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Abstract

Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate

cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to

investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose

uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed

that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake

by 29.0 ± 3.83% at a concentration of 100 μM. The glucose uptake stimulating effect was sen-

sitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glu-

cose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In

addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM

D-(+)-glucose, treatment with 100 μM homoeriodictyol decreased serotonin release by –48.8 ±
7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin lev-

els were also reduced by –57.1 ± 5.43% after application of 0.01 μM homoeriodictyol to human

neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the

glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated path-

way. Furthermore, the results presented here support the usage of Caco-2 cells as a model for

peripheral serotonin release. Further investigations may address the value of homoeriodictyol

in the treatment of anorexia and malnutrition through the targeting of SGLT-1.

Introduction

Glucose uptake from the lumen into the epithelial cells of the small intestine is predominantly

mediated by the sodium-coupled transporter SGLT-1 [1]. Further transport from the entero-

cytes to the blood stream is thought to be mediated by the facilitative uniporter glucose trans-

porter 2 (GLUT-2), which exhibits, compared to SGLT-1, a low affinity, but high capacity for
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glucose [2]. However, in mice [3] and also in human intestinal Caco-2 cells [4], GLUT-2 has

been convincingly shown to be expressed not only on the basolateral side, but in the brush-bor-

der membranes as well. In addition, more recent studies suggest that at high luminal glucose

concentrations, GLUT-2 may be recruited from intracellular vesicles into the apical membrane

to support a rapid transport of large quantities of glucose from the lumen to the enterocytes [5].

This recruitment to the brush-border membrane was also demonstrated in Caco-2 cells, dem-

onstrating that this cell line is a suitable model to study intestinal glucose uptake [6, 7].

SGLT-1 has been in the focus of research not only for its role in glucose uptake, but also for

its involvement in intestinal nutrient sensing. In addition to its major function as a glucose

transporter, SGLT-1 plays a role in intestinal glucose sensing and has been associated with the

initiation of gut hormone release [8]. For example, enterochromaffin BON cells have been

shown to release the neurotransmitter serotonin in response to D-glucose via a phloridzin-sensi-

tive pathway, pointing to an involvement of SGLT-1 [9]. There is some evidence indicating inter-

action of serotonin and glucose metabolism although the results are not consistent. However, on

the cellular level, serotonin has been shown to increase glucose uptake in L6 myotubes and iso-

lated rat muscle cells [10]. More recent studies demonstrate that intestinal glucose sensing not

only involves SGLT-1, but also the sweet taste receptor subunit TAS1R3 and α-gustducin [11].

Flavonoids and related polyphenols have been shown to modulate intestinal glucose uptake

by targeting either SGLT-1 or GLUT-2 [12]. On the cellular level, Johnston et al. [13] demon-

strated that flavonoids potently reduce intestinal glucose uptake by Caco-2 cells. Differences in

the inhibitory potential of the compounds in the presence or absence of sodium ions indicate

that some compounds have an impact on facilitated glucose transport, while other compounds

reduce the sodium-coupled glucose transport. In addition, the flavanone hesperitin has been

shown to decrease basal glucose uptake in monocytic U937 cells [14] and MDA-MB-231 breast

cancer cells [15]. However, effects of the bitter-masking flavanone homoeriodictyol (HED),

which differs from hesperitin only in the position of the -OH and -OCH3 residues on the B-

ring, on intestinal glucose uptake have not been addressed so far. In the present study, we

aimed to investigate whether the polyphenol HED present in Yerba Santa [16] modulates

intestinal glucose uptake in differentiated Caco-2 cells in a similar way as structurally related

polyphenols. Co-incubation studies with inhibitors were used to identify SGLT-1 as the pre-

dominant target of HED-mediated glucose uptake. Glucose sensing by SGLT-1 has been asso-

ciated with an increased release of serotonin in enterochromaffin BON cells [9]. Caco-2 cells

have been shown to express the serotonin transporter (SERT) and guanylin as markers for

enterochromaffin cells [17] and to release serotonin in response to nutrients [18]. Therefore,

this study also focused on the effect of homoeriodictyol, a flavonoid that has not yet been stud-

ied for its effects on metabolic pathways involving glucose and serotonin, on Caco-2 cells as a

model for intestinal glucose transport and peripheral serotonin release.

Materials and methods

Materials

Homoeriodictyol (HED) and its sodium salt (NaHED) were kindly provided by Symrise AG

(Germany). The cell lines Caco-2 and SH-SY5Y were purchased from the American type cul-

ture collection (ATCC). All other chemicals and reagents were obtained from Sigma Aldrich

(Austria), unless stated otherwise.

Cell culture

Caco-2 cells were cultured under standard conditions (37˚C, 5% CO2, humidified atmosphere)

and differentiated to an enterocyte model within 21 days as described before (18,19). Cells

Homoeriodictyol increases glucose-uptake but decreases serotonin release via SGLT-1
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were differentiated between passages 13 and 22 and used for the assays on day 21 ± 3 after

seeding. SH-SY5Y cells were cultured under the stated standard conditions as described before

(20).

HED and phloridzin were pre-dissolved in ethanol and phloretin was pre-dissolved in

DMSO (each 1000 × stock solution). The final concentration of the solvents used for incuba-

tion never exceeded 0.1%. The sodium salt of HED was directly dissolved in the incubation

media.

Cell viability

To exclude inhibiting effects of the tested compounds on the metabolic activity of the cells, in

the applied test concentrations, cell proliferation, as a measure for cell viability, was deter-

mined using the MTT assay as described before (18,19). Treatment of Caco-2 or SH-SY5Y

with up to 100 μM HED with or without addition of the inhibitors phloretin (up to 2 mM) and

phloridzin (up to 1 mM) did not significantly (p> 0.05) reduce metabolic activity (data not

shown).

Glucose uptake

Glucose uptake by differentiated Caco-2 cells was determined using the fluorescently-labeled

glucose analog 2-NBDG (2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose)

(Thermo Fisher Scientific, USA) in a 96-well format as described before (18,19). Cells were

starved in DMEM lacking D-(+)-glucose, L-glutamine, FBS and phenol red for 60 min, followed

by the addition of the test compounds dissolved in Hank’s balanced salt solution (HBSS) con-

taining 20 mM HEPES. After 30 min pre-incubation with the test compounds at 37˚C, 2-NBDG

was added to a final concentration of 200 μM and incubated for another 30 min at 37˚C. Cells

were subsequently placed on ice and washed four times with ice-cold PBS before determination

of the fluorescence at 480 nm excitation and 550 nm emission. Glucose uptake was quantified

relative to untreated control cells in %.

Determination of intracellular cAMP levels

For determination of intracellular cAMP, cells were treated with HED (100 μM) with or with-

out addition of 500 μM phloridzin, or caffeine (3 mM) and/or forskolin 10 μM as positive con-

trols for 5 min after starving of the cells in DMEM without D-(+)-glucose, L-glutamine, FBS

and phenol red for 60 min according to the glucose uptake experiments. The Caco-2 cells were

subsequently harvested in lysis buffer (R&D Diagnostics, cAMP ELISA Kit) and lysed by three

freeze-thawing cycles with liquid nitrogen. Cellular debris was removed by centrifugation

(600 × g, 4˚C, 10 min) and the supernatant was analyzed for the cAMP content using the R&D

Diagnostics ELISA Kit according to manufacturer’s protocol. cAMP levels were calculated as

% of untreated control cells.

Serotonin release by SH-SY5Y cells and Caco-2 cells

Determination of serotonin levels in the supernatant of SH-SY5Y cells was carried out as

described before (20,25). Briefly, cells were seeded in 3.5 cm dishes and stimulated with the

HED dissolved in Krebs-Ringer-HEPES buffer (pH 6.2) for 5 min. The serotonin content of

the supernatant was quantified using Serotonin sensitive ELISA Kit (DLD Diagnostica, Ger-

many) according to the manufacturer’s protocol. Data are presented as % of untreated or vehi-

cle treated control cells as indicated in the figure legends. Serotonin release by differentiated

Caco-2 cells was determined analogously to the procedure described for SH-SY5Y cells, but

Homoeriodictyol increases glucose-uptake but decreases serotonin release via SGLT-1
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with slight modifications: Caco-2 cells were differentiated and stimulated in 24-well or 12-well

format using Krebs-Ringer HEPES buffer with a pH of 7.4.

Quantitative real-time PCR

The gene expression level of the sodium-coupled glucose transporter 1, SGLT-1 (SLC5A1),

after treatment with 100 μM HED for 15, 30 and 60 min, was analyzed using two-step reverse

transcription quantitative real-time PCR (qPCR). Total RNA was isolated using the PeqGold

Total RNA isolation Kit (Peqlab, Germany) and the quality and concentration were analyzed

using a NanoQuant Plate with an Infinite M200 Tecan reader. Reverse transcription was per-

formed by means of high capacity cDNA Kit (Life technologies, Fisher Scientific, Austria)

according to manufacturer’s protocol. RT-qPCR was carried out in triplicate on a StepOne

Plus device (Applied Biosystems, Fisher Scientific, Austria) with Fast SYBR Green Master Mix

(Life technologies, Fisher Scientific, Austria). The following primers were used for selective

amplification:

SLC5A1-forward-CCGATATCTCCATCATCGTTATCTAC-5'; SLC5A1-reverse: 3'-C
ACGATTGGTGGAAAACATAGC-5' (22); HPRT-forward:3'-TGCTCGATGTGATGAAGGAG-
5'; HPRT-reverse:3'-ATAGCCCCCCTTGAGCACAC-5' (18,19), GAPDH-forward: 3'-AG
GTCGGAGTCAACGGATTTG-5'; GAPDH-reverse: 3'-GGGGTCATTGATGGCAACAATA-5'
(designed using PrimerBlast (23)). Hypothetical starting concentrations of the respective

mRNA were calculated using LinREG PCR v.12.8 (24) and the fold change to non-treated con-

trol cells was determined after normalization to the geometric mean of the two reference genes

HPRT and GAPDH.

Statistics

Data are expressed as fold changes ± SEM from at least three biological replicates with multiple

technical replicates, each after removal of outliers according to the Nalimov outlier test. Data

sets were tested for normal distribution using the Shapiro-Wilk test. Comparisons between

two groups were analyzed using Student’s t-test or Mann-Whitney U test for non-normally

distributed data sets, respectively. For comparison of multiple groups one-way or two-way

ANOVA with Holm-Sidak post hoc test or ANOVA on ranks, respectively, was applied. All sta-

tistical analysis except the Nalimov outlier test were performed using Sigma Plot 11 or 13

(Systat Software, USA). The Nalimov outlier test was carried out using Excel 2007 (Microsoft).

Results & discussion

Several polyphenols have been shown to influence intestinal glucose uptake. However, results

are inconsistent since a structure-associated activity has not yet been demonstrated; whereas

phloretin, myricetin, and quercetin affect glucose uptake via GLUT transporters, the polyphe-

nols phloridzin and neohesperidin have been shown to decrease sodium-dependent glucose

uptake, indicating a SGLT-1-dependent mechanism [13]. Since the polyphenol hesperitin was

demonstrated to decrease glucose uptake in two different cell models [14, 15], we hypothesized

here that the structural analog homoeriodictyol (HED) affects glucose uptake in a similar man-

ner. Differentiated Caco-2 cells were chosen since these cells have been demonstrated to express

the relevant glucose transport systems, such as SGLT-1 at the apical surface [19] and GLUT-2 at

the basolateral and apical surface [5]. Full differentiation within 21 days of cultivation applied in

this study has been confirmed in earlier studies using the trans-epithelial electrical resistance as

a marker [20, 21]. The test compound HED differs from hesperitin only in the position of the

residues at the B-ring. However, in contrast to our hypothesis, this slight structural difference

led to a major difference in the impact on glucose uptake. Both HED and its sodium salt instead

Homoeriodictyol increases glucose-uptake but decreases serotonin release via SGLT-1
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increased glucose uptake in differentiated Caco-2 cells up to 135 ± 8.89% (p = 0.002) and 129 ±
3.83% (p<0.001), respectively, after application of the highest test concentration of 100 μM (Fig

1). These data demonstrate that slight structural differences may have a major impact on the

bioactivity of a compound and that not all polyphenols reduce glucose uptake. Since higher

concentrations could not be applied in the assay due to HED’s limited solubility in aqueous

solutions, no saturation point of HED on glucose uptake is presented here. Comparison of the

effects of the HED pre-dissolved in ethanol with the more water soluble sodium salt confirmed

that there is no difference in the effect size between the two modes of application (p = 0.47).

Therefore, an impact of the sodium ions on glucose uptake can be excluded. In addition, the use

of ethanol during incubations was avoided, and the following experiments in Caco-2 cells were

carried out using the water-soluble sodium salt of HED.

The effects of the dietary polyphenols tested by Johnston et al. [13] were partly sodium-

dependent and partly not, associating the effects to either SGLT-1 or facilitative glucose trans-

porters. Thus, we investigated whether the effects of HED were the result of the activity of one

or both of the most prominent intestinal glucose-transport systems, the sodium-dependent

SGLT-1 and the sodium-independent GLUTs. For inhibition of SGLT-1, we concomitantly

applied phloridzin, and for inhibition of sodium-independent GLUTs, phloretin was used.

The concentrations applied for the present study were chosen to cover a broad range, between

no effect on glucose uptake itself up to a saturated glucose uptake inhibition. However, the

maximum concentration was limited by the low solubility of phloretin (2 mM) and phloridzin

(1 mM) in aqueous solutions. An effect of the 0.1% ethanol used as a solvent for phloridzin

and 0.1% DMSO applied as a solvent for phloretin was excluded in preliminary experiments

and data are calculated and statistics assessed in comparison to the corresponding solvent

control.

Fig 2A demonstrates that application of phloretin decreased glucose uptake in Caco-2 cells at

concentrations greater than 1 mM to a maximum extent of –27.5 ±8.89% (p = 0.038 vs. DMSO

control) at 2 mM. Application of the SGLT 1 inhibitor phloridzin resulted in a significant

Fig 1. 2-NBDG uptake by differentiated Caco-2 cells after 30 min pre-treatment with 0.01 to 100 μM

HED or HED sodium salt. Results are calculated in comparison to the corresponding control (incubation

buffer for the sodium salt of HED and incubation buffer containing 0.1% EtOH for HED). Statistics: n = 4–9

with multiple technical replicates. Significant differences between the concentrations and treatments were

assessed using two-way ANOVA with Holm-Sidak post hoc test. ** p<0.01, *** p< 0.001 vs. control. n.s.: not

significant.

doi:10.1371/journal.pone.0171580.g001

Homoeriodictyol increases glucose-uptake but decreases serotonin release via SGLT-1
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decrease in glucose uptake compared to untreated control cells at concentrations higher than

0.5 mM to a maximum extent of –21.1 ± 4.69% (p<0.001 vs. EtOH control, Fig 2B). Both inhibi-

tors alone reduced glucose uptake at the higher test concentration, but did not completely abol-

ish glucose uptake. Complete inhibition of glucose uptake by inhibitors of a single glucose

transporters has not been demonstrated by other groups either [13], and may be explained by

compensation via the other glucose transport mechanism and the limitation of applicable con-

centrations in water-based media.

With exception of an addition of 1 mM phloretin, the glucose uptake promoting effect of

100 μM HED sodium salt was not affected by the addition of 1 μM– 2 mM phloretin (p<0.001

vs. DMSO control) (Fig 2A). In contrast to the addition of phloretin, the glucose uptake pro-

moting effect of 100 μM HED sodium salt was abolished by concomitant incubation with

phloridzin, starting from a concentration of 50 μM (p = 0.992 vs. EtOH control, Fig 2B). The

phloridzin-sensitive pathway indicates that glucose-uptake stimulation by HED sodium salt

involves SGLT-1, but not sodium-independent glucose transporters such as GLUT-1 or

GLUT-2.

Luminal glucose in the small intestine stimulates the release of several digestive hormones,

and also the neurotransmitter serotonin [22]. Mechanistic studies in enterochromaffin BON

Fig 2. 2-NBDG uptake by differentiated Caco-2 cells after 30 min pre-treatment with 1 μM to 2 mM phloretin (2A) or 0.5 μM to 1 mM phloridzin (2B)

with or without addition of 100 μM HED sodium salt. Data are calculated in comparison to the corresponding solvent control (100%) after excluding an

effect of the solvent on glucose uptake. Standard error means of the used controls were 100 ± 6.78% for 0.1% DMSO control (A), 100 ± 4.06% for 0.1% EtOH

control (B), and 100 ± 3.85% for the buffer control (not shown). Control values were set to 100% and are depicted using a grey line. Pre-incubation with

100 μM HED sodium salt increased glucose uptake by an average of 29.0 ± 3.90% and is symbolized by a dotted black line. Statistics: n = 3–6 with multiple

technical replicates. Significant differences between the treatments and control treated cells were assessed using one-way ANOVA vs. the corresponding

solvent control with Holm-Sidak post hoc test and are marked by * p <0.05, ** p<0.01, *** p< 0.001.

doi:10.1371/journal.pone.0171580.g002

Homoeriodictyol increases glucose-uptake but decreases serotonin release via SGLT-1
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cells revealed that stimulation of serotonin release by D-(+)-glucose is mediated by a phlorid-

zin-sensitive pathway, suggesting a link to SGLT-1 [9]. Caco-2 cells, although not a model for

enterochromaffin cells, have been shown to release serotonin in response to a nutritive stimu-

lus, monooleoylglycerol [18]. We therefore aimed to investigate whether SGLT-1 activation

by HED results in increased serotonin levels as well. First, we confirmed that serotonin release

by Caco-2 cells responds to D-(+)-glucose similarly to enterochromaffin cells. Serotonin levels

in the supernatant of Caco-2 cells were increased by 81.9 ± 25.0% (p = 0.024 vs. control) in

response to the highest test concentration of 500 mM D-(+)-glucose (Fig 3A). In contrast to

D-(+)-glucose, treatment with HED sodium salt decreased dose-dependently serotonin levels

in the supernatant of Caco-2 cells up to –48.8 ± 7.57% at 100 μM (p<0.01 vs. buffer control,

Fig 3B). Although the glucose concentration needed for a robust increase in serotonin levels in

the supernatant of Caco-2 cells is about 10-times higher than in BON cells [9], our finding sup-

ports that Caco-2 cells are a suitable model to study serotonin release in response to nutritive

stimuli, especially hexoses. However, in contrast to our hypothesis, stimulation with HED did

not increase, but instead decreased extracellular serotonin levels of Caco-2 cells. This result

was confirmed using a human neuronal cell model, SH-SY5Y cells, which has been successfully

used to study serotonin release [23, 24]. (Fig 3C). Only concentrations up to 10 μM HED were

applied, since higher concentrations are very unlikely to be reached in the central nervous sys-

tem. In accordance with the results obtained with Caco-2 cells, stimulation with 0.01–10 μM

HED led to a decrease in serotonin levels in the supernatant of neural SH-SY5Y cells by up to

–57.1 ± 5.43% at 0.01 μM (p< 0.001 vs. control), suggesting that HED may also act on the cen-

tral serotonin system. The similar response of Caco-2 and SH-SY5Y cells not only supports

Caco-2 cells as a suitable model for serotonin release, but also points to parallel mechanisms of

Fig 3. (A) Serotonin levels in the supernatant of differentiated Caco-2 cells after stimulation with 125 to 500 mM D-(+)-glucose for five minutes. (B) Serotonin

levels in the supernatant of differentiated Caco-2 cells after stimulation with 0.01–100 μM HED sodium salt for five minutes. (C) Serotonin levels in the

supernatant of SH-SY5Y cells after stimulation with 0.001–10 μM HED after five minutes. Krebs-Ringer buffer containing 10 mM D-(+)-glucose was used as

control in all studies and was set to 100%, the treatments are depicted as the mean change of extracellular serotonin levels in percent of the control ± SEM.

Statistics: n = 3–6 with at least two technical replicates. Significant differences between the treatments were assessed using one-way ANOVA with Holm-

Sidak post hoc test and are marked by * p <0.05, ** p <0.01, *** p <0.001 vs. control and with distinct letters for differences between the groups.

doi:10.1371/journal.pone.0171580.g003
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central and peripheral serotonin release. However, similarities in the mechanistic pathways

involved in the response of the central and peripheral serotonin systems need to be investi-

gated in depth in future studies.

As a next step, the question whether SGLT-1 links glucose uptake with serotonin release in

Caco-2 cells was addressed. We analyzed serotonin levels in the supernatant of Caco-2 cells

after treatment with glucose and HED sodium salt in combination with phloridzin at 5, 50 and

500 μM to cover the whole range between no effect on glucose uptake and reduction of glucose

uptake by inhibition of SGLT-1. An impact on serotonin levels of a treatment with 5–500 μM

phloridzin solely was excluded (p>0.05 vs. EtOH control, data not shown).

In contrast to the results of Kim et al. [9] in BON cells, extracellular serotonin levels after

stimulation with glucose in Caco-2 cells were not sensitive to phloridzin, as the concomitant

treatment of Caco-2 cells with 500 mM D-(+)-glucose in combination with 5–500 μM phlorid-

zin was not different from a treatment with 500 mM D-(+)-glucose alone. Additionally, the

stimulating effect of 500 mM D-(+)-glucose, compared to non-treated control cells, was not

reduced (p<0.05 vs. EtOH control) (Fig 4A). Therefore, a SGLT-mediated pathway for glucose

in serotonin release is not assumed and demonstrating that glucose uptake is not generally

linked to serotonin release via SGLT-1 in Caco-2 cells. In addition, the concentration of glu-

cose needed to induce an increase in serotonin levels is more than 10-times higher than the

saturating concentration of SGLT-1 (~ 40 mM) [25], which is also supporting the proposed

Fig 4. A, B: Extracellular serotonin levels of differentiated Caco-2 cells after stimulation with 500 mM D-(+)-glucose (A) or 100 μM HED sodium salt (B) with or

without addition of 5–500 μM phloridzin. Krebs-Ringer buffer without, or in case of incubations using phloridzin, with addition of 0.1% EtOH was used as control

and set to 100%. An effect of 0.1% EtOH was excluded in preliminary studies. Statistics (A, B): n = 3 with two technical replicates. Significant differences

between the treatments were assessed using one-way ANOVA with Holm-Sidak post hoc test and are marked by n.s. (not significant), whereas significant

differences to the controls are marked with * p <0.05, ** p <0.01, *** p <0.001 vs. the corresponding control (incubations using phloridzin were tested in

comparison to the EtOH control, treatments with glucose or HED sodium alone were tested in comparison to the incubation media control).

doi:10.1371/journal.pone.0171580.g004

Homoeriodictyol increases glucose-uptake but decreases serotonin release via SGLT-1
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SGLT-1-independent pathway. However, the effect of HED on serotonin release was reduced

by the addition of phloridzin: treatment with 100 μM HED sodium salt in combination with

phloridzin did not lead to decreased serotonin levels in the supernatant compared to control

treated cells (p>0.05 vs. EtOH control) as a treatment with only 100 μM HED sodium salt did.

(Fig 4B). This suggests that SGLT-1 not only plays a role in HED-mediated glucose uptake, but

also in the here demonstrated decreased serotonin levels in the supernatant. Also, in Caco-2

cells, SGLT-1 activation is not invariably associated with an increased serotonin release, but

may contribute to decreased serotonin levels as well.

Current literature supports a connection of intracellular cAMP levels and SGLT-1. [26].

Thus, as a signaling pathway, we hypothesized that HED impacts SGLT-1-mediated serotonin

levels and glucose uptake via the cAMP / proteinkinase A pathway. Intracellular cAMP levels

were determined after 5 min stimulation with the positive controls, the phosphodiesterase-

inhibitor caffeine [26], or the adenylate-cyclase stimulant forskolin [27], and the test com-

pound HED with or without addition of phloridzin. The positive controls, 3 mM caffeine and

10 μM forskolin, comparably increased intracellular cAMP levels to 141 ± 8.73% (p<0.001)

and 132 ± 8.67% (p<0.05, one-way ANOVA with Holm-Sidak post-hoc test, n = 3–6). A signal-

ing of HED via the cAMP / proteinkinase A-pathway is supported by an increase in intracellu-

lar cAMP levels to 115 ± 3.32%, (p< 0.01 vs. control and EtOH control) after a five minute-

stimulation with 100 μM HED (Fig 5).

Fig 5. Intracellular cAMP levels after 5 min incubation with 100 μM HED sodium salt with or without addition of 500 μM

phloridzin (PZ). Statistics: Mean % of control levels ± SEM from three independent experiments with two technical replicates.

Significant differences between the treatments were assessed using one-way ANOVA with Holm-Sidak post hoc test and are

marked with * p <0.05, ** p <0.01, *** p <0.001 vs. the corresponding control (incubations using phloridzin were tested in

comparison to the EtOH control, treatments with glucose or HED sodium alone were tested in comparison to the incubation

media control) or n.s.: not significant.

doi:10.1371/journal.pone.0171580.g005

Homoeriodictyol increases glucose-uptake but decreases serotonin release via SGLT-1

PLOS ONE | DOI:10.1371/journal.pone.0171580 February 13, 2017 9 / 12



Moreover, addition of the SGLT-1 inhibitor phloridzin to HED-containing incubation

medium slightly diminished the stimulating effect of HED to 94.6 ± 1.87% of the control

(p>0.05 vs. control or control with 0.1% EtOH; p<0.001 vs. HED, one-way ANOVA) (Fig 5).

This finding further supports a signaling for HED via SGLT-1 followed by a cAMP-dependent

pathway. An increase of SGLT-1 abundance in Caco-2 cells after the short-term incubations

with HED is unlikely since no difference in mRNA levels of SLC5A1, encoding for SGLT-1

was detected after incubation with 100 μM for 15, 30 and 60 min. The fold changes in compar-

ison to non-treated controls were 1.09±0.24 after 15 min, 0.85±0.07 after 30 min and 0.94

±0.02 after 60 min (p>0.05 for all treatments, one-way ANOVA). Therefore, we hypothesize

an increase in SGLT-1 activity rather than an increase in SGLT-1 abundance caused by HED

treatment. This activation may not only affect extracellular serotonin levels, but also glucose

uptake after 30 min pre-incubation. However, both systems are not generally linked in Caco-2

cells, since glucose-mediated serotonin release is not SGLT-1-dependent.

For glucose, it is conceivable that, instead of an intracellular activation via cAMP, signaling

via membrane-bound sweet taste receptor TAS1R3 and α-gustducin, as in enterocyte nutrient

sensing [27], may lead to increased serotonin release. The release of neuropeptides and their

receptor binding may increase cAMP in the long-term as well [8], involving SGLT-1 in a later

stage of the signaling pathway, but not after short-term incubations like in serotonin release. A

pathway involving TAS1R3 and α-gustducin for glucose might at least partially explain the

contrary effects of glucose and HED and the non-phloridzin-sensitive response of glucose in

serotonin release, but needs to be clarified in future studies as well. Moreover, since serotonin

levels in the supernatant were not altered after treatment with 500 mM of the non-transported

sugar D-mannitol, with a mean value of 121±19.0% in comparison to the control (p>0.05), it

can also be excluded that osmotic action has influence on extracellular serotonin levels after

stimulation with 500 mM glucose. In addition, it has to be noticed that the glucose uptake

assay in its present form is a model for luminal glucose uptake only. To evaluate the impact of

homoeriodictyol transport mechanisms regulating blood glucose levels in humans, transport

from the enterocytes to the blood side as well the effect of HED on glucose uptake in peripheral

muscle cells and adipocytes would have to be considered as well. This approach will be consid-

ered in future in vivo studies.

Conclusion

In conclusion, we demonstrate that the polyphenol homoeriodictyol affects both glucose

metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Since

stimulation of serotonin levels by glucose is, unlike reduced serotonin levels after HED treat-

ment, not phloridzin-sensitive, a direct link between of glucose uptake and serotonin release

via SGLT-1 in Caco-2 cells is not assumed. However, the results presented here support the

usage of Caco-2 cells as a model for peripheral serotonin release.
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