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Abstract

The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of 

numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and 

coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range 

and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic 

pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in 
vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical 

applications.
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Introduction

The metabolic state of an organism depends on its genome, transcriptome, proteome, 

epigenome, microbiome, and exposome (environment). Thus, metabolomics, the study of 

small molecules (< 1,500 Da) in living systems, provides information with a high potential 

for accurately describing the physiological state of an organism. The two most successful 

approaches to determining the metabolic state of an organism have been mass spectrometry 

(MS) and nuclear magnetic resonance (NMR) spectroscopy. Several years ago, the number 

of publications utilizing the two approaches were comparable; more recently, however, MS-

based metabolomics has clearly overtaken NMR-based metabolomics. This state of affairs 

prompted the organization of a workshop to review the current state of NMR-based 

metabolomics, to assess its strengths and weaknesses, and to envision its future potential. As 

reported here, this workshop (“NMR-Based Metabolomics,” held in the Discovery Building, 

Morgridge Institute for Research, Madison, Wisconsin, USA, on June 10, 2016) highlighted 

a number of benefits of NMR-based metabolomics that appear to be currently 

underappreciated. MS and NMR offer different strengths, which can be used synergistically. 

The workshop stressed the need for more extensive small molecule databases and improved 

standards at each step of a metabolomics study.

The metabolome

The two major fields of chemical research on biological small molecules, metabolomics and 

natural product discovery, have the similar goals of identifying and characterizing small 

molecules, either in their isolated active state (natural product chemistry) or as mixtures 

(metabolomics) [1]. The number of small molecules of importance to humans is far greater 

than those currently represented on metabolic charts, with the excess constituting current 

“metabolic dark matter” (Figure 1). The swapping of metabolites between pathways in 

humans and those of organisms in the human microbiome increases the network of relevant 

reactions by a staggering amount. The HMDB [2] lists 42,000 metabolites and the number 

of lipid variants is on the order of 100,000; thus, a lower limit of expected endogenous and 

exogenous human metabolites is around 150,000, but the actual number of metabolites could 

be much higher. Of this vast number of metabolites, only 1,500 may be identified from 

global profiling, 200–500 from targeted profiling, and far fewer are routinely subjected to 

quantitative analysis.
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NMR and its advantages

Despite its lower sensitivity, NMR spectroscopy offers many unparalleled advantages over 

MS [3,4]. NMR offers a window into observing and rigorously quantifying all of the more 

abundant compounds present in biological fluids, cell extracts, and tissues without the need 

for elaborate sample preparation or fractionation. NMR offers advantages for compounds 

that are difficult to ionize or require derivatization for MS. NMR allows the identification of 

compounds with identical masses, including those with different isotopomer distributions. 

NMR is the mainstay for determining structures of unknown compounds. Through the use of 

stable isotope labels, NMR can be used to elucidate the dynamics and mechanisms of 

metabolite transformations and to explore the compartmentalization of metabolic pathways. 

NMR has advantages in drug screening [5]. Finally, site-specific NMR imaging and 

spectroscopy offer approaches for metabolic studies in living organisms.

Strategies for the identification of metabolites in complex mixtures from NMR data have 

been reviewed recently [6]. The most important nuclei in biomolecular NMR studies are 1H 

(proton), 13C, 15N, and 31P. Of these, 1H is the most sensitive followed by 31P; both are 

present at near 100% natural abundance. 31P NMR is useful for studies of cellular energy 

states in vivo and ex vivo, but a limitation is that the 31P signals from most phosphorylated 

compounds overlap. One-dimensional (1D) 1H NMR is the most widely used NMR 

approach in metabolomics. Signals are either binned and then analyzed or fitted to patterns 

of signals corresponding to the metabolites expected to be present in the mixture. The latter 

approach can be problematic in that many 1H signals overlap in ways that offer alternative 

fitting solutions, a problem that can be overcome by standardizing the analysis in terms of 

biofluid, solution conditions, data collection protocol, and by employing probabilistic fitting 

(Bayesil) [7]. 13C NMR signals cover a 200 ppm range compared with 10 ppm for 1H and as 

a consequence are better resolved; however, the low sensitivity of 13C (less by a factor of 8 

or more) is compounded by its low natural abundance (1.1 %). Two dimensional (2D) NMR 

methods offer improved approaches for unambiguous identification of metabolites in 

mixtures. These 2D methods include 1H-1H COSY (correlated spectroscopy), 1H-1H 

TOCSY (total correlation spectroscopy), and 1H-13C HSQC (heteronuclear single-quantum 

correlation). A widely used software package (rNMR) matches regions of interest in spectra 

of standards to those in experimental mixtures for compound identifications [8]. Software is 

available for automating metabolite identification from combined TOCSY and HSQC data 

[9,10]. By setting tolerances for the matching of 1H and 13C signals, one can maximize 

compound identification while minimizing false positives [11]. This approach has been 

extended to a calculated confidence level for compound identifications from NMR data [12]. 

Another approach for connecting signals from individual compounds in mixtures is based on 

searching for statistical correlations among the intensities of NMR signals from various 

samples [13]. Nuclei present at low natural abundance 2H (deuteron), 13C, and 15N serve as 

ideal metabolic tracers [14].

Need for standards in NMR metabolomics

Standard NMR spectra and associated information on small biological molecules are 

available from freely-accessible databases, including HMDB [2], BMRB [15], TOCCATA 
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[9], and COLMAR [10], but they still cover only a fraction of relevant compounds. A 

repository has been established for results of metabolomics studies from the NIH Common 

Fund Centers [16]. The Coordination of Standards in Metabolomics (COSMOS) Initiative is 

developing a robust data infrastructure and new data exchange standards (http://nmrml.org) 

for metabolomics data and metadata to support workflows metabolomics applications [17]. 

One of the COSMOS projects is a website (http://metabolomexchange.org) that federates 

data available from the leading metabolomics data repositories. Best practices and standards 

have been published for metabolic phenotyping of biological fluids [18,19]. An open-source 

platform for complete NMR metabolomics data handling (MVAPACK) has been developed 

as a step toward establishing best practices for the analysis of metabolic fingerprinting data 

[20].

Sample preparation

Certain biofluids, e.g. cerebrospinal fluid, require little or no preparation for NMR. Others, 

such as plasma contain proteins and lipids that interfere with NMR spectral quality. 

Treatment with methanol at solvent-to-serum ratio of 2:1 (v/v) has been shown to remove 

lipoproteins and minimize the loss of metabolites [21] enabling the detection of about 67 

different compounds [22]. Another promising protocol utilizes the removal of protein by 

added silica nanoparticles [23].

Tagging

An approach for compounds with overlapping 1H signals or present at lower concentration is 

to tag them with an NMR-active label. Nitrogen-15 with attached hydrogen is an attractive 

tag because 2D 1H-15N signals can be acquired at high sensitivity without interference from 

signals from unlabeled compounds owing to the low natural abundance of 15N [24,25]. Such 

tags also provide a permanent positive charge for MS analysis.

Combining NMR and MS

As reviewed recently [26], advances in NMR- and MS-based metabolomics, including the 

combination of the two approaches, promise to greatly improve the identification and 

quantitation of compounds in mixtures. One example is the simultaneous analysis of DI-

ESI-MS and 1D 1H NMR spectral data to yield accurate mass measurements and class 

separation scores [27]. Other approaches filter data from one approach against the other to 

increase the number of compounds confidently identified [28,29]. Another method identifies 

compounds by exploiting the principle that abundance/intensity ratios are relatively constant 

for the same metabolite in different samples [30]. Combined NMR and MS has advantages 

for isotope tracing experiments and metabolic flux analysis. MS generally quantifies isotopic 

labeling distributions but even with MS/MS often does not give the specific labeling 

position, which is available from NMR.

Quantification

If 1D 1H NMR peaks from a compound are well resolved with acceptable signal-to-noise, 

their intensities correlate linearly with its relative concentration. To determine absolute 
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concentrations, one adds a standard of known concentration. The cross peak intensities of 

2D 1H-13C HSQC spectra, however, do not correlate linearly with concentration. One can 

collect spectra of mixtures with known concentrations bracketing those of the unknowns and 

use these to determine factors that translate peak intensity to concentration [31]. Peak 

intensities in 2D 1H-13C HSQC spectra can also be converted to concentration by from the 

slopes generated by spectra utilizing different replicates of the pulse sequence module; linear 

extrapolation back to zero time of the peak intensities following the delays from one and two 

modules yields the “HSQC0 spectrum” whose peak intensities are proportional to 

concentration [32]. Spectral overlaps can be accounted for by methods such as FMLR (fast 

maximum-likelihood reconstruction) [33]. A new experiment (1H-13C QUIPU HSQC) aims 

to quantify in one map a complex mixture composed of low concentrated metabolites [34]. 

Another approach, one that requires full 13C labeling, achieves quantification through the 

collection of 13C-13C CT-TOCSY spectra and the application of analytical approximations 

based on the known carbon-backbone topologies [35].

Applications of metabolomics

Applications of metabolomics include disease diagnosis, monitoring the effects of medical 

interventions including drugs, detection of adulteration of food, and analysis of biochemical 

pathways and their perturbations resulting from mutations, aging, diet, exercise, or life style. 

A recent study showed how ex vivo 1D 1H NMR spectroscopy can be used for the 

simultaneous identification of quantification of coenzymes that report on cellular function 

[36]. Another study used this approach to investigate alterations in the energy/redox-

metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins [37]. 

Studies of the metabolomics of model organisms are both timely and important for 

understanding of their different biology [38]. Protocols have been described for studies of 

the metabolomics of bacteria [39] and plants [40]. Metabolomics, along with activity-guided 

fractionation followed by structural analysis, constitutes a powerful approach for identifying 

biologically active compounds for studies in chemical ecology [41]. Metabolomics is used 

regularly in drug discovery programs to uncover the efficacy, specificity, or toxicity of lead 

compounds [42]. Metabolomics can provide information on the in vivo mechanism of action 

and to eliminate compounds likely to cause problems with side effects [43]. Recent studies 

have utilized metabolomics to search for biomarkers for colon cancer [44] and multiple 

sclerosis [45].

Future technology

All technologies that increase NMR sensitivity are of extreme importance as are 

improvements in sample preparation [46]. Approaches to high sensitivity include NMR 

spectrometers with ultra-high-field magnets operating at 1H resonance frequencies of 1.2 

GHz or higher. The first such systems are scheduled for delivery in 2017. Small high-

temperature superconducting coils can maximize the signal per sample mass: a 13C-

optimized 1.5-mm high temperature superconducting NMR probe has enabled novel 13C 

NMR studies of natural products [47], and this has been followed up with a 1H-13C dual-

optimized NMR probe based on double-tuned high temperature superconducting resonators 
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[48]. These probes take advantage of the excellent peak dispersion of 13C spectra [49], 

which can be augmented by further 2D 13C-13C experiments, such as INADEQUATE [50]

Hyperpolarization offers an approach for enhanced sensitivity with even higher potential. 

The underlying physics utilizes the magnetic moment of the unpaired electron, which is 

roughly 2800 times that of 13C and 6900 times that of 15N, to polarize nuclear spins. First 

demonstrated by Golman and coworkers [51], studies utilizing hyperpolarized 13C to 

increase sensitivity are becoming routine. An exciting advance is the discovery [52] of an 

efficient and inexpensive method for hyperpolarizing 15N spins at room temperature. 

Enhancements are on the order of >10,000 enabling the detection of NMR signals for over 

an hour [52]. It may become possible to use this approach to tag a range of compounds for 

metabolomics studies in vivo.

Conclusions

The workshop demonstrated that NMR-based metabolomics promises to continue to play an 

important role in the studies of complex mixtures of small biological molecules, their 

metabolic networks, and their interactions with biomacromolecules. Although the 

development of new and better methods continues to be an integral part, the field needs to 

focus on developing standardized, enlarged, and integrated databases of NMR data on small 

molecules as well as archives representing the NMR metabolic fingerprints of standard 

biological fluids and tissue extracts from humans and model organisms. Standardization of 

best practices for sample preparation, data collection and analysis should enhance the 

reproducibility of results within the metabolomics community, while at the same time 

avoiding the risk of adhering to methods and protocols that are suboptimal in a field that is 

very much in flux. In order to overcome the current skepticism in omics [53], it will be 

advisable for metabolomics to build the ideas of reproducibility and data sharing into every 

tool and database. Future work is expected to build upon core strengths of NMR 

spectroscopy, which includes its versatility and specificity in the form of 1D and higher 

dimensional spectra, its reproducibility, its quantitative ability, its capability for following 

chemical reactions and flux, its ability to identify compounds and deduce structures of 

unknowns, and its growing potential for collecting metabolomics data in vivo.
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Highlights

• NMR offers advantages for metabolomics that may be currently 

underappreciated

• In future, NMR-based metabolomics needs to focus on its inherent strengths

• Reproducibility and data sharing are of key importance in technology 

development
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Figure 1. 
Schematic representation of metabolic “dark matter”.
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