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RB: An essential player in adult neurogenesis
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ABSTRACT
The fundamental mechanisms underlying adult neurogenesis remain to be fully clarified.
Members of the cell cycle machinery have demonstrated key roles in regulating adult neural
stem cell (NSC) quiescence and the size of the adult-born neuronal population. The
retinoblastoma protein, Rb, is known to possess CNS-specific requirements that are
independent from its classical role as a tumor suppressor. The recent study by Vandenbosch
et al. has clarified distinct requirements for Rb during adult neurogenesis, in the restriction of
proliferation, as well as long-term adult-born neuronal survival. However, Rb is no longer
believed to be the main cell cycle regulator maintaining the quiescence of adult NSCs. Future
studies must consider Rb as part of a larger network of regulatory effectors, including the
other members of the Rb family, p107 and p130. This will help elucidate the contribution of
Rb and other pocket proteins in the context of adult neurogenesis, and define its crucial role
in regulating the size and fate of the neurogenic niche.
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It is presently established that neural stem cells
(NSCs) reside in the adult mammalian brain: the
two discrete neurogenic zones are the subventricu-
lar zone (SVZ) lining the lateral ventricles and the
subgranular zone (SGZ) of the dentate gyrus
(DG).1 These NSCs interact with a complex and
tightly coordinated network of intrinsic and extrin-
sic factors to continuously generate functional neu-
rons throughout life, respectively migrating along
the rostral migratory stream (RMS) to the olfactory
bulb (OB), or remaining in the DG. In addition to
contributing to brain plasticity,2 experimental aug-
mentation of the adult-born neuron population
enhances pattern separation, and may reverse asso-
ciated impairments that result from normal aging.3

The therapeutic control of adult neurogenesis offers
tremendous potential to enable new approaches in
regenerative medicine.4 However, the search for
novel strategies to repair the damaged brain
remains a challenge, due to ongoing ambiguity
regarding fundamental mechanisms regulating qui-
escence, activation, commitment and survival.

The orchestration of adult neurogenesis largely
relies on two key processes, whose underlying
mechanisms remain to be fully elucidated. First is

the ability to maintain a pool of quiescent NSCs
(qNSCs), which are sustained throughout life.
qNSCs exist independently of the activated NSC
subpopulation, which are characterized by upregu-
lated Nestin expression and ultimately enter neuro-
genesis.5,6 Maintenance of quiescence is important,
as defects such as over-activation can result in the
exhaustion and subsequent depletion of qNSCs
from the adult neurogenic zones,7 whereas exces-
sive quiescence ultimately leads to too few differen-
tiated progeny. They are believed to originate
embryonically, whether during mid-development
for slowly-dividing SVZ qNSCs.8,9 or late develop-
ment for SGZ qNSCs, in advance of postnatal SGZ
formation10,11 These quiescent cells undergo revers-
ible transition into an activated state, which is
believed to be mediated by factors including
Ascl1,12 and BMP signaling specifically in the
DG.13 The second key process is the maintenance
of an adult-born neuron population; guiding acti-
vated NSCs through self-renewal or commitment to
neuronal differentiation, and ensuring their post-
mitotic survival. The complex regulatory networks
directing the fate of activated NSCs have been
reviewed elsewhere.1,14,15 Ultimately, therapies
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targeting these processes should enhance the regen-
erative rate, and expand upon the restricted poten-
tial, observed during adult neurogenesis.

Cell cycle regulation and adult neurogenesis

Several studies have revealed crucial requirements for
cell cycle proteins in maintaining both key processes,
in coordination with fate determinants and differenti-
ation factors.16,17 The regulation of NSC quiescence
depends on the tight regulation of the cell cycle
machinery. CDK-inhibitory protein (CKI) p57Kip2 is
believed to play a key role in the maintenance of qui-
escence in adult qNSCs. Conditional deletion of
p57Kip2 results in a significant decrease in the embry-
onically-generated NSC population that goes on to
generate the pool of qNSCs in the adult SVZ.8 Simi-
larly, p57Kip2 deletion in the adult SGZ results in
expansion restricted to the activated NSC popula-
tion.18 A recent study further associated the quies-
cence of SGZ qNSCs to the prevention of cyclin D
accumulation, via the rapid degradation of proactiva-
tion factor Ascl1.19 Together, these studies support an
intimate link between cell cycle control and adult NSC
quiescence.

Maintenance of the adult-born neuron population
relies on several cell cycle-related processes guiding
the fate of activated NSCs, leading to either self-
renewal or differentiation: these include division sym-
metry, length of the total cell cycle and length of G1
phase specifically.20-22 Mechanistically, Cdk6 - and
not Cdk4 - has been shown to distinctly mediate the
expansion of differentiating adult-born progenitors,22

while mice deficient for cyclin D2 lack adult-born
neurons.23 Furthermore, Cdk4-cyclinD1 complex
overexpression in the SGZ induces expansion of the
activated NSC and progenitor populations at the
expense of differentiation.24

CKIs p21Waf1 and p27Kip1 have each demonstrated
regulatory roles mediating both of these key processes.
p21Waf1 is required for adult NSC quiescence, as dele-
tion in the SVZ leads to expansion and reduced lon-
gevity of the self-renewing NSC population,7

concurrent with premature terminal differentiation
through expression of Bmp225 Furthermore, separate
studies in the SVZ and SGZ respectively demonstrated
p21Waf1 repressing NSC self-renewal through the
direct binding and repression of Sox226 at its down-
stream SRR2 enhancer, and suppressing proliferation

specifically in differentiating adult-born neurons.27

p27Kip1 is upregulated in the SGZ by pro-quiescence
factor Bmp4, preventing expansion of the self-renew-
ing NSC population.28 p27Kip1 further suppresses pro-
liferation specifically in differentiating SVZ
progenitors.29 Adult mice null for p27Kip1 demonstrate
significantly increased basal levels of Sox2 expression
in their brain tissue, suggesting that p27Kip1 may also
be involved in repressing Sox2 in the CNS,30 with sim-
ilar implications for NSC self-renewal. Together, these
studies support an important link between cell cycle
control and adult neurogenesis.

The retinoblastoma protein (Rb) operates at the
core of the canonical cell cycle pathway, representing
a point of convergence for cyclin, Cdk and CKI activ-
ity. Typically classified as a tumor suppressor, Rb and
Rb-like proteins p107 and p130 form the Rb family of
pocket proteins, named for the homologous A/B bind-
ing pocket domain each uses to regulate E2F tran-
scription factors.31 Rb proteins regulate cell cycle
progression at the G1/S restriction point. In response
to mitogenic stimuli, the Cdk4/6-cyclin D complex
progressively phosphorylates/inactivates Rb, resulting
in the release of E2Fs, whose transcription promotes
entry into S phase.32,33 Rb has a demonstrated require-
ment in maintenance of quiescence, as Rb deletion is
sufficient to induce cell cycle re-entry in several sys-
tems,31 including MEFs,34 mammalian muscle
cells,35,36 and adult cortical neurons.37 It has also been
implicated in the regulation of iPSC self-renewal, as
Rb inhibits Sox2 by repressing its downstream SRR2
enhancer.38 While these studies have directly impli-
cated Rb in maintaining both key processes, the
requirement of Rb specifically during adult neurogen-
esis remains to be clarified.

Rb and embryonic CNS development

Previous studies have demonstrated distinct require-
ments for Rb during embryonic development, which
go beyond its traditional role in regulating the cell
cycle machinery.39 These requirements are relevant to
adult neurogenesis, as recent findings suggest quies-
cent adult NSCs are derived from cell populations
born during embryonic development.8-10 During cor-
tical development, studies have demonstrated a
requirement for Rb in restricting proliferation in com-
mitted neuroblasts.40 As conditional Rb-deficiency did
not result in widespread apoptosis, this initial result
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suggested that Rb loss might be used to experimentally
augment neurogenesis. Studies demonstrated further
requirements for Rb in differentiation of the ventral
telencephalon, by preventing the E2f-mediated direct
suppression of Dlx2;41 as well as in tangential migra-
tion into the neocortex,42 regulating the expression of
netrin/RGM receptor neogenin.43

A recent study by Vandenbosch et al.44 suggests a
key requirement for Rb during hippocampal develop-
ment, and the generation of dentate granule cell neu-
rons (DGCs). While Rb deletion in developing NSCs
demonstrated no effects on self-renewal, it led to
enhanced DGC neurogenesis, including a dramatic 3-
fold increase in proliferating cell number and a signifi-
cantly expanded DGC population. Rb deletion further
led to a small yet significant increase in apoptosis.
While there was an ultimate net gain to the DGC pop-
ulation, this may reflect a compensatory mechanism
to reduce the augmented DGC population, or a poten-
tial requirement for Rb for DGC survival during
development.

Rb and adult neurogenesis

While little is known regarding the role of Rb during
adult neurogenesis, the use of Tamoxifen-inducible
transgenic mouse models have helped overcome the
embryonic lethality of Rb deficiency.45 Naser et al.
recently demonstrated roles for Rb in adult SVZ/OB
neurogenesis both consistent with, and distinct from,
those observed during development.46 Consistent with
development, Rb does not appear to regulate self-
renewal of adult NSCs, and is required to control pro-
genitor proliferation in the adult SVZ and RMS. Dis-
tinctly, the authors were not able to detect a role for
Rb in maintaining NSC quiescence, and Rb-deficient
nascent neurons did not demonstrate any apparent
defects in differentiation or rostral migration. While
Rb loss led to an increase in OB neurogenesis, it was
abrogated one month later by increased apoptosis.
This suggests a requirement for Rb in the long-term
survival of adult-born OB neurons.

Interestingly, a recent study by Vandenbosch
et al.44 further revealed distinct requirements during
adult hippocampal neurogenesis. In the adult DG, Rb
is required to regulate the cell proliferation of imma-
ture newborn DGCs, and to maintain their capacity to
produce mature DGCs. Moreover, Rb is essential for
the survival of adult-born DGCs, as Rb loss results in

massive DGC death. No evidence for a role for Rb in
maintaining NSC quiescence in the adult SGZ was
detected in these studies.

Unique to the hippocampus, this study demon-
strates that some Rb requirements may be functionally
conserved between embryonic development and adult
neurogenesis, including regulating proliferation within
immature DGCs, and potentially in ensuring DGC
survival. Notably, while Rb loss results in expansion of
the developing DG, the modest increase in ectopic
proliferation does not result in an expansion of the
DGC population in the adult DG. This suggests the
presence of other effectors in regulating the adult-
born DGC population size.

This study further defines a crucial requirement for
Rb in the short term survival of adult-born DGCs, in
contrast to its requirement during adult SVZ/OB neu-
rogenesis, where Rb loss transiently expands the num-
ber of neurons populating the OB. These results
support the hypothesis that regional differences distin-
guish the NSCs of each neurogenic niche,47 which may
be regulated by relatively dissimilar transcriptional
programs and indicate distinct cell type-specific roles
for Rb. Nonetheless, these results demonstrate two
roles for Rb conserved between adult neurogenic
zones: restriction of proliferation, and long-term
survival.

Putting Rb in context

Although Rb demonstrates important roles in the reg-
ulation of NSC and neuronal populations during brain
development, its function during adult neurogenesis
appears to integrate the contributions of other regula-
tory mechanisms. The study by Vandenbosch et al.,44

together with the recent study by Naser et al.,46 do not
reveal any cell cycle-dependent effects on uncommit-
ted NSCs from either neurogenic niche, in response to
Rb deletion. This suggests that Rb is dispensable in
maintaining the quiescence of adult NSCs. While this
is consistent with prior findings in adult haemato-
poietic stem cells,48 this notably suggests that Rb may
not serve as the main cell cycle regulator governing
adult NSCs. Furthermore, the results from Vanden-
bosch et al. suggest the presence of other effectors spe-
cifically regulating the adult-born DGC population
size, with intrinsic implications for adult-born neu-
rons originating from the SVZ. This prompts the
question: if Rb does not independently regulate adult
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NSC quiescence and modestly regulates the size of the
adult-born neuronal population, what does?

Shifting from the contribution of Rb alone
toward a broader regulatory network, we must con-
sider the involvement of the other pocket proteins,
p107 and p130. The shared pocket domain results
in some functional overlap between members, par-
ticularly through the E2F family of transcription
factors.49-51 Inactivation of all three Rb family
members demonstrates distinct requirements from
Rb inactivation alone,31 as demonstrated during the
regulation of quiescence and proliferation in hae-
matopoietic52 and liver53 systems.

Prior studies have identified key regulatory
requirements for p107 during adult neurogenesis.
Relating to maintenance of quiescence, p107 is
expressed only in uncommitted NSCs and progeni-
tors within the SVZ, and acts in dual roles: the
suppression of self-renewal by downregulating the
Notch pathway though direct Hes1 repression, as
well as the favoring of neuronal differentiation and
commitment.54,55 While the quiescence-specific role
for p107 remains to be clarified, studies have since
identified the role of high Notch activity56 in pro-
moting NSC quiescence. p107 has been further
implicated in the maintenance of adult-born neuro-
nal population size. E2F3 isoforms E2F3a and
E2F3b, bound by p107, hold opposing roles in
directly targeting Sox2 at its proximal promoter
region, as demonstrated in activated NSCs.57 This
demonstrated the intimate involvement of p107 in
the cell cycle-independent regulation of NSC self-
renewal.

The contribution of p130 to adult neurogenesis
remains the least established among Rb family mem-
bers. During iPSC differentiation, p130 forms a
repressive complex with E2F4 and SIN3A to repress
Sox2 expression via its SRR2 enhancer, potentially in
synergy with similar repression by p27Kip1.30 While
this mechanism has yet to be established in the CNS,
it may suggest a potential cell cycle-independent role
for p130 in regulating NSC differentiation. Moreover,
p130 has been implicated in the regulation of cortical
neuronal death and survival through E2F4-mediated
repression of pro-apoptotic genes,58 suggesting a
potential role for p130 in adult-born neuronal sur-
vival. Therefore, it is likely that the true requirements
for Rb during adult neurogenesis are masked by func-
tional compensation.

Conclusion

Investigating the mechanisms by which adult NSCs
maintain quiescence and regulate the size of the
mature neuronal population is essential for our under-
standing of neurogenesis. The recent study by Van-
denbosch et al.44 has demonstrated a clear
requirement for Rb during adult hippocampal neuro-
genesis, regulating the production of newborn neu-
rons and ensuring their survival. It further
demonstrates that unlike in other systems, Rb does
not play a crucial role in the maintenance of NSC qui-
escence during adult neurogenesis. Future studies
accounting for the functional compensation of Rb
family members p107 and p130 will help clarify the
requirement of Rb in the adult, and contribute to the
future development of regeneration therapies to repair
the damaged brain.
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