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Abstract: Our energy consumption relies heavily on the three components of fossil fuels 

(oil, natural gas and coal) and nearly 83% of our current energy is consumed from those 

sources. The use of fossil fuels, however, has been viewed as a major environmental threat 

because of their substantial contribution to greenhouse gases which are responsible for 

increasing the global average temperature. Last four decades, scientists have been 

searching for alternative sources of energy which need to be environmentally clean, 

efficient, cost-effective, renewable, and sustainable. One of the promising sustainable 

sources of energy can be achieved by harnessing sun energy through silicon wafer, organic 

polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots 

have an exceptional property in that they can excite multiple electrons using only one 

photon. These dots can easily be synthesized, processed in solution, and incorporated into 

solar cell application. Interestingly, the quantum dots solar cells can exceed the  

Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to 

exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion 

efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the 

quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This 

review briefly overviews the present performance of different materials-based solar cells 

including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances 

of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead 

sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A 

future outlook is sketched as to how one could improve the efficiency up to 10% from the 

current highest efficiency of 6.6%. 
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1. Why Do We Need Renewable Solar Energy? 

“Sustainable Development is development that meets the needs of the present without compromising 

the ability of future generations to meet their own needs.” 

Our Common Future, Brundtland Report, 1987. 

By disclosing the scientific facts of man-made climate change due to global warming and its impact 

on environmental and socio-economical systems, the Intergovernmental Panel on Climate Change 

(IPCC) made seminal contributions. Because of their contributions, they were awarded 2007 Nobel 

Peace Prize shared with Albert Arnold Gore, a former vice president of United States [1]. As many 

scientists were (and still are) very skeptical of global warming, in addressing this point IPCC made a 

bold statement: “Warming in climate systems is unequivocal and most of warming due to green house 

gases” [2]. The annual WMO (World Meteorological Organization) report revealed that 2010 was the 

warmest year in the record, and 2005 was the second warmest year as demonstrated in Figure 1 [3]. 

Although the average temperature of 2011 did not demonstrate record-setting values like the other 

warmest years, it ranked the eleventh warmest year in the record. This finding unveiled that the 2000s 

(2000–2009) were warmer than the 1990s (1990–1999) which in turn were warmer compared to the 

1980s (1980–1989) and earlier decades [3]. 

Figure 1. Global ranked surface temperature report 2011. Reproduced with permission 

from [3], Copyright 2012, World Meteorological Organization. 

 

The use of fossil fuels has been viewed as a major environmental threat because of their substantial 

contribution to greenhouse gases. The world energy consumption outlook 2011 which was published 

by the US Environmental Information Administration (EIA) disclosed that our energy consumption 

which relies heavily on the three components of fossil fuels (oil, natural gas and coal) is increasing 

despite some attempts incorporating other sources [4]. The report revealed that 83% of our present 
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primary energy source was exploited from fossil fuels as depicted in Figure 2. Only 6% of our energy 

consumption of that year came from nuclear power. However, the recent massive earthquake and 

subsequent Tsunami in Japan resulted in an unprecedented nuclear disaster which raised many 

questions on public health and safety in the use of nuclear energy [5]. Although contributions from the 

renewable sources slightly increased since the previous years, these sources still contributed only 11% 

of our energy uses. The major challenge, therefore, in our energy sector is to increase the contribution 

from renewable energy sources. These alternative sources of energy need to be very abundant, 

environmentally clean, efficient, sustainable, renewable, safe, and cost effective. These conditions 

encourage many researchers to harness the sun’s energy which could not just solve the present energy 

problem but also fulfill our future demand. As one hour solar energy can be used for one year, 

therefore, we only need to harvest less than 0.02 of solar energy [6]. 

Figure 2. US Environmental Information Administration (EIA) global energy outlook 2011 [4]. 

 

2. Many Approaches for Harnessing Sun’s Energy 

“I have no doubt that we will be successful in harnessing the sun’s energy. If sunbeams were weapons 

of war, we would have had solar energy centuries ago.” 

George Porter (1920–2002), Winner of 1967 Nobel Prize in Chemistry. 

2.1. Silicon Based Solar Cells 

There are many initiatives solving our energy problems and most efficient and popular one is the 

silicon based solar cells [7]. The lab based performance of silicon based solar cell has recently reached 

about 25%; however, market based efficiency is lower in the range of 15%–22.4%. In this year, the 

market based silicon solar panel produced by Suntech [8] has an efficiency of 15.7%; however, solar 

panel installed by the SunPower [9] has a record efficiency of 22.4%. Although silicon solar cells 

made by mono, multicrystalline, and amorphous thin films share about 85% of today’s market, the 

major cost factors related with silicon based solar cell include requirements of high purity silicon, high 

preparation temperature, and large amount of materials in order to prepare a tiny cell [10]. A report on 

cost profile of PV technologies disclosed that monocrystalline, multicrystalline, and amorphous silicon 

based solar panels cost $3.83, $3.43, and $3.00, respectively which are comparatively higher than 

other solar panels [11]. However, in a recent interview, Stuart Wenham, chief technology officer of the 

Suntech Power, claimed that the recent prize of a cell module is reduced to US$1.5 W−1 from the 
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previous prize of US$4 W−1 [10]. Despite many challenges with silicon wafer based solar cells, it is 

expected that silicon based photovoltaic technology will be dominated in the future market. 

2.2. Dye Sensitized Solar Cells 

Dye-sensitized solar cells (DSCs) invented by Michael Grätzel became a very popular alternative to 

silicon based solar cells because of their great potential to convert solar energy into electric energy at 

low cost [12–16]. This cell can be made from cheap materials such as inorganic and organic dyes 

which do not need to be highly pure as is required for silicon wafer [17]. The working principle of the 

solar cell is presented in Figure 3A. Here we can see inorganic dye is anchored to a wide bandgap 

mesoscopic semiconductor. The popular dyes used for DSC are ruthenium bipyridine and zinc 

porphyrin complexes. For a mesoscopic semiconductor, TiO2 (anatase) is widely used in the solar 

cells; however, other alternative metal oxides such as ZnO, SnO2 and Nb2O5 can be used. After 

excitation of dye by light, the dye releases its electron from the HOMO (highest occupied molecular 

orbital) to the LUMO (lowest unoccupied molecular orbital). This photoelectron then swiftly transfers 

from the LUMO of the dye to the conduction band of the semiconductor TiO2. The semiconductor 

carries the electron to the photoanode which passes the electron to the platinized counter electrode. 

Regeneration of the oxidized dye takes place by a redox couple such as iodide/triodide which reduces 

the dye by providing a continuous supply of electrons [18]. Over many years, the overall conversion 

efficiency of most solar cells was unchanged from 11.18% [19] as shown in Figure 3B. Only recently, 

Grätzel group was able to exceed the power conversion efficiency 12.3% [20]. In this research, they 

used donor-p-bridge-acceptor zinc porphyrin dyes of YD2-o-C8 and YD2 (see in Figure 4A) 

incorporating Co(II/III)tris(bipyridyl)–based redox couple instead of iodide/triiodide redox shuttle. The 

incident photon-to-electric current conversion efficiency of the YD2-o-C8 dye is relatively higher than 

the YD2 dye as depicted in Figure 4B. This study concluded that the incorporation of non-volatile 

electrolyte and new anchoring groups to the porphyrin dye increase the power conversion efficiency  

to 13%. 

Figure 3. (A) The dye sensitized solar cell; (B) PV curves show the power conversion 

efficiency of dye sensitized solar cell in different light intensities. Reproduced with 

permission from [18], Copyright 2005, American Chemical Society. 

(A) 
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Figure 3. Cont. 

(B) 

Figure 4. (A) The molecular structure of the donor-p-bridge-acceptor zinc porphyrin 

dye(YD2-o-C8); (B) IPCE performance of YD2-o-C8 and YD2 dyes. Reproduced with 

permission from [20], Copyright 2011, the American Association for the Advancement  

of Science. 

(A) (B) 
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2.3. Organic Solar Cells 

The seminal work of Heeger, Shirakawa and MacDiarmid (winners of 2000 Nobel Prize in 

Chemistry) opened a new window to use organic conducting polymer for wide range of semiconductor 

devices such as light emitting diodes, solar cells, and thin film transistors [21–23]. The motivation of 

developing organic materials for solar cell is to reduce the cost related to raw materials and 

manufacturing. Solarmer and Konarka Power Plastic, two US based companies, produce flexible 

polymer solar cells for many applications including portable electronics, smart fabrics, and integrated 

solar cells. The lab based power conversion efficiency of the polymer based single solar cells is 

reached to 8.6% reported by several groups [24–27]. Two well-known challenges associated with the 

donor-acceptor based polymer solar cell are that these polymers cannot cover the sun’s broad spectrum 

due to their comparatively high bandgap (1.6–2.0 eV) and they have lower carrier mobility. In order to 

exploit light from sun’s full spectrum, recently Dou et al. [27] developed a pyrrole (DPP) and 

dithiopene (BDT) based conjugated polymer poly{2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,4- 

b]dithiophene-alt-5-dibutyloctyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4-dione} 

(PBDTT-DPP) having a bandgap of 1.44 eV depicted in Figure 5 (top). This conjugated polymer has 

relatively higher carrier mobility. The tandem cell was constructed using Poly(3-hexylthiophene) 

(P3HT) and indene-C60 bis-adduct (IC60BA) as front-cell materials, and PBDTT-DPP together with 

the acceptor phenyl-c71-butyric acid methyl ester (PC71BM) as back-cell materials as shown in  

Figure 5 (bottom). Very recently, the solution phase tandem polymer based solar cell is achieved a 

record highest efficiency of 10.6% which is certified by NREL [28]. The life time of the polymer 

based solar cell (PSC) is comparatively low to 3–7 years which is one of the major challenges of PSC 

facing in market [29]. 

Figure 5. Molecular structures of PBDTT-DPP, P3HT, PC71BM and IC60BA (top). 

Tandem solar cell device (bottom). Reproduced with permission from [27], Copyright 

2012, Macmillan Publishers Limited. 
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Figure 5. Cont. 

 

3. Breaking the Shockley-Queisser Limit 

A major problem with single band gap solar cells including silicon wafer, inorganic dye, and 

polymer is that their efficiency cannot go beyond the Shockley-Queisser efficiency limit of 33% [30]. 

Theoretical calculation showed that 1.13 eV bandgap of single solar cell is lost 47% of the energy as 

heat when the hot electrons are moving down from the higher conduction band to the conduction band 

edge, 2% of energy is lost due the recombination when the tapped electrons from the conduction band 

is returned to the valence band, and 18% of energy is lost when photons failed to excite electrons 

which reside on the upper and lower bandgap compared to the 1.13 eV bandgap [7,31,32]. 

Interestingly, a tiny material known as quantum dot can excite two or multiple electron-hole pairs 

(excitons) at a time while absorbing one photon [33]. This process is known as multiple exciton 

generation (MEG) for quantum dots and semiconductor nanocrystals because these electron-hole pairs 

are not free; however, they are confined (quantum confinement) in dimension due to their tiny size. A 

similar process (known as impact ionization) appeared in bulk semiconductors which requires 

relatively higher energy compared to semiconductor nanocrystals and quantum dots for producing 

multiple electron-hole pairs [34,35]. For example, impact ionization requires 7 eV (180 nm) incident 

photon energy for producing one extra electron-hole pair in silicon based bulk semiconductor [34,35]. 

That is why these bulk semiconductors based solar cells’ materials such as silicon, inorganic dyes, and 

organic polymers which easily excite one electron at a time are not ideal candidates for third 

generation photovoltaic technology. Theoretical studies revealed that the multiple exciton generation 

(MEG) based solar cells which utilized quantum dots and semiconductor nanocrystals can exceed the 

S-Q limit with an efficiency of 66% and even higher of 80% [7]. Moreover, changing the size of the of 

quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges presented in 

Figure 6 [36]. Another advantage with quantum dots is that they can be processed in solution and can 

easily be incorporated into solar cell device [37,38]. 
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Figure 6. (A) Power spectrum of the Sun; (B) Changing size of the quantum dot one can 

shift the infrared wavelength to the blue wave length. Reproduced with permission  

from [36], Copyright 2012, Macmillan Publishers Limited. 

 

(A) (B) 

The quantum dot based solar cells vary with different architectures including QD sensitized solar 

cells, QD based Schottky junction solar cells, and QD based depleted heterojunction solar cells [39]. A 

graphical illustration of the three quantum dot based solar cell is presented in Figure 7. The working 

principle of the QD sensitized solar cells is same as the dye sensitized solar cells which are described 

in section 2.2. For constructing Schottky junction solar cell, p-type QD film is developed on the 

transparent ITO (indium tin oxide) conducting oxide, and a layer of evaporated metal is used for 

covering the QD film. In case of QD based depleted heterojunction solar cell, mesoporous TiO2 is used 

for covering the QD film with a layer of evaporated metal (mostly gold). For these solar cells, a 

depleting region is created. In depleted solar cell, the depleted region is appeared between the electron 

accepting TiO2 and the quantum dots, and the region is eventually reached to the side of TiO2. 

However, for the Schottky solar cell, the depleted region is built up on the side of p-type 

semiconductor quantum dots. Although TiO2 is widely used as a semiconductor in the depleted solar 

cells, other materials such as ZnO, amporhorus-Si, and fullerene can be used as alternatives. Recently, 

Luther et al. [40] reported the performance of ZnO incorporated with 1.3 eV PbS QDs with an overall 

power conversion efficiency of 2.94%. The advantages and disadvantages of these three solar cells are 

described in a recent perspective by Hetsch et al. [41]. 

Figure 7. The graphical presentation of the QD sensitized solar cell, QD based Schottky 

solar cell, and QD based depleted heterojunciton solar cell (from left to right). Reproduced 

with permission from [39], Copyright 2010, American Chemical Society. 
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Different types of quantum dots are available; however, cadmium and lead sulfide/selenide based 

quantum dots are frequently used for solar cell application. In this section, I focus my discussion 

mainly on cadmium and lead based quantum dots, and issues with the redox couple and electrodes. I 

present a brief overview on some other quantum dots such as CdTe, Cu2S, CuInS2, InAs and 

InAs/GaAS, and include a short discussion on recently developed carbon based quantum dot. 

3.1. Cadmium Quantum Dots Based Solar Cells 

Cadmium sulfide (CdS) and cadmium selenide (CdSe) are the two most studied quantum dots 

related to solar cell application. The reason for their widespread use is that they can be prepared easily 

and can be processed in solution. The first air stable bilayer cell of nanocrystalline CdTe/CdS 

exhibited a remarkable performance with an overall power conversion efficiency of 2.9% [42]. One 

earlier ultrafast absorption and emission study by Robel et al. [43] with CdSe quantum dot employing 

bifunctional surface modifier HS-R-COOH proved that CdSe can inject electron from its excited state 

to the mesoscopic TiO2. Although the cell exhibited the photon-to-charge carrier generation efficiency 

(IPCE) of 12%, the power conversion efficiency was less than 1%. A similar study with CdSe 

incorporating a cobalt (II/III) based redox system, Lee et al. [44] was able to improve the performance 

of IPCE to 36% as well as the overall power conversion efficiency to 1%. Replacement of TiO2 with 

semiconducting single-walled carbon nanotubes (SWCNTs), stacked-cup carbon nanotubes 

(SCCNTs), and fullerene (C60) was studied which demonstrated that nanotubes can capture electrons 

from CdSe quantum dots [45,46]. Although these inorganic organic hybrid solar cells can be 

assembled, they failed to give any reportable power conversion efficiency. 

Recently, Shu et al. [47] developed a series of CdSexS(1−x) based solar cells using TiO2 as 

photoelectron acceptor and Na2S as electrolyte by the successive ionic layer adsorption and reaction 

(SILAR) technique. By varying the ratio of selenide and sulphur, they were able to achieve the overall 

conversion efficiency of 2.27%. In this study, they prepared core shell quantum dots using 

CdSexS(1−x)/CdSe and were able to promote the efficiency to 3.17%. Similar studies conducted by 

Toyoda et al. [48] with CdS/CdSe solar cell using Na2S showed a slightly higher efficiency of 3.5%. 

Incorporating semiconductor SnO2 with CdS/CdSe solar cell improved the efficiency to 3.68% [49]. A 

study with different electrodes based CdS/CdSe solar cells disclosed that mixed CuS/CoS counter 

electrode can significantly increase the power conversion efficiency to 4.1% than the efficiency of the 

single electrode employing CuS (3.2%) and CoS (3.8%) [50]. However, the performance of the hollow 

core mesoporous shell carbon (HCMSC) counter electrode using polysulfide electrolyte was 

comparatively lower (1.08%) than the other electrolytes used in solar cells. Rod like CdSe quantum 

dots sensitized solar cells using ZnS electrode were reported recently and achieved an efficiency of 

2.7% [51]. 

In a very recent study, Santra and Kamat [52] claimed to achieve an efficiency of 5.42% for a 

CdS/CdSe based solar cell fabricated by successive ionic layer adsorption and reaction (SILAR) 

approach presented in Figure 8. In this study, they used Mn as a dopant since it can modify the 

electronic and photophysical properties of the quantum dots and can create different electronic states in 

the intermediate regions. Forming intermediate band gaps can help to reduce the recombination loss of 

electron from TiO2 to the valence band of the quantum dots. In this study, it was observed that the 
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absorption peak of the Mn-doped CdS quantum dots was increased to 570 nm (corresponding band gap 

2.6 eV) relative to the peak at 520 nm (corresponding band gap 2.4 eV) for undoped CdS. Although 

hybrid quantum dots CdS/CdSe shifted the absorption peak further red to 690 nm; however, only a 

slight difference was observed between Mn-doped and Mn-undoped CdS/CdSe. In comparison with 

four quantum dots solar cells, the highest incident-photon-to-carrier conversion-efficiency (IPCE) is 

observed in the Mn-doped CdS/CdSe based solar cell with an enhancement value from 68% to 80%. 

The other important photovoltaic parameters including short circuit current (Isc), open circuit voltage 

(Voc), fill factor (FF), and power conversion efficiency (η) of the Mn-doped CdS/Se are 20.7 mA/cm2, 

558 mV, 0.47 and 5.42%, respectively.  

Figure 8. Mn-doped quantum dot based solar cell. Reproduced with permission from [52], 

Copyright 2012, American Chemical Society. 

 

Most of the QDSSCs are fabricated by direct growth approaches including chemical bath deposition 

(CBD) or SILAR where quantum dots are grown onto the thin film of a mesoporous TiO2 

semiconductor [49,52–58]. In comparison with other methods, these direct growth methods are sought 

to be more effective since they can maintain high coverage of QDs and uniformly control the particle 

size and distribution on the surface of TiO2. However, some recent studies confirmed that utilizing 

other methods one can enhance the performance of the QDSSCs. Pan et al. [53] reported the 

fabrication of inverted type-I CdS/CdSe quantum dot solar cell by employing an organometallic  

high-temperature synthesis protocol where presynthesized quantum dots are assembled to the TiO2 

using the mercaptopropionic acid (MPA) acting as a linker molecule. Under full sun illumination, this 

core/shell solar cell achieved a power conversion efficiency of 5.32%. Although the short circuit 

voltage (Isc = 18.02 mA/cm2), open circuit voltage (Voc = 527 mV) of this cell is relatively low 

compared to Mn-doped CdS/Se solar cell, the fill factor value is slightly high (FF = 0.56). Another 

method known as postsynthesis assembly where ex situ ligand exchange strategy is used for deposition 

of QDs onto TiO2 can also promote the performance of QDSSC. For instance, using this method 

Zhang et al. [59] were able to develop a record 5.42% efficient CdSe quantum dot based solar cell. 

This efficiency is exactly same as the Mn-doped CdS/Se solar cell fabricated by Santra and  

Kamat [52]. This postsynthesis approach exhibited high surface coverage (34%) and took 2 h for the 

deposition of QDs onto the TiO2. The Isc (16.96 mA/cm2), Voc (561 mV), and FF (0.566) values of 

the postsynthesized CdSe solar cell are comparable with the values of the SILAR based Mn-doped and 

presythesized CdS/CdSe solar cells. 
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3.2. Lead Quantum Dots Based Solar Cells 

PbS quantum dot is an ideal material for solar cells which can be used as an electron donor for  

wide bandgap semiconductors including TiO2 and ZnO. PbS and PbSe quantum dots of group IV–VI 

have some exceptional properties including (i) efficient light absorbing capacity from visible and near 

IR regions, (ii) relatively long excitonic life time (200–800 ns), (iii) high quantum efficiency (80%), 

(iv) comparatively large Bohr radius (18nm of PbS and 46nm of PbSe), (v) water solubility [59–62]. In 

an earlier study, Plass et al. [63] showed that the power conversion efficiency of a PbS based 

heterojunction solar cell (prepared by chemical bath deposition method) incorporating organic charge 

transport material spiro-OMeTAD was less than 1% (more details about solid-state QDSSCs are 

discussed in section 4.). However, PbSe quantum dots using 1,2-ethanedithiol (EDT) organic ligand 

can improve the performance up to 2.1% [64]. Employing a new technique known as electrophoretic 

deposition for constructing colloidal PbS and PbSe solar cells linked with polysulfide electrolytes 

showed a low power conversion efficiency of 2.1% [65]. The mixed PbSxSe1−x prepared with an  

one-pot hot injection reaction method demonstrated a higher power conversion efficiency of 3.3% 

which is comparatively higher than the efficiency observed for pure PbS and PbSe QDs based  

device [66]. By reducing the size to 2.3 nm of PbSe (band gap 1.6 eV) and using a modified one-pot 

hot injection method, Ma et al. [67] were able to promote the power efficiency to 4.7% with AM1.5 

illumination. However, the open circuit voltage of this cell was initially enhanced by increasing the 

bandgap and the effect diminished earlier than expected. Further reducing the bandgap of colloidal PbS 

to 1.3 eV increased the average power conversion efficiency to 4.9%, and the champion device 

achieved an efficiency of 5.1% with Voc = 0.51 V, Isc = 16.2 mA cm−2, and FF = 58% [39]. Recently, 

for the first time Etgar et al. [68] used PbS quantum dots with anatase TiO2 nanosheets incorporating 

its dominant facet (001) to construct a heterojunciton solar cell using a simple hydrothermal protocol 

where tetrabutyltitanate and HF act as precursor and solvent, respectively. Under 0.9 light intensity, 

this cell achieved a power conversion efficiency of 4.73%. 

The Sargent group in Toronto first constructed tandem colloidal quantum dots solar cells where 

they employed quantum dots having a bandgap of 1.6 eV for covering visible region (front cell) and 

another quantum dots of 1 eV for the infrared region (back cell) [69]. They used a TiO2 semiconductor 

to accept the photoelectron. In order to allow a barrier free transport of electrons from one junction to 

another junction, they employed a new approach named graded recombination level (GRL) using  

n-type MoO3, iridium tin oxide (ITO) and aluminum-doped zinc oxide (AZO). The highest power 

conversion efficiency of this two junction solar cell was 4.2%. However, the power conversion 

efficiency of the individual junction was about 3.0%. The short circuit current (Isc), open circuit 

voltage (Voc), and fill factor (FF) of the tandem was 8.3 mA cm−2, 1.06 V, and 48%, respectively. 

Although open circuit voltage of the tandem cell was comparatively higher, the fill factor value was 

relatively low. The low power efficiency of the tandem may be due to the large interparticle space 

between the quantum dots since organic ligands usually create space because of their long chain. 

Moreover, these organic ligands create insulating barrier between the colloidal quantum dots which 

eventually block the efficient electron-hole transport. However, some short organic and inorganic 

ligands can passivate the surface of quantum dots and can densify the films within the solid state. This 

process is known as “atomic ligand passivation”. In a recent study, the Sargent group used inorganic 
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ligands which not only can minimize the interparticle space but also can promote the rapid  

electron-hole transport by passivating the surface of colloidal PbS QDs as shown in Figure 9. 

Inorganic halide ligands (Cl−, Br−, I−) lowered the recombination loss which is one of the reasons for 

lower power conversion efficiency. This inorganic ligand based colloidal QDs solid state solar cell 

promoted the power conversion efficiency to 6% which was the highest efficiency found in quantum 

dots based single solar cells in 2011 [70]. In 2012, this group was able to improve the power 

conversion efficiency (6.6%) of PbS colloidal based all inorganic (homojunction) quantum dots solar 

cell by introducing a new solution-phase halide passivation technique which promotes high carrier  

mobility [71]. 

Figure 9. Colloidal quantum dot (CQD) based solar cell (middle) in which atomic 

passivation of QD is performed with inorganic halide ligand. SEM image in the left and 

Br− ligand passivated PbS CQDs in the right. Reproduced with permission from [70], 

Copyright 2011, Macmillan Publishers Limited. 

 

3.3. Some Other Quantum Dot Based Solar Cells 

Although CdTe has widely been used for thin film solar cells, the application of this compound for 

constructing quantum dot solar cell is less promising because the bandgap (1.54 eV), valence band 

(0.54 V) and conduction band (−1.0 V) energies of this dot are not suitable for absorbing the light of 

visible and near IR regions [38]. Despite having negative conduction band energy which promotes fast 

electron injection into TiO2, the external quantum efficiency of CdTe QDs is less than 3% whereas 

CdSe is 70% efficient [38]. Some applications of this material as quantum dots solar cells are reported 

where CdHgTe and CdTe QDs are deposited on TiO2 showing power conversion efficiencies of 1.0% 

and 2.2%, respectively [72]. The CdTe semiconductor nanocrystals are incorporated with functional 

conjugated polymer of monoaniline-capped poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)- 

2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBTNH2) and obtained a conversion efficiency of 

3.2% [73]. Some thin film solar cells fabricated with CdTe nanocrystals showed comparatively better 

performance. For instance, a simple Schottky diode of ITO/CdTe/Al achieved a power conversion 

efficiency of 5.15% [74] and CdTe/ZnO thin film system showed an efficiency of 6.9% [75]. 

Copper based quantum dots including CuS2 and CuInS2 (Copper Indium disulfide) are promising 

candidate for solar energy conversion devices due to their low toxicity, long term stability, low cost, 

better absorption efficiency (α = 5 × 105 cm−1), and facile fabrication through various methods 

including (but not limited to) thermal, photochemical, microwave assistant decomposition of single 
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source precursors, solvothermal, and SILAR [76]. Several studies have been focused to enhance the 

performance of the copper based quantum dots solar cell; however, the power conversion efficiency of 

these devices is failed to exceed 3%. A recently developed Cu2S-CuInS2-ZnSe based solar cell 

fabricated by the successive ionic-layer absorption and reaction approach (SILAR) was able to reach 

the efficiency of 2.52% [77]. An earlier study of colloidal CuInS2 quantum dots sensitized solar cell 

prepared without employing organic solvent achieved a lower efficiency of 1.47% [78]. Stability of the 

QDSSCs is a major concern associated with the common dots including PbS, CdS and CdSe. 

However, the stability of the InAs quantum dots based solar devices is quite remarkable and 

reproducible. Yu et al. [79] reported that in lower solar illumination intensity the power conversion 

efficiency of InAs QDSSC interfaced with Co redox system is approximately 1.7%, and unfortunately 

the efficiency is declined to 0.3% at high light intensity. Recently, Tanabe et al. [80] demonstrated that 

a five layered InAs/GaAs quantum dot solar cell fabricated by metalorganic chemical vapor deposition 

(MOCVD) method which suppresses the open circuit voltage (Voc) degradation can drastically 

increase the efficiency to 18.7% for 1 sun and 19.4% for 2 suns. Flexible plastic based InAs/GaAs 

QDSSC is also prepared by employing a bond-and-transfer method and the performance of this cell is 

quite significant showing an efficiency of 10.5% [81]. 

3.4. Carbon Dot Based Solar Cells 

It is obvious that metal based quantum dots are expensive and very vulnerable for health and 

environment. As a long term research goal, it would more appropriate if we can use other  

non-hazardous materials. In a previous study, Peng and Travas-Sejdic [82] synthesized luminescent 

carbogenic dots using carbohydrate as precursor materials presented in Figure 10A. This carbon dot 

first passivated by amine-terminated compounds, and due to less photoluminescence further 

passivation was performed with 4,7,10-trioxa-1,13-tridecanediamine (TTDDA). However, this 

carbogenic dot was not used for solar cell application. Highly soluble black graphene quantum dot 

have been prepared using a solubilization technique where polyphenylene dendrimer acts as a 

precursor [83]. This dot is used for sensitizing the TiO2 and comparable results are observed for short 

circuit current (Isc = 20 mA/cm2), open circuit voltage (Voc = 480 mV) and fill factor  

(FF = 0.58). Multiple exciton generation (MEG) is observed and collected in single-walled carbon 

nanotube based semiconductor; however, substantial future studies are required to integrate this 

material for solar cell application [84]. Recently, the Ozin group in Toronto was able to synthesize the 

carbon dots by dehydration of the γ-butyrolactone precursor depicted in Figure 10B [85]. Carbon dot 

can be emerged as a potential candidate in quantum dots based solar cells as sources of carbon are very 

versatile compare to metal based QDs. They were able to sensitize TiO2 with their carbon dots. 

However, the efficiency of the carbon dots based solar cell is only 0.13%. In this case, they used an 

I−/I3
− redox couple which is certainly not a good choice. Improving the efficiency of carbon dots based 

single solar cell requires finding out an optimal condition in case of size of quantum dots, ligands, 

electrolytes, and electrodes through comprehensive studies. In addition, carbon dots based tandem 

solar cell will be an ultimate choice in order to promote efficiency so that it can compete with  

other competitors. 
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Figure 10. (A) Synthesis protocol of carbogenic dot. Reproduced with permission  

from [82], Copyright 2009, American Chemical Society. (B) Carbon dots prepared by Ozin 

group at Toronto (bottom). Reproduced with permission from [85], Copyright 2012, Royal 

Society of Chemistry. 

 
(A) 

 
(B) 

4. Redox Couple and Counter Electrode 

As redox couple has an important role in dye and quantum dots sensitized solar cells, mostly 

iodide/triiodide redox couple is frequently used. However, this redox shuttle is not stable and is 

corrosive which is a threat to the working electrode, and also it gives a low open circuit voltage and fill  

factor [52,86]. There are many other redox couples available such as polysulfide (S2−/Sx
2−), ferrocene 

(Fc+/Fc), nickel [Ni(II)/Ni(III)], tetramethylthiourea, and cobalt [Co(II)/Co(III)] [87–90]. Ionic liquid 

base redox couple is also a promising candidate as it is compatible with quantum dot based sensitizers 

such as CdS, CdSe, PbS and PbSe. A recent study revealed that pyrrolidinium ionic liquid based 

electrolytes containing S2−/Sn
2− redox couple can achieve an efficiency of 1.86% with CdSe quantum 

dot sensitized solar cell [91]. However, among these redox couples, the cobalt redox couple is stable 

and very facile for tuning the redox potential. This cobalt redox couple does not require an 

intermediary step during electron donating process related to quantum dot regeneration, and it can 

increase the open circuit voltage [92]. Redox potential of the electrolytes needs to be close to the 

quantum dots redox levels in order to increase the open circuit voltage (Voc) and rapid regeneration of 

the oxidized quantum dots [17]. Recently, Yella et al. [20] showed that Co(II/III)tris(bipyridyl) redox 

couple can increase the power efficiency of the dye sensitized solar cell from 11.18% to 12.4%. 

Interestingly, redox potential of the tridentate cobalt [Co(bpy-pz)2]3+/2+
 (PF6)3/2 complex is 0.86 V 

versus NHE which is comparatively higher than the redox potential of I−/I3
− (0.37 V versus NHE) and 

Fc+/Fc (0.67 V versus NHE) depicted in Figure 11 [92]. 
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Figure 11. Dye sensitized solar cell using Co(III)/Co(II) based redox couple. Reproduced 

with permission from [92], Copyright 2012, Macmillan Publishers Limited. 

 

Despite achieving the record highest efficiency of dye sensitized solar cell utilizing liquid 

electrolytes, there are some pivotal problems associated with these electrolytes which include solvent 

evaporation, leakage, corrosion, and short term stability [93,94]. These issues have been addressed first 

by Bach et al. [95] and they incorporated solid-state hole transport materials (HTMs) for solar cell 

application. Although various inorganic p-type semiconductors, organic materials, and conducting 

polymers can be used as hole transport materials; however, spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di- 

p-methoxyphenylamine)-9,9'-spirobifluorene) is the most popular, efficient, and widely studied  

one [94]. This spiro-OMeTAD has many interesting properties including highly amorphous structure, 

easily soluble nature, relatively greater charge carrier mobility, high absorption capacity, and 

comparatively higher glass transition temperature [94–96]. Incorporating this organic hole transporter 

with Z907 dye and TiO2-coated ZnO in solid-state DSC provided a power conversion efficiency of 

5.65% [97]. Mostly the spin-coating approach is widely used for the infiltration of spiro-OMeTAD in 

the DSC. This spin-coating technique requires greater amount of materials and is not suitable for 

filling the large device area whereas a relatively new roll-to-roll and large area coating technique 

known as doctor blading can be employed for infiltrating the spiro-OMeTAD in solid-state DSC [98]. 

Although this approach requires less material for pore filling, the performance of power conversion 

efficiency is relatively lower (3%) compared to the spin-coating technique [98]. One common 

shortcoming of the pure organic hole transporters is that they have low conductivity. A recent study in 

addressing this issue unveiled that Co(III) based p-type dopant can significantly increase the  

performance of the spiro-OMeTAD in solid-state dye sensitized solar cell with a power conversion 

efficiency of 7.2% [99]. 

The concept of solid-state hole transporters is also applied for quantum dot sensitized solar cells 

incorporating PbS and CdS. A study conducted by Lee et al. [100] disclosed that spiro-OMeTAD is 

compatible with PbS and CdS quantum dots; however, the challenge remains in improving the power 

conversion efficiency. The hybrid CdS/Squarine based solar cell achieved an efficiency of 1.2%, 

whereas the non-hybrid PbS solar cell is obtained an efficiency of 1.46% [100]. For this study, they 

employed successive ionic layer adsorption and reaction (SILAR) method for growing the quantum 

dots on the mesoporous TiO2. Yu et al. [101] introduced the polyacraylamide polymer matrix and 

polysulfide hydrogel electrolytes for constructing the quasi-solid-state CdS/CdSe sensitized solar cell, 

and this cell achieved an efficiency of 4%. Another CdS and CdSe quantum dots based  
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quasi-solid-state solar cell with ZnO nanocrystalline film and polysulfide redox couple slightly 

promoted the efficiency to 4.5% [102]. One promising hole transporter material such as  

3,3'''-didodecyl-quaterthiophene is also employed for preparing the all-solid-state QDSCs 

incorporating TiO2/CdSe; however, the power conversion efficiency is only 0.34% [103]. 

Platinum and gold counter electrodes are very expensive; recently, other electrodes such as CoS, 

Cu2S, CuS/CoS and PProDOT [poly(3,4-propylenedioxythiophene)] electrodes are available to replace 

Pt and Au [50,104,105]. The molecular structure of the PProDOT electrode is presented in Figure 12 

(left) and the performance of this electrode is comparable with the Pt electrode shown in Figure 12 

(right) [105]. It is observed that cobalt [Co(bpy-pz)2]
3+/2+ (PF6)3/2 redox couple is not appropriate for Pt 

electrode; however, combination of PProDOT electrode and the cobalt redox couple can promote the 

power conversion efficiency. It is, therefore, realized that the carbon based electrode can make stable, 

flexible, and cost-effective quantum dots based solar cells. 

Figure 12. Molecular structure of PProDOT electrode (left) and IPCE performance of Pt 

and PProDOT electrode (right). Reproduced with permission from [105], Copyright 2010, 

Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

5. Photoinduced Electron Transfer 

The performance of the solar cell relies on the smooth electron transfer and recombination 

processes involved in many parts of the solar cell including from the quantum dot to the 

semiconductor, from counter electrode to redox couple, from redox couple to the oxidized dot and vice 

versa [106]. Understanding the electron transfer and recombination processes can clearly help us to 

improve the solar cell device performance. In 1956, Rudolph Marcus, winner of the 1992 Nobel Prize 

in Chemistry, modeled the electron transfer occurring in two states [107]. This model was then 

extended for the electron transfer involved in semiconductor based dye-sensitized system which can be 

expressed as follows [108,109]: 
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Here, kET is the electron transfer rate, ħ is the reduced Plank’s constant, kB is the Boltzmann’s 

constant, λ is the total reorganization energy comes from inner and outer reorganization energies, ∆G 

is the free energy, ρ(E) is the density of the accepting states, and Hഥ(E) is the overlap matrix element. 

By using this equation, one can calculate the electron transfer processes in the different parts of the 

solar cell employing constrained real-time time dependent density functional theory (C-RT-TDDFT) 

developed by Schatz group [110,111]. In most cases, time-resolved transient absorption (TA) 

spectroscopy and photoluminescence measurement have been employed for experimentally calculating 

the electron transfer rate between QDs to metal oxide (MO) [109,112]. However, one recent and 

interesting finding revealed that these two techniques can not provide the complete scenarios of the 

rapid and complex electron transfer process [112]. They proposed combined TA and time-resolved 

terahertz (THz) spectroscopy to study the electron transfer process in which TA can provide 

information of excited electrons in QDs and THz can aid to see the mobility of electron-hole pairs and 

excited electrons in MO. In this study, they used CdSe as QDs and ZnO nanowire as an electron 

acceptor. Their results summarized that the electrons are transferred from QDs to MO on a 

picoseconds time frame (τ = 3–12 ps) which confirmed that this transfer process is very fast compared 

to the loss of the excited electrons (Auger recombination). This finding supported that the injection of 

excited electrons from QDs to ZnO occurred through an intermediate charge-transfer state (CTS) and 

less likely with heterogeneous injection (HI) process as demonstrated in the Figure 13. 

Figure 13. Charge transfer state (CTS) and heterogeneous injection models in the QD-MO 

system. Reproduced with permission from [112], Copyright 2012, American  

Chemical Society. 

 

6. Future Outlook 

“I’d put my money on the sun and solar energy. What a source of power!!!  

I hope we don’t have to wait till oil and coal run out before we tackle that…” 

Thomas Edison (1847–1931) 

The power conversion efficiency of different solar cells is presented in Table 1. There are two main 

goals for the next generation solar cell: (1) exceeding the Shockley-Queisser (S-Q) limit of 33% for the 



Nanomaterials 2013, 3           

 

 

39

power conversion efficiency (2) reducing the price to a level of cents per kWh of electrical  

energy [33]. Theoretically, it is already proven that multiple exciton generation based certain quantum 

dots, metal based thin films (CdS, CdTe, CuInS2), and tandem GaInP/GaInAs/Ge solar cells can 

overcome the S-Q limit [7,113,114]. However, in reality the best performance of the QDSSCs 

remained on the level of efficiency around 5%–6%. Different fabrication techniques (chemical bath 

deposition, successive layer deposition, presynthesize, postsynthesize, one-pot hot injection, 

hydrothermal, ligand passivation, graded recombination layer) have been employed in order to 

enhance the performance of the QDSSCs. Some lead and cadmium based quantum dots solar cells are 

relatively more efficient compared to other quantum dots. Although numerous problems are involved 

with liquid electrolyte based solar cells, the highest power conversion efficiency of the liquid 

electrolytes based QDSSCs is reached to 6.6% whereas the efficiency of the solid-state QDSSCs is 

lacked behind to 4.5%. Another problem associated with single QD based solar cell that tiny quantum 

dots cannot absorb much light [31]. Solving this problem, we require incorporating several layers of 

quantum dots; however, connecting multiple layers together creates structural damage which might 

lower the efficiency. The available two-junction quantum dots solar cells developed by the Sargent 

group achieved a power conversion efficiency of 4.2% which is even lower than the efficiency (5.42% 

and 6.6%) obtained by the single quantum dot solar cells in different studies [52,69,71]. Despite 

numerous challenges, it is expected that multi-junction colloidal PbS and CdS quantum dots based 

solar cells can increase the power conversion efficiency up to 10% from the current efficiency 6.6%. It 

is observed that redox couples and electrodes can also enhance the performance of the solar cells. For 

example, in the case of dye sensitized solar cell the Co(II/III)tris(bipyridyl) redox couple was able to 

increase the power conversion efficiency from 11.18% to 12.3% [20]. Co(II/III)tris(bipyridyl) redox 

couple and platinum-free carbon based PProDOT counter electrode can be incorporated to quantum 

dot solar cell for promoting efficiency and reducing the cost. In future, more experimental attentions 

are required towards (i) improving the surface coverage of QDs onto the TiO2 for increasing the light 

harvesting efficiency of QDs, (ii) enhancing the electron and hole transfer rate and minimizing 

different recombination losses, (iii) improving the external and internal quantum yield in the visible 

and near-IR regions, (iv) increasing the high electron mobility through different types of electrodes by 

making nanopores, nanowires and nanopillars, (v) incorporating plasmonic interactions in the quantum 

dots, (vi) reducing the cost by improving the device performance of carbon based quantum dot solar 

cells [36,41,115]. 

Table 1. The power conversion efficiency of different solar cells. 

Solar cells Materials Efficiency References 

Silicon Si wafer 
15.70% [8] 
22.40% [9] 

Dye Sensitized 
Ru bipyridine 11.18% [18] 
Zn porphyrin 12.30% [20] 

Solid-State DSC 

Z907 dye with spiro-OMeTAD  
(doctor-blading) 

3.00% [98] 

Z907 dye with spiro-OMeTAD 5.65% [97] 
Y123 dye with spiro-OMeTAD and  

p-type Co(III) dopant 
7.20% [99] 
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Table 1. Cont. 

Solar cells Materials Efficiency References 

Polymer 
P3HT, IC60BA, PBDTT-DPP, PC71BM 8.60% [27] 

Same as above a 10.60% [28] 

Quantum Dots 
(Liquid Eletrolytes) 

Rod like CdSe 
CdSexS(1−x)/CdSe 

2.70% 
3.17% 

[51] 
[47] 

CdS/CdSe 3.50% [48] 
CdS/CdSe 3.68% [49] 
CdS/CdSe 4.10% [50] 
CdS/CdSe 5.42% [52] 

CdS/CdSe Invert Type I 5.32% [53] 
CdSe 5.42% [59] 

PbS/PbSe 2.10% [65] 
Mixed PbSxSe1−x 3.30% [66] 
PbS (Tandem) 4.20% [69] 

PbSe 4.70% [67] 
PbS (TiO2 nanosheets) 4.73% [68] 

PbS 5.10% [39] 

PbS 
PbS 

6.00% 
6.60% 

[70] 
[71] 

Solid State 
QDSSCs 

CdSe with quaterthiophene 0.34% [103] 
CdS/Squarine (Hybride) 1.20% [100] 

PbS (Non-hybride) 1.47% [100] 
CdS/CdSe with Polymer Matrix 4.00% [101] 

CdS/CdSe/ZnO 4.50% [102] 
a Detail information is not yet available. 
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