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Abstract

Sleep and circadian rhythms studies have recently benefited from metabolomics analyses, 

uncovering new connections between chronobiology and metabolism. From untargeted mass 

spectrometry to quantitative nuclear magnetic resonance spectroscopy, a diversity of analytical 

approaches has been applied for biomarker discovery in the field. In this review we consider 

advances in the application of metabolomics technologies which have uncovered significant 

effects of sleep and circadian cycles on several metabolites, namely phosphatidylcholine species, 

medium-chain carnitines, and aromatic amino acids. Study design and data processing measures 

essential for detecting rhythmicity in metabolomics data are also discussed. Future developments 

in these technologies are anticipated vis-à-vis validating early findings, given metabolomics has 

only recently entered the ring with other systems biology assessments in chronometabolism 

studies.

Graphical Abstract

Introduction

Daily changes in organismal biology are highly conserved across species throughout 

evolution. Early scientific work performed on circadian rhythms originated from 

observations of daily leaf movements in heliotrope plants in 1729[1], opening doors to 

discoveries of circadian clocks and rest/activity cycles in higher organisms. Exploration of 
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temporal changes in metabolism extends back to the earliest days of metabolic discovery, for 

example the reports from Forsgren that the ratios of bile and glycogen synthesis in rabbits 

exhibited diurnal variability[2]. The core genetic machinery which produces daily 

oscillations of transcripts and proteins has since been discovered and consists of 

transcription-translation feedback loops, driven through a Bmal-Clock protein complex in 

mammals[3]. Analysis of a small number of biomarker metabolites, such as melatonin and 

cortisol[4], are now commonly used to characterize diurnal patterns in both sleep and 

circadian research.

Traditionally, sleep and circadian rhythms have been studied by segregated research 

communities. Sleep studies typically focus on alterations in physiology which correlate with 

sleep status[5,6], while circadian designs employ higher time resolution sampling to assess 

oscillatory patterns in physiology[7], considering amplitude, phase, and period metrics. 

Thus, the sleep field is anchored from a clinical and epidemiological perspective, and the 

circadian field is driven by molecular discovery of basic clock mechanisms. Metabolism 

offers a tantalizing connection between these fields as the application of metabolomics 

technology cuts more broadly and deeply into physiology. An excellent review of key 

biological findings and interpretations from metabolomics’ studies on circadian rhythms has 

recently been published[8]. Here we discuss how diverse analytical platforms have advanced 

multiplexed chrono-metabolic biomarker studies. We also discuss future steps and 

technological developments required for chronobiology metabolomics to truly find the light 

in translational biology (Figure 1).

Mass spectrometry as an exploratory tool in chronometabolism

Metabolic variation in certain classes of low abundance metabolites such as 

glucocorticoids[9], catecholamines[10], and bulk lipids[11] has been long-established in 

both circadian and sleep contexts. It follows then that mass spectrometry (MS) forms an 

important component in the high-throughput detection of relevant metabolites. Collectively, 

advancements in complementary MS and nuclear magnetic resonance (NMR) spectroscopy 

approaches have facilitated recent chronobiology discoveries as will be discussed with a 

focus on human studies in the next two sections.

The diversity in both front-end separation and MS detection tools, combined with 

experimental design heterogeneity, has yielded a rich set of putative metabolite markers for 

further investigation. Figure 2 and Supplemental Table 1 summarize the results from nine 

key human chronobiology metabolomics studies[12–20] which have identified carnitines, 

aromatic amino acids, phosphatidylcholines and lysophosphatidylcholines as substantially 

enriched overlapping metabolite classes that oscillate across circadian time and are 

perturbed in sleep disruption studies (Figure 2). This evidence would suggest a significant 

interaction of circadian rhythms and sleep with metabolism through fatty acid metabolism, 

possibly for both energetic homeostasis via acylcarnitine oxidation and signaling roles that 

phoshatidylcholines may exert in and across tissues. The aromatic amino acids are both 

precursors of important neurotransmitters such as serotonin and catecholamines, of 

relevance to known diurnal changes in cognition and blood pressure respectively.
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These studies have primarily used liquid chromatography (LC)-MS metabolomics, although 

other approaches such as gas chromatography (GC)-MS or flow-injection (FIA)-MS[17] 

have been also been employed. The GC-MS studies have been part of a targeted commercial 

platform which combines two forms of LC-MS/MS (LC solvents appropriated for separate 

positive or negative mode ionizations) with GC-MS[14,16] to identify smaller and more 

polar metabolites including amino acids, sugars, and steroids. Other human metabolomics 

studies have instead focused on reverse-phase LC-MS and/or lipidomics, generating unique 

lists of lipid and other largely nonpolar features which change in sleep and circadian 

contexts[12,13,15,19]. These lipid profiles have identified subsets of unique circadian 

phenotypes within a healthy human population[13], as well as facilitated an approach for 

identifying characteristics of the internal body clock starting with roughly 4000 untargeted 

features[15]. Another approach combined untargeted quadrupole time-of-flight (qToF)-MS 

with hydrophilic interaction chromatography (HILIC) as well as reverse-phase lipidomics 

and high resolution GC-MS to yield a set of unique biomarkers of sleep debt [18], notably 

including larger lipid species only detected by lipidomics platforms. An exciting extension 

of circadian metabolomics has recently been performed in real-time breath analysis[21], 

which has direct clinical implications. While a high enrichment of metabolite features 

displayed rhythmicity (>36% of features), these masses were not identified as known 

metabolites. However, as mass resolution, sensitivity, and spectral databases continue to 

improve, these high-resolution MS analyses can identify metabolites with increased 

throughput and potential novelty[22].

Recently, metabolomics has yielded more causal links of the circadian clock to targeted 

metabolite outputs in mice[23,24], and also uncovered unique signaling roles of a specific 

lipid (PC 18:0/18:1) in regulating diurnal variability in metabolism across tissues[25]. Thus 

the field currently consists of a collection of untargeted analyses, where larger swaths of 

metabolites are detected without bias, and targeted analyses, which contain fewer but more 

confidently identified metabolites. We want to stress that while some of these methods are 

used in a complementary manner, even two or three collective analyses can only represent a 

fraction of the entire metabolome, and there exists considerable room for growth in 

exploratory analyses of the chronobiology metabolome. A total of 328 unique metabolites 

are significant in the aforementioned human sleep and circadian metabolomics studies 

(Supplemental Table 1). Encouragingly, 13.4% of these metabolites are found in at least one 

circadian and one sleep study (Figure 2, Supplemental Table 1). Still, the majority of 

metabolites found to date are not replicated, highlighting the extent of validation required in 

both study designs and analytical approaches. Somewhat provocatively, our own work has 

shown that repeated sleep study protocol and metabolomics analysis yields reproducibility 

of only about 4.5%, though it is unclear if this inconsistency derives from real biology or 

technical variability[18]. More quantitative and targeted approaches, including quadrupole-

based MS techniques, which benefit from recent enhancements in scanning electronics, and 

NMR, will further advance the field towards actionable biomarkers in diagnostic and 

therapeutic settings.

Rhoades et al. Page 3

Curr Opin Biotechnol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NMR metabolomics as a clinical tool for chronobiology

Robustness, minimal sample processing, straightforward quantification and availability of 

structural insight are some of the key features of high-resolution NMR spectroscopy relevant 

to metabolomics. In human biomarker studies, NMR has been used to probe time-of-day 

variation in saliva metabolic profiles[26] and under different sleep conditions in urine [20]. 

NMR can be used quantitatively as a rapid and robust primary filter for analyzing circadian 

oscillations in polar metabolite rich systems. In this way, Giskeødegård et al. have 

demonstrated that the circadian urine metabotypes of individuals post sleep deprivation are 

distinct from their well-rested control state (Supplemental Table 1)[20]. In addition, the 

study also reports distinct excretory metabotypes pre- and post-sleep deprivation. Worth 

noting is that NMR identified structural isomers in these results, including sugars, which is 

difficult by LC-MS.

Non-invasive magnetic resonance spectroscopy has been used to demonstrate the relation of 

human sleep architecture with bioenergetics[27] and alterations in glia[28]. High-resolution 

NMR can be used to investigate intact cells and tissues and has been used to investigate 

temporal metabolism of intact red blood cells (RBCs) and hepatocytes, albeit without the 

time resolution or span needed for a true circadian study[29,30]. Anucleate RBCs are of 

special interest in this regard as they have functional non-transcriptional molecular clocks 

based on peroxiredoxin cycling[31]. Furthermore, profiling of tissue samples by High 

Resolution Magic Angle Spinning (HRMAS)-NMR may shed further light on 

chronobiology of intact tissues[32].

The major limiting factor in adoption of NMR metabolomics is the lack of sensitivity 

compared to MS. Using conventional probes, low micromolar concentration of polar 

metabolites in complex biological mixtures can be reliably quantified using sophisticated 

profiling techniques[33]. Fortunately, there are recent developments in NMR methods such 

as micro-coil NMR and hyperpolarization that may improve the detection limit and decrease 

the acquisition time significantly[34]. A number of important compounds found in human 

sleep and circadian biomarker studies can be already detected by NMR such as aromatic and 

branched chain amino acids, histidine, and creatine (Figure 2, Supplemental Table 1), 

amongst which phenylalanine and tryptophan have already been identified across multiple 

studies.

The true quantitative nature of NMR remains under-exploited, mainly due to the complex 

spectral overlap of biological mixtures and peak shift across samples[35]. Multidimensional 

NMR may be used to deal with the overlap issue, but comes at the expense of the acquisition 

time and sensitivity. Technically, efforts are ongoing to increase the detection limit and 

decrease the acquisition time of multidimensional NMR (reviewed in this issue by 

Giraudeau and co-authors), which has potential for significant contributions to the field of 

circadian metabolomics. One-dimensional NMR remains the most common method to 

leverage the quantitative capacity of NMR[33], and can be combined with quantitative 

approaches to assess metabolite concentrations[36,37,33]. Recently, we have used high 

temporal resolution (2 hour sampling) NMR-based targeted profiling of culture media and 

cells from human osteosarcoma (U2 OS) cell lines to demonstrate that circadian rhythms of 

Rhoades et al. Page 4

Curr Opin Biotechnol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glucose and glutamine metabolism are strongly affected by Myc oncogene expression[38]. 

We have also used quantitative targeted profiling of the secretome of U2 OS cells to show 

the presence of linear metabolic patterns latent in a typical circadian metabolic experiment, 

and suggest that detrending of such data prior to circadian analysis is potentially 

advantageous[39].

Experimental Design and Data Processing Considerations for Time-

Dependent Data

The basic aim of circadian analysis is to detect biological variance over a defined time 

series, therefore separating analytical and biological variation is critical. Concerns of signal-

to-noise have been noted in microarray analysis, where 18.3% of transcripts significantly 

oscillate with a median 1.51 fold change[40]. Encouragingly, the same set of liver samples 

yields a median 1.98 fold change in over 50% of detected metabolites (unpublished). 

Regardless of the approach taken, in order to assess true positives in oscillating metabolites, 

sufficient power must be incorporated into the experiment. For example, sampling every one 

or two hours greatly increases the probability of detecting a truly oscillating metabolite 

compared to every four or six hours. Recent work suggests that sampling every 2 hours over 

48 hours provides a reasonable compromise between time resolution and resource 

allocation[41]. The scalability concerns of large sample numbers inherent in proper 

circadian study designs present key data processing considerations, including the use of 

proper quality control samples to mitigate unwanted variance due to instrumental drift and 

removal of spurious metabolic features, which has been reviewed in excellent detail by Dunn 

et al. for liquid chromatography mass spectrometry (LC-MS) metabolomics[42].

Multiple statistical approaches have been developed for extracting temporal rhythms and 

compared[43], each with their own strengths and weaknesses. One particularly strong 

algorithm, JTK_CYCLE[44], is the most popular method in the studies discussed in this 

review and remains a cutting-edge choice for analysis of rhythmicity. Fortuitously, analyzing 

waveform data takes advantage of biological phenomena to reduce sampling requirements. 

Given that these algorithms search for repeating patterns in time-series data, replicates in the 

number of days offers advantages over replicate time points within a single day [41]. Thus 

these concerns for experimental scale can be partly mitigated by study design, recent 

statistical methods, and improved metabolomics instrumentation.

Future Directions

The comparative analysis of metabolites from sleep and circadian studies presented in 

Figure 2 raise some important questions to be addressed. Given that medium-chain 

carnitines, lysophosphatidylcholines, and phosphatidylcholines are clearly enriched amongst 

metabolite classes, the mechanism driving these changes needs to be defined[45]. For 

example, lauroylcarnitine is significant in five of the nine studies in Figure 2, but it is 

unclear what role this molecule may play in chronobiology. These chemical classes are 

readily observed in LC-MS analyses and may have emerged due to analytical and platform 

bias of more reverse-phase LC-MS and electrospray ionization analyses used thus far in 

chronometabolism, however given the unique roles lipids play in biology for energy 
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production and signaling, these metabolites likely truly sit at the nexus of sleep, circadian 

rhythms, and metabolism. Deeper and more diverse metabolomics analyses are still needed 

to elucidate the significance of other metabolite classes, including more specific detection 

methods for sugars, steroids, metabolites conjugated through biotransformations, and other 

nonpolar aromatic compounds not detected in most circadian and sleep studies to date. We 

believe some of these other compound classes are also important players in chronobiology, 

and will be added to the overlapping list of metabolites in Figure 2 as the field expands. 

Moving forward, circadian biologists striving for mechanistic elucidation of these 

overlapping metabolites can benefit from robust LC-MS analyses previously used, while 

further exploration of chrono-metabolism should focus on diversity in analytical detection 

methods.

Chronobiology has seen a wave of systems biology data in recent years, at each level of the 

central dogma[19,46,47]. While tools exist to integrate metabolite and transcription data for 

pathway mapping[48] including circadian-specific datasets[49], they have little use yet 

broadly in the field. Rich databases for microarray and RNASeq circadian studies have been 

developed[50], which opens the door for developing analogous metabolomics databases as 

the number of these studies continues to grow with ever-improving metabolite identification 

and high-resolution MS data.

The vast majority of high-throughput chronobiology studies to date have been performed 

using static metabolite profiling. While advantageous for biomarker detection, the field still 

lacks mechanistic understanding of the steady-state metabolite changes observed in these 

studies. Flux analysis has yielded valuable insights into defining the activity of reactions and 

pathways which contain the metabolites of interest, and exciting new advancements in 

isotope tracing analysis should clarify the true phenotypic output of the clock. Improved 

precision and sensitivity in LC-MS metabolomics along with untargeted isotope-based 

metabolomics platforms[51,52] that are further discussed within this issue by Fabien 

Lestisse has great potential for unbiased screening of clock kinetics. NMR has long been 

used for metabolic flux analysis and through such analyses, our group has shown that 

GABA-transaminase independently regulates metabolic and sleep homeostasis in Drosophila 
neurons[53]. The recent advent of multidimensional NMR technologies coupled to ultrafast 

acquisition such as nonuniform sampling (NUS) promises to further enhance NMR-based 

metabolic flux analysis[54]. Targeted MS labeling studies have also been performed in the 

context of sleep and neurotransmitter modulation in neurons[55,56], and has just recently 

been applied to interrogate in vitro the role of the clock in carcinogenesis[57], which we 

expect to garner greater use in the near future.

Ultimately, these tools may unearth drug targets which modulate circadian clocks and 

augment metabolic disease[58]. Furthermore, the new technologies in remote monitoring 

and wearable technology, combined with sequencing and metabolite data in patients can 

decipher inter-individual variability in clock outputs and metabolic status, laying the 

foundation for the dream of precision medicine.
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Conclusions

Metabolomics has greatly elucidated the chronobiology-metabolism connection, with the 

advent of broader and deeper metabolome analyses and rhythmicity detection algorithms. 

Now equipped with a set of promising metabolite hits, further validation is required to 

understand mechanistically the interplay of circadian clocks, sleep, and metabolism before 

leveraging this information for therapeutic purposes. Exciting advancements in MS 

metabolite profiling and new NMR acquisition techniques will clarify metabolic kinetics 

through flux analysis and provide a deeper systems-level understanding of metabolic 

networks.
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Highlights

• Metabolism is a nexus of sleep and circadian processes as observed by 

metabolomics

• An overlapping set of metabolites is emerging from sleep and circadian 

studies

• These studies have unique data processing, design and statistical 

considerations

• Validation and increased coverage are required for robust chrono-metabolism 

markers

• Future mechanistic studies will be needed to complement biomarkers
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Figure 1. 
Timeline of metabolomics in chronometabolic studies, both current approaches and future 

directions.

Source: Melatonin and cortisol data reprinted with permission from reference [4].
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Figure 2. 
Number of significant metabolites replicated across at least two circadian (blue) or sleep 

(red) studies and overlapping in at least one circadian and sleep study (green). Any overlaps 

across the three groups implies these metabolites are found in at least three of the nine 

considered papers.
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