovides severalmeansof encodinggenotypedata.
Four genotype encodings have been implemented for heterozygous
phenotypes to allow for the testing of different allelic effects. The standard
encoding is based on what is known as the “additive model” where the
major allele is encoded as 0, the heterozygous allele as 1, and the minor
allele as 2 (Supplemental Table 4). However, the recessive genotype en-
coding encodes themajor andheterozygous allele as 0 and theminor allele
as 1. The dominant genotype encoding encodes the major allele as 0 and
the remaining two alleles as 1, whereas the overdominant (or codominant)
encoding encodes the major and minor allele as 0 and the heterozygous
allele as 1 (Supplemental Table 4). All algorithmshavebeen implemented in
a custom C/C++ framework called easyGWASCore, which comes with
Python interfaces to allow for easy integration into our web framework.

Transformation Methods

Several transformation methods have been implemented in easyGWAS to
improve the normality of phenotypic measurements and covariates.
Supplemental Text 8 provides additional details about the motivation
behind the use of transformationmethods, aswell as detailed descriptions
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of each method. A summary of all possible transformations in easyGWAS
and the type of measurements to which they can be applied is shown in
Supplemental Table 5. In addition, a Shapiro-Wilk test is provided to test
the null hypothesis if the data were drawn from a normal distribution
(Shapiro and Wilk, 1965).

Meta-Analysis Methods

Historically, meta-analysis arose due to the need to pool results from
different studies. Although its origins are rooted in combining the results
from independent clinical trials, meta-analysis has been successfully used
as a tool to combine or integrate the results from different GWAS. The
rationale behind this is that, due to their limited sample size, GWAS are
underpowered and the meta-analysis is a means to increase the overall
power and to reduce false positives (Evangelou and Ioannidis, 2013).

easyGWAS implements a variety of different meta-analysis methods
thatcanbeusedtocombineresults fromseveralconductedGWASondistinct
sets of samples/cohorts. Five state-of-the-art algorithms are part of the
easyGWASCore framework: (1) Fisher’s method to combine P values from
several studies (Fisher, 1925); (2) Stouffer’s Z to combine Z-scores derived
from the studies’ P values (Stouffer et al., 1949); (3) Stouffer’s weighted Z to
weight each study based on the square root of the number of samples
(Stouffer et al., 1949); (4) a fixed-effect model to combine effect estimates
while assuming that they are fixed for each study (Borenstein et al., 2010,
2011); and (5) a random effect model that assumes that they arise randomly
(Borensteinetal.,2010,2011).SeeSupplementalText9 formoredetailsabout
these methods, their assumptions, and guidelines on how to apply them.

Web Application Details

The easyGWAS web application is written in Python and builds upon the
Python Django (https://www.djangoproject.com) and easyGWASCore
frameworks running on an open-source Apache HTTP server (http://httpd.
apache.org). Bootstrap (http://getbootstrap.com), a popular HTML5,CSS,
and JavaScript (JS) framework, provides a modern and state-of-the-art
front end. To create dynamic and interactive visualizations, we used the JS
library D3.js (http://d3js.org). Asynchronous JavaScript and XML (AJAX)
allows dynamic interactions and updates to the front endwithout reloading
the whole webpage. To schedule and distribute long-running and file-
system-intensive tasks across different computation nodes, such as
performing GWAS or generating data for dynamic visualizations, the
message-passing system RabbitMQ (http://rabbitmq.com) is used to-
gether with the asynchronous task queue Celery (http://celeryproject.org).
Thus, easyGWAS is highly scalable and canbequickly extended to a larger
number of users by adding additional computation nodes.

Reliable and fast data storage is essential for handling user-generated
data as well as genotype data sets with hundreds of samples and po-
tentially hundreds of thousands of genetic markers. Therefore, we de-
veloped a hybrid database model that is a combination of a PostgreSQL
database, user-specific SQLite databases, and HDF5 files. General
information about users, data sets, or GWA projects is stored in the
PostgreSQL database. Genotype, phenotypes, covariate data, and results
are stored in HDF5 files and linked to the user profiles in the PostgreSQL
database. User-specific gene annotation sets are stored in user-specific
SQLitedatabasefiles such that efficientqueries for differentsets areensured
(Supplemental Figure 12). Currently, easyGWAS is running on an Ubuntu-
based machine with 64 CPUs and 512 GB of memory.

Data Download, Upload, and Sharing

To simplify data handling, all publicly available data sets can be easily
downloaded in thecommonlyusedPLINK format (Purcell et al., 2007) using
the easyGWAS download manager. To integrate newly sequenced ge-
notype data, phenotypicmeasurements (in PLINK format), or customgene

annotation sets (in GFF format), the easyGWAS upload manager can be
usedby registeredusers (Supplemental Text1oronlineFAQ).Userscanalso
createnewspecies thatarenotalreadyavailable ineasyGWAS.Furthermore,
easyGWAS supports the automatic import of public phenotypes from
AraPheno, a central repository for population scale phenotype data from
Arabidopsis thaliana (Seren et al., 2016). In addition, GWA projects can be
easilysharedwithother registeredusers (SupplementalText3oronlineFAQ).

Furthermore, we provide a RESTweb service that allows users to query
and get data/meta-information fromeasyGWAS in a programmaticway, or
simply via URLs in a web browser (Supplemental Text 11).

Publicly Available Data

As of December 2016, easyGWAS provides publicly available genotype,
phenotype, and gene annotation data for the species Arabidopsis, Dro-
sophilamelanogaster, andPristionchus pacificus. Additional data for other
species will be added and included in the future.

For Arabidopsis, data sets from various studies have been integrated
(Atwell et al., 2010; Cao et al., 2011; Horton et al., 2012; Long et al., 2013;
Schmitz et al., 2013; 1001 Genomes Consortium, 2016; Seymour et al.,
2016). The first data set (AtPolyDB) includes 1307 worldwide Arabidopsis
accessions with a total of 214,051 SNPs genotyped with a 250k SNP chip
(Horton et al., 2012). In addition, 107 binary, continuous, and categorical
phenotypes have been integrated for a subset of these 1307 accessions
(Atwell et al., 2010). The phenotypic data comprises (1) flowering-time-
related traits, (2) defense-related traits, (3) ionomic traits, and (4) de-
velopmental-related traits. The second data set (80 genomes data) includes
80 accessions from the first phase of the 1001 Genomes Project in Arabi-
dopsis (Cao et al., 2011). SNP data were retrieved from the original genome
matrix from the 1001 Genomes website. All singletons and SNPs with
incomplete information were removed, which resulted in a final subset of
1,438,752 SNPs. Third, we included 1135 samples and 6,973,565 non-
singleton SNPs (1001 Genomes Data) from the final phase of the
1001 Genomes Project (1001 Genomes Consortium, 2016). Lastly, we in-
cluded 372 in silico F1 hybrid genotypes generated from parental genome
sequences (Cao et al., 2011) with a total of 204,753 SNPs (Seymour et al.,
2016). We also integrated the TAIR9 and TAIR10 gene annotation sets.

For Drosophila, we integrated the Drosophila Genetic Reference Panel
(DGRP) with a total number of 172 samples, 2,476,799 SNPs, and three
phenotypes split intomale and female,making a total of six (Harbison et al.,
2004;Morgan andMackay, 2006; Jordan et al., 2007;Mackay et al., 2012).
MissingSNPs in theDrosophila genomeare imputedusing amajority allele
imputation. Gene annotationswere downloaded from the FlyBasewebsite
and integrated into easyGWAS (Attrill et al., 2016).

For the speciesP.pacificus, a total of 149sampleswith 2,135,350SNPs
were integrated (McGaughran et al., 2016). The data set comes with two
binary and one categorical phenotypes, as well as four categorical
covariates.

Availability and Requirements of easyGWAS

The easyGWAS web application requires a modern internet browser that
supports HTML5 and JavaScript (e.g., Google Chrome 47.0, Firefox 43.0).
The web application can be accessed online at https://easygwas.ethz.ch.

Code for the algorithmically part of easyGWAS can be freely down-
loaded at https://github.com/dominikgrimm/easyGWASCore.

Data and Experimental Settings for the Arabidopsis Case Study

Phenotype Scoring

Seeds for 1135 Arabidopsis accessions (1001 Genomes Consortium,
2016) were surface-sterilized in 95% ethanol for 5 min and allowed to air-
dry. After 6dof stratification in thedark at 4°C in 0.1%agarose, seedswere
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distributed across 4800 pots as four replicates in a randomized block
design,with each replicate corresponding to one block. Plantswere grown
in controlled growth chambers with the following settings: 16 h light/8 h
darkness, 16°C constant temperature, 65% humidity. All trays within
a block were moved to a new shelf and rotated 180°C every other day to
minimize position effects. Flowering time was scored as days until the
emergence of visible floweringbuds in the center of the rosette from timeof
sowing (DTF1), days until the inflorescence stemelongated to 1 cm (DTF2),
and days until first open flower (DTF3). For some accessions, the in-
florescence stem did not reach 1 cm before scoring of DTF3. In addition,
rosette leaf number (RL), cauline leaf number (CL), diameter of rosette (end
point, after flowering) (diameter), rosette branchnumber (RBN), cauline leaf
number (CBN), and length of main flowering stem (Length) were recorded
(Supplemental Table 2).

Genome-Wide Association Mapping

All phenotypeswere uploaded for the 1001GenomesArabidopsis data set
(Supplemental Text 1 or online FAQ). GWAS were conducted for all
phenotypes and the 1001 Genomes data set using the easyGWAS wizard
(Supplemental Text 2 or online FAQ). All phenotypes were Box-Cox
transformed (Box andCox, 1964) to improve themeasurements’normality,
except for RBN (no transformation) and CBN (square root transformation)
(Supplemental Table 6). Aminor allele frequencyfilter of 5%wasapplied for
all experiments and a standard additive genotype encoding was chosen.
To account for confounding due to population stratification and cryptic
relatedness, we used FaST-LMM (Lippert et al., 2011), estimating the
genetic similarity between all genotypes by computing the realized re-
lationship kinship matrix (Hayes et al., 2009). All results are stored in
a publicly accessibleGWASproject and can be found at https://easygwas.
ethz.ch/gwas/myhistory/public/14/.

Intersection Analysis of Genome-Wide Association Experiments

Resultsof all nineconductedGWASexperimentswerecomparedusing the
easyGWAS comparison wizard to identify shared associations between
phenotypes. Results are stored in a publicly available project and can be
accessed via https://easygwas.ethz.ch/comparison/results/manhattan/
view/2c8da231-96ff-4f28-a17e-fd0e3510d8e1/.

Accession Numbers

The following Arabidopsis Genome Initiative locus identifiers have been
reported: DOG1 (At5g45830), FLC (At5G10140), FRIGIDA (At4G00650),
ANL2 (At4G00730), FT (AT1G65480), ATPS1 (AT1G34355), and PINOID
(AT2G34650). Sample information can be found online: https://easygwas.
ethz.ch/data/public/samples/1/7/. All performedGWAS for the case study
can be found at https://easygwas.ethz.ch/gwas/myhistory/public/14/.

Supplemental Data
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