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Abstract

This paper focuses on causal structure estimation from time series data in which measurements are 

obtained at a coarser timescale than the causal timescale of the underlying system. Previous work 

has shown that such subsampling can lead to significant errors about the system’s causal structure 

if not properly taken into account. In this paper, we first consider the search for the system 

timescale causal structures that correspond to a given measurement timescale structure. We 

provide a constraint satisfaction procedure whose computational performance is several orders of 

magnitude better than previous approaches. We then consider finite-sample data as input, and 

propose the first constraint optimization approach for recovering the system timescale causal 

structure. This algorithm optimally recovers from possible conflicts due to statistical errors. More 

generally, these advances allow for a robust and non-parametric estimation of system timescale 

causal structures from subsampled time series data.
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1. Introduction

Time-series data has long constituted the basis for causal modeling in many fields of science 

(Granger, 1969; Hamilton, 1994; Lütkepohl, 2005). Despite the often very precise 

measurements at regular time points, the underlying causal interactions that give rise to the 

measurements often occur at a much faster timescale than the measurement frequency. 
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While information about time order is generally seen as simplifying causal analysis, time 

series data that undersamples the generating process can be misleading about the true causal 

connections (Dash and Druzdzel, 2001; Iwasaki and Simon, 1994). For example, Figure 1a 

shows the causal structure of a process unrolled over discrete time steps, and Figure 1c 

shows the corresponding structure of the same process, obtained by marginalizing every 

second time step. If the subsampling rate is not taken into account, we might conclude that 

optimal control of V2 requires interventions on both V1 and V3, when the influence of V3 on 

V2 is, in fact, completely mediated by V1 (and so intervening only on V1 suffices).

Standard methods for estimating causal structure from time series either focus exclusively 

on estimating a transition model at the measurement timescale (e.g., Granger causality 

(Granger, 1969, 1980)) or combine a model of measurement timescale transitions with so-

called “instantaneous” or “contemporaneous” causal relations that (are supposed to) capture 

any interactions that are faster than the measurement process (e.g., SVAR) (Lütkepohl, 2005; 

Hamilton, 1994; Hyvärinen et al., 2010). In contrast, we follow Plis et al. (2015a,b) and 

Gong et al. (2015), and explore the possibility of identifying (features of) the causal process 

at the true timescale from data that subsample this process.

In this paper, we provide an exact inference algorithm based on using a general-purpose 

Boolean constraint solver (Biere et al., 2009; Gebser et al., 2011), and demonstrate that it is 

orders of magnitudes faster than the current state-of-the-art method by Plis et al. (2015b). At 

the same time, our approach is much simpler and allows inference in more general settings. 

We then show how the approach naturally integrates possibly conflicting results obtained 

from the data. Moreover, unlike the approach by Gong et al. (2015), our method does not 

depend on a particular parameterization of the underlying model and scales to a more 

reasonable number of variables.

2. Representation

We assume that the system of interest relates a set of variables  defined at 

discrete time points t ∈ ℤ with continuous (∈ ℝn) or discrete (∈ ℤn) values (Entner and 

Hoyer, 2010). We distinguish the representation of the true causal process at the system 
timescale from the time series data that are obtained at the measurement timescale. 

Following Plis et al. (2015b), we assume that the true between-variable causal interactions at 

the system timescale constitute a first-order Markov process; that is, that the independence 

Vt ⫫ Vt−k|Vt−1 holds for all k > 1. The parametric models for these causal structures are 

structural vector autoregressive (SVAR) processes or dynamic (discrete/continuous variable) 

Bayes nets. Since the system timescale can be arbitrarily fast (and causal influences take 

time), we assume that there is no “contemporaneous” causation of the form 

(Granger, 1988). We also assume that Vt−1 contains all common causes of variables in Vt. 

These assumptions jointly express the widely used causal sufficiency assumption (see 

Spirtes et al. (1993)) in the time series setting.

The system timescale causal structure can thus be represented by a causal graph G1 

consisting (as in a dynamic Bayes net) only of arrows of the form , where i = j is 
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permitted (see Figure 1a for an example). Since the causal process is time invariant, the 

edges repeat through t. In accordance with Plis et al. (2015b), for any G1 we use a simpler, 

rolled graph representation, denoted by 1, where Vi → Vj ∈ 1 iff . 

Figure 1b shows the rolled graph representation 1 of G1 in Figure 1a.

Time series data are obtained from the above process at the measurement timescale, given by 

some (possibly unknown) integral sampling rate u. The measured time series sample Vt is at 

times t, t − u, t − 2u, …; we are interested in the case of u > 1, i.e., the case of subsampled 

data. A different route to subsampling would use continuous-time models as the underlying 

system timescale structure. However, some series (e.g., transactions such as salary 

payments) are inherently discrete time processes (Gong et al., 2015), and many continuous-

time systems can be approximated arbitrarily closely as discrete-time processes. Thus, we 

focus here on discrete-time causal structures as a justifiable, and yet simple, basis for our 

non-parametric inference procedure.

The structure of this subsampled time series can be obtained from G1 by marginalizing the 

intermediate time steps. Figure 1c shows the measurement timescale structure G2 

corresponding to subsampling rate u = 2 for the system timescale causal structure in Figure 

1a. Each directed edge in G2 corresponds to a directed path of length 2 in G1. For arbitrary 

u, the formal relationship between Gu and G1 edges is

1

Subsampling a time series additionally induces “direct” dependencies between variables in 

the same time step (Wei, 1994). The bi-directed arrow  in Figure 1c is an example: 

 is an unobserved (in the data) common cause of  and  in G1 (see Figure 1a). 

Formally, the system timescale structure G1 induces bi-directed edges in the measurement 

timescale Gu for i ≠ j as follows:

Just as 1 represents the rolled version of G1, u represents the rolled version of Gu: Vi → 

Vj ∈ u iff  and Vi ↔ Vj ∈ u iff .

The relationship between 1 and u—that is, the impact of subsampling—can be concisely 

represented using only the rolled graphs:

(1)

1We assume a type of faithfulness assumption (see Spirtes et al. (1993)), such that influences along (multiple) paths between nodes do 
not exactly cancel in Gu.
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(2)

where  denotes a path of length u and  denotes a path shorter than u (of the same length 

on each arm of a common cause). Using the rolled graph notation, the logical encodings in 

Section 3 are considerably simpler.

Danks and Plis (2013) demonstrated that, in the infinite sample limit, the causal structure 1 

at the system timescale is in general underdetermined, even when the subsampling rate u is 

known and small. Consequently, even when ignoring estimation errors, the most we can 

learn is an equivalence class of causal structures at the system timescale. We define ℋ to be 

the estimated version of u, a graph over V obtained or estimated at the measurement 

timescale (with possibly unknown u). Multiple 1 can have the same structure as ℋ for 

distinct u, which poses a particular challenge when u is unknown. If ℋ is estimated from 

data, it is possible, due to statistical errors, that no u has the same structure as ℋ. With 

these observations, we are ready to define the computational problems focused on in this 

work.

Task 1—Given a measurement timescale structure ℋ (with possibly unknown u), infer the 

(equivalence class of) causal structures 1 consistent with ℋ (i.e. u = ℋ by Eqs. 1 and 2).

We also consider the corresponding problem when the subsampled time series is directly 

provided as input, rather than u.

Task 2—Given a dataset of measurements of V obtained at the measurement timescale 

(with possibly unknown u), infer the (equivalence class of) causal structures 1 (at the 

system timescale) that are (optimally) consistent with the data.

Section 3 provides a solution to Task 1, and Section 4 provides a solution to Task 2.

3. Finding Consistent 1s

We first focus on Task 1. We discuss the computational complexity of the underlying 

decision problem, and present a practical Boolean constraint satisfaction approach that 

empirically scales up to significantly larger graphs than previous state-of-the-art algorithms.

3.1 On Computational Complexity

Considering the task of finding a single 1 consistent with a given ℋ, a variant of the 

associated decision problem is related to the NP-complete problem of finding a matrix root.

Theorem 1—Deciding whether there is a 1 that is consistent with the directed edges of a 

given ℋ is NP-complete for any fixed u ≥ 2.

Proof: Membership in NP follows from a guess and check: guess a candidate 1, and 

deterministically check whether the length-u paths of 1 correspond to the edges of ℋ (Plis 
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et al., 2015b). For NP-hardness, for any fixed u ≥ 2, there is a straightforward reduction from 

the NP-complete problem of determining whether a Boolean B matrix has a uth root (Kutz, 

2004)2 for a given n×n Boolean matrix B, interpret B as the directed edge relation of ℋ, i.e., 

ℋ has the edge (i, j) iff Au(i, j) = 1. It is then easy to see that there is a 1 that is consistent 

with the obtained ℋ iff B = Au for some binary matrix A (i.e., a uth root of B).

If u is unknown, then membership in NP can be established in the same way by guessing 

both a candidate 1 and a value for u. Theorem 1 ignores the possible bi-directed edges in ℋ 
(whose presence/absence is also harder to determine reliably from practical sample sizes; 

see Section 4.3).

Knowledge of the presences and absences of such edges in ℋ can restrict the set of 

candidate 1s. For example, in the special case where ℋ is known to not contain any bi-

directed edges, the possible 1s have a fairly simple structure: in any 1 that is consistent 

with ℋ, every node has at most one successor.3 Whether this knowledge can be used to 

prove a more fine-grained complexity result for special cases is an open question.

3.2 A SAT-Based Approach

Recently, the first exact search algorithm for finding the 1s that are consistent with a given 

ℋ for a known u was presented by Plis et al. (2015b); it represents the current state-of-the-

art. Their approach implements a specialized depth-first search procedure for the problem, 

with domain-specific polynomial time search-space pruning techniques. As an alternative, 

we present here a Boolean satisfiability based approach. First, we represent the problem 

exactly using a rule-based constraint satisfaction formalism. Then, for a given input ℋ, we 

employ an off-the-shelf Boolean constraint satisfaction solver for finding a 1 that is 

guaranteed to be consistent with ℋ (if such 1 exists). Our approach is not only simpler 

than the approach of Plis et al. (2015b), but as we will show, it also significantly improves 

the current state-of-the-art in runtime efficiency and scalability.

We use here answer set programming (ASP) as the constraint satisfaction formalism 

(Niemelä, 1999; Simons et al., 2002; Gebser et al., 2011). It offers an expressive declarative 

modelling language, in terms of first-order logical rules, for various types of NP-hard search 

and optimization problems. To solve a problem via ASP, one first needs to develop an ASP 

program (in terms of ASP rules/constraints) that models the problem at hand; that is, the 

declarative rules implicitly represent the set of solutions to the problem in a precise fashion. 

Then one or multiple (optimal, in case of optimization problems) solutions to the original 

problem can be obtained by invoking an off-the-shelf ASP solver, such as the state-of-the-art 

Clingo system (Gebser et al., 2011) used in this work. The search algorithms implemented 

in the Clingo system are extensions of state-of-the-art Boolean satisfiability and 

optimization techniques which can today outperform even specialized domain-specific 

algorithms, as we show here.

2Multiplication of two values in {0, 1} is defined as the logical-or, or equivalently, the maximum operator.
3To see this, assume X has two successors, Y and Z, s.t. Y ≠ Z in 1. Then u will contain a bi-directed edge Y ↔ Z for all u ≥ 2, 
which contradicts the assumption that ℋ has no bi-directed edges.
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We proceed by describing a simple ASP encoding of the problem of finding a 1 that is 

consistent with a given ℋ. The input—the measurement timescale structure ℋ—is 

represented as follows. The input predicate node/1 represents the nodes of ℋ (and all 

graphs), indexed by 1 … n. The presence of a directed edge X → Y between nodes X and Y 
is represented using the predicate edgeh/2 as edgeh(X,Y). Similarly, the fact that an edge 

X → Y is not present is represented using the predicate no edgeh/2 as no edgeh(X,Y). 

The presence of a bidirected edge X ↔ Y between nodes X and Y is represented using the 

predicate confh/2 as confh(X,Y) (X < Y), and the fact that an edge X ↔ Y is not present 

is represented using the predicate no confh/2 as no confh(X,Y).

If u is known, then it can be passed as input using u(U); alternatively, it can be defined as a 

single value in a given range (here set to 1, …, 5 as an example):

urange(1..5). % Define a range of u:s

1 { u(U): urange(U) } 1. % u(U) is true for only one U in the range

Solution 1s are represented via the predicate edge1/2, where edge1(X,Y) is true iff 1 

contains the edge X → Y. In ASP, the set of candidate solutions (i.e., the set of all directed 

graphs over n nodes) over which the search for solutions is performed, is declared via the so-

called choice construct within the following rule, stating that candidate solutions may 

contain directed edges between any pair of nodes.

{ edge1(X,Y) } :- node(X), node(Y)

The measurement timescale structure u corresponding to the candidate solution 1 is 

represented using the predicates edgeu(X,Y) and confu(X,Y), which are derived in the 

following way. First, we declare the mapping from a given 1 to the corresponding u by 

declaring the exact length-L paths in a non-deterministically chosen candidate solution 1. 

For this, we declare rules that compute the length-L paths inductively for all L ≤ U, using the 

predicate path(X,Y,L) to represent that there is a length-L path from X to Y.

% Derive all directed paths up to length U

path(X,Y,1) :- edge1(X,Y).

path(X,Y,L) :- path(X,Z,L-1), edge1(Z,Y), L <= U, u(U).
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Second, to obtain u, we encode Equations 1 and 2 with the following rules that form 

predicates edgeu/2 and confu/2 describing the edges 1 induces on the measurement 

timescale structure.

% Paths of length U, correspond to measurement timescale edges 

edgeu(X,Y) :- path(X,Y,L), u(L).

% Paths of equal length (<U) from a single node result in bi-directed 

edges confu(X,Y) :- path(Z,X,L), path(Z,Y,L), node(X;Y;Z), X < Y, L < U, 

u(U).

Finally, we declare constraints that require that the u represented by the edgeu/2 and 

confu/2 predicates is consistent with the input ℋ. This is achieved with the following 

rules, which enforce that the edge relations of u and ℋ are exactly the same for any 

solution 1.

- edgeh(X,Y), not edgeu(X,Y).

- no_edgeh(X,Y), edgeu(X,Y).

- confh(X,Y), not confu(X,Y).

- no_confh(X,Y), confu(X,Y).

Our ASP encoding of Task 1 consists of the rules just described. The set of solutions of the 

encoding correspond exactly to the 1s consistent with the input ℋ.

3.3 Runtime Comparison

Both our proposed SAT-based approach and the recent specialized search algorithm MSL 

(Plis et al., 2015b) are correct and complete, so we focus on differences in efficiency, using 

the implementation of MSL by the original authors. Our approach allows for searching 

simultaneously over a range of values of u, but Plis et al. (2015b) focused on the case u = 2; 

hence, we restrict the comparison to u = 2.

We simulated system timescale graphs with varying density and number of nodes (see 

Section 4.3 for exact details), and then generated the measurement timescale structures for 

subsampling rate u = 2. This structure was given as input to the inference procedures. Note 

that the input consisted here of graphs for which there always is a 1, so all instances were 

satisfiable. The task of the algorithms was to output up to 1000 (system timescale) graphs in 

the equivalence class. The ASP encoding was solved by Clingo using the flag -n 1000 for 

the solver to enumerate 1000 solution graphs (or all, in cases where there were less than 

1000 solutions).
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The running times of the MSL algorithm and our approach (SAT) on 10-node input graphs 

with different edge densities are shown in Figure 2. Figure 2 (right) shows the scalability of 

the two approaches in terms of increasing number of nodes in the input graphs and fixed 

10% edge density. Our declarative approach clearly outperforms MSL. 10-node input 

graphs, regardless of edge density, are essentially trivial for our approach, while the 

performance of MSL deteriorates noticeably as the density increases. For varying numbers 

of nodes in 10% density input graphs, our approach scales up to 65 nodes with a one hour 

time limit; even for 70 nodes, 25 graphs finished in one hour. In contrast, MSL reaches only 

35 nodes; our approach uses only a few seconds for those graphs. The scalability of our 

algorithm allows for investigating the influence of edge density for larger graphs. Figure 3 

(left) plots the running times of our approach (when enumerating all solutions) for u = 2 on 

20-node input graphs of varying densities. Finally, Figure 3 (right) shows the scalability of 

our approach in the more challenging task of enumerating all solutions over the range u = 1, 

…, 5 simultaneously. This also demonstrates the generality of our approach: it is not 

restricted to solving for individual values of u separately.

4. Learning from Undersampled Data

Due to statistical errors in estimating ℋ and the sparse distribution of u in “graph space”, 

there will often be no 1s that are consistent with ℋ. Given such an ℋ, neither the MSL 

algorithm nor our approach in the previous section can output a solution, and they simply 

conclude that no solution 1 exists for the input ℋ. In terms of our constraint declarations, 

this is witnessed by conflicts among the constraints for any possible solution candidate. 

Given the inevitability of statistical errors, we should not simply conclude that no consistent 
1 exists for such an ℋ. Rather, we should aim to learn 1s that, in light of the underlying 

conflicts, are “optimally close” (in some well-defined sense of “optimality”) to being 

consistent with ℋ. We now turn to this more general problem setting, and propose what (to 

the best of our knowledge) is the first approach to learning, by employing constraint 

optimization, from undersampled data under conflicts. In fact, we can use the ASP 

formulation already discussed—with minor modifications—to address this problem.

In this more general setting, the input consists of both the estimated graph ℋ, and also (i) 

weights w(e ∈ ℋ) indicating the reliability of edges present in ℋ; and (ii) weights w(e ∉ ℋ) 

indicating the reliability of edges absent in ℋ. Since u is 1 subsampled by u, the task is to 

find a 1 that minimizes the objective function:

where the indicator function I(c) = 1 if the condition c holds, and I(c) = 0 otherwise. Thus, 

edges that differ between the estimated input ℋ and the u corresponding to the solution 1 

are penalized by the weights representing the reliability of the measurement timescale 

estimates. In the following, we first outline how the ASP encoding for the search problem 

without optimization is easily generalized to enable finding optimal 1 with respect to this 

objective function. We then describe alternatives for determining the weights w, and present 

simulation results on the relative performance of the different weighting schemes.
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4.1 Learning by Constraint Optimization

To model the objective function for handling conflicts, only simple modifications are needed 

to our ASP encoding: instead of declaring hard constraints that require that the paths 

induced by 1 exactly correspond to the edges in ℋ, we soften these constraints by 

declaring that the violation of each individual constraint incurs the associated weight as 

penalty. In the ASP language, this can be expressed by augmenting the input predicates 

edgeh(X,Y) with weights: edgeh(X,Y,W) (and similarly for no edgeh, confh and no 

confh). Here the additional argument W represents the weight w((x → y) ∈ ℋ) given as 

input. The following expresses that each conflicting presence of an edge in ℋ and u is 

penalized with the associated weight W.

∼ edgeh(X,Y,W), not edgeu(X,Y). [W,X,Y,1]

∼ no_edgeh(X,Y,W), edgeu(X,Y). [W,X,Y,1]

∼ confh(X,Y,W), not confu(X,Y). [W,X,Y,2]

∼ no_confh(X,Y,W), confu(X,Y). [W,X,Y,2]

This modification provides an ASP encoding for Task 2; that is, the optimal solutions to this 

ASP encoding correspond exactly to the 1s that minimize the objective function f( 1, u) for 

any u and input ℋ with weighted edges.

4.2 Weighting Schemes

We use two different schemes for weighting the presences and absences of edges in ℋ 
according to their reliability. To determine the presence/absence of an edge X → Y in ℋ we 

simply test the corresponding independence Xt−1 ⫫ Y t | Vt−1 \ Xt−1. To determine the 

presence/absence of an edge X ↔ Y in ℋ, we run the independence test: Xt ⫫ Y t | Vt−1.

The simplest approach is to use uniform weights on the estimation result of ℋ:

Uniform edge weights resemble the search on the Hamming cube of ℋ that Plis et al. 

(2015b) used to address the problem of finding 1s when ℋ did not correspond to any u.

A more intricate approach is to use pseudo-Boolean weights following Hyttinen et al. 

(2014); Sonntag et al. (2015); Margaritis and Bromberg (2009). They used Bayesian model 

selection to obtain reliability weights for independence tests. Instead of a p-value and a 

binary decision, these types of tests give a measurement of reliability for an independence/

dependence statement as a Bayesian probability. We can directly use their approach of 

attaching log-probabilities as the reliability weights for the edges. For details, see Section 

4.3 of Hyttinen et al. (2014). Again, we only compute weights for the independence tests 

mentioned above in the estimation of ℋ.
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4.3 Simulations

We use simulations to explore the impact of the choice of weighting schemes on the 

accuracy and runtime efficiency of our approach. For the simulations, system timescale 

structures 1 and the associated data generating models were constructed in the following 

way. To guarantee connectedness of the graphs, we first formed a cycle of all nodes in a 

random order (following Plis et al. (2015b)). We then randomly sampled additional directed 

edges until the required density was obtained. Recall that there are no bidirected edges in 1. 

We used Equations 1 and 2 to generate the measurement timescale structure u for a given u. 

When sample data were required, we used linear Gaussian structural autoregressive 

processes (order 1) with structure 1 to generate data at the system timescale, where 

coefficients were sampled from the two intervals ±[0.2, 0.8]. We then discarded intermediate 

samples to get the particular subsampling rate.4

Figure 4 shows the accuracy of the different methods in one setting: subsampling rate u = 2, 

network size n = 6, average degree 3, sample size N = 200, and 100 data sets in total. The 

positive predictions correspond to presences of edges; when the method returned several 

members in the equivalence class, we used mean solution accuracy to measure the output 

accuracy. The x-axis numbers correspond to the adjustment parameters for the statistical 

independence tests (p-value threshold for uniform weights, prior probability of 

independence for all others). The two left columns (black and red) show the true positive 

rate and false positive rate of ℋ estimation (compared to the true 2), for the different types 

of edges, using different statistical tests. For estimation from 200 samples, we see that the 

structure of 2 can be estimated with good tradeoff of TPR and FPR with the middle 

parameter values, but not perfectly. The presence of directed edges can be estimated more 

accurately. More importantly, the two rightmost columns in Figure 4 (green and blue) show 

the accuracy of 1 estimation. Both weighting schemes produce good accuracy for the 

middle parameter values, although there are some outliers. The pseudo-Boolean weighting 

scheme still outperforms the uniform weighting scheme, as it produces high TPR with low 

FPR for a range of threshold parameter values (especially for 0.4).

Finally, the running times of our approach are shown in Figure 5 with different weighting 

schemes, network sizes (n), and sample sizes (N). The subsampling rate was again fixed to u 
= 2, and average node degree was 3. The independence test threshold used here corresponds 

to the accuracy-optimal parameters in Figure 4. The pseudo-Boolean weighting scheme 

allows for much faster solving: for n = 7, it finishes all runs in a few seconds (black line), 

while the uniform weighting scheme (red line) takes tens of minutes. Thus, the pseudo-

Boolean weighting scheme provides the best performance in terms of both computational 

efficiency and accuracy. Second, the sample size has a significant effect on the running 

times: larger sample sizes take less time. For n = 9 runs, N = 200 samples (blue line) take 

longer than N = 500 (cyan line). Intuitively, statistical tests should be more accurate with 

larger sample sizes, resulting in fewer conflicting constraints. For N = 1000, the global 

optimum is found here for up to 12-node graphs, though in a considerable amount of time.

4 Clingo only accepts integer weights; we multiplied weights by 1000 and rounded to the nearest integer.
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5. Conclusion

In this paper, we introduced a constraint optimization based solution for the problem of 

learning causal timescale structures from subsampled measurement timescale graphs and 

data. Our approach considerably improves the state-of-art; in the simplest case (subsampling 

rate u = 2), we extended the scalability by several orders of magnitude. Moreover, our 

method generalizes to handle different or unknown subsampling rates in a computationally 

efficient manner. Unlike previous methods, our method can operate directly on finite sample 

input, and we presented approaches that recover, in an optimal way, from conflicts arising 

from statistical errors. We expect that this considerably simpler approach will allow for the 

relaxation of additional model space assumptions in the future. In particular, we plan to use 

this framework to learn the system timescale causal structure from subsampled data when 

latent time series confound our observations.

Acknowledgments

AH was supported by Academy of Finland Centre of Excellence in Computational Inference Research COIN (grant 
251170). SP was supported by NSF IIS-1318759 & NIH R01EB005846. MJ was supported by Academy of Finland 
Centre of Excellence in Computational Inference Research COIN (grant 251170) and grants 276412, 284591; and 
Research Funds of the University of Helsinki. DD was supported by NSF IIS-1318815 & NIH U54HG008540 
(from the National Human Genome Research Institute through funds provided by the trans-NIH Big Data to 
Knowledge (BD2K) initiative). The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health.

References

Biere, A.Heule, M.van Maaren, H., Walsh, T., editors. Handbook of Satisfiability, volume 185 of 
FAIA. IOS Press; 2009. 

Danks, D., Plis, S. Learning causal structure from undersampled time series. NIPS 2013 Workshop on 
Causality; 2013. 

Dash, D., Druzdzel, M. Proc EC-SQARU, volume 2143 of LNCS. Springer; 2001. Caveats for causal 
reasoning with equilibrium models; p. 192-203.

Entner D, Hoyer P. On causal discovery from time series data using FCI. Proc PGM. 2010:121–128.

Gebser M, Kaufmann B, Kaminski R, Ostrowski M, Schaub T, Schneider M. Potassco: The Potsdam 
answer set solving collection. AI Communications. 2011; 24(2):107–124.

Gong, M., Zhang, K., Schoelkopf, B., Tao, D., Geiger, P. Discovering temporal causal relations from 
subsampled data; Proc ICML, volume 37 of JMLR W&CP. 2015. p. 1898-1906.JMLR.org

Granger C. Investigating causal relations by econometric models and cross-spectral methods. 
Econometrica. 1969; 37(3):424–438.

Granger C. Testing for causality: a personal viewpoint. Journal of Economic Dynamics and Control. 
1980; 2:329–352.

Granger C. Some recent development in a concept of causality. Journal of Econometrics. 1988; 39(1):
199–211.

Hamilton, J. Time series analysis. Vol. 2. Princeton University Press; 1994. 

Hyttinen, A., Eberhardt, F., Järvisalo, M. Proc UAI. AUAI Press; 2014. Constraint-based causal 
discovery: Conflict resolution with answer set programming; p. 340-349.

Hyvärinen A, Zhang K, Shimizu S, Hoyer P. Estimation of a structural vector autoregression model 
using non-gaussianity. Journal of Machine Learning Research. 2010; 11:1709–1731.

Iwasaki Y, Simon H. Causality and model abstraction. Artificial Intelligence. 1994; 67(1):143–194.

Kutz M. The complexity of Boolean matrix root computation. Theoretical Computer Science. 2004; 
325(3):373–390.

Hyttinen et al. Page 11

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lütkepohl, H. New introduction to multiple time series analysis. Springer Science & Business Media; 
2005. 

Margaritis D, Bromberg F. Efficient Markov network discovery using particle filters. Computational 
Intelligence. 2009; 25(4):367–394.

Niemelä I. Logic programs with stable model semantics as a constraint programming paradigm. 
Annals of Mathematics and Artificial Intelligence. 1999; 25(3–4):241–273.

Plis, S., Danks, D., Freeman, C., Calhoun, V. Proc NIPS. Curran Associates, Inc; 2015a. Rate-agnostic 
(causal) structure learning; p. 3285-3293.

Plis, S., Danks, D., Yang, J. Proc UAI. AUAI Press; 2015b. Mesochronal structure learning; p. 
702-711.

Simons P, Niemelä I, Soininen T. Extending and implementing the stable model semantics. Artificial 
Intelligence. 2002; 138(1–2):181–234.

Sonntag, D., Järvisalo, M., Peña, J., Hyttinen, A. Proc UAI. AUAI Press; 2015. Learning optimal chain 
graphs with answer set programming; p. 822-831.

Spirtes, P., Glymour, C., Scheines, R. Causation, prediction, and search. Springer; 1993. 

Wei, W. Time series analysis. Addison-Wesley; 1994. 

Hyttinen et al. Page 12

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Example graphs: a) G1, b) 1, c) Gu, d) u with subsampling rate u = 2.
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Figure 2. 
Running times. Left: for 10-node graphs as a function of graph density (100 graphs per 

density and a timeout of 100 seconds); Right: for 10%-dense graphs as a function of graph 

size (100 graphs per density and a timeout of 1 hour).
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Figure 3. 
Left: Influence of input graph density on running times of our approach. Right: Scalability 

of our approach when enumerating all solutions over u = 1, …, 5.
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Figure 4. 
Accuracy of the optimal solutions with different weighting schemes and parameters (on x-

axis). See text for further details.
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Figure 5. 
Scalability of our approach under different settings.
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u = ℋ by Eqs. 1 and 2).We also consider the corresponding problem when the subsampled time series is directly provided as input, rather than 
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u.Task 2—Given a dataset of measurements of V obtained at the measurement timescale (with possibly unknown u), infer the (equivalence class of) causal structures 
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1 (at the system timescale) that are (optimally) consistent with the data.Section 3 provides a solution to Task 1, and Section 4 provides a solution to Task 2.
	Task 1
	Task 2


	3. Finding Consistent 𝒢1s
	3.1 On Computational Complexity
	Theorem 1
	Proof


	3.2 A SAT-Based Approach
	3.3 Runtime Comparison

	4. Learning from Undersampled Data
	4.1 Learning by Constraint Optimization
	4.2 Weighting Schemes
	4.3 Simulations

	5. Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

