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ABSTRACT We propose a reversible reaction mechanism
with a single stationary state in which certain concentrations
assume either high or low values dependent on the concentra-
tion of a catalyst. The properties of this mechanism are those
of a McCulloch-Pitts neuron. We suggest a mechanism of
interneuronal connections in which the stationary state of a
chemical neuron is determined by the state of other neurons in
a homogeneous chemical system and is thus a "hardware"
chemical implementation of neural networks. Specific connec-
tions are determined for the construction of logic gates: AND,
NOR, etc. Neural networks may be constructed in which the
flow oftime is continuous and computations are achieved by the
attainment of a stationary state of the entire chemical reaction
system, or in which the flow of time is discretized by an
oscillatory reaction. In another article, we will give a chemical
implementation of finite state machines and stack memories,
with which in principle the construction of a universal Turing
machine is possible.

Computations may be supported by many different systems
(1, 2), including physical systems like the digital computer,
Fredkin logic gates (3), billiard-ball collisions (4), enzymes
operating on a polymer chain (1, 5), and more abstract
systems like cellular automata (6-8), partial differential equa-
tions that simulate cellular automata (9), generalized shifts
(4), and neural networks (10-13). Some of these systems can
be computationally universal and thus are formally equiva-
lent with a universal Turing machine (10, 14). We may inquire
about whether computationally universal devices may be
constructed solely from chemical reaction mechanisms in a
homogeneous medium. All living entities process information
to varying degrees, and this can occur only by chemical
means. It is for this reason alone that the subject is ofinterest.
In this article, we discuss the construction of chemical
networks where coupled reaction mechanisms implement
"programmed" computations as the concentrations evolve
in time. It has already been noted that bistable chemical
systems are in many ways analogous to a flip-flop circuit, by
coupling bistable reactions it is possible to build universal
automata (15, 16), and that various chemical mechanisms
share a formal relationship with electronic devices (17, 18).
We address the construction of computational devices from
the viewpoint of neural networks. We propose a chemical
reaction network, which is a "hardware" implementation of
a neural network, and hence the network can in principle be
as powerful as a universal Turing machine (10).
Neural networks are a versatile basis for computation (19).

Any finite state machine, and hence the finite state part of a
universal Turing machine, can be simulated by a neural
network (10, 20). Neural networks also form the basis of
many collective computational systems such as feedforward
networks or Hopfield's network (11-13). A chemical neural
network may serve as the "hardware" for any of the ap-
proaches to computation.

Neural networks are composed of simple mutually inter-
acting elements. These elements are typically varieties of
McCulloch-Pitts neurons (21, 22), which have one of two
possible states, either firing or quiescent. The neuron is
quiescent for low values of an input parameter and firing for
high values of an input parameter. Our chemical neuron
consists of coupled steps in a chemical reaction mechanism
and two of the chemical species have effectively one of two
steady-state concentrations; one of these exists for low
values ofa catalyst concentration and the other exists for high
values of a catalyst concentration. The state of a neuron j is
communicated to other neurons i by connections that are
either excitatory (increases the input parameter of i if neuron
j fires) or inhibitory (decreases the input parameter of i if
neuron i is firing). In our chemical network, we treat the
species that describes the state of neuron j as an essential
activator (excitatory connection) or inhibitor (inhibitory con-
nection) of the catalyst that determines the state of neuron i.
One copy of the basic mechanism of the neuron exists for
each chemical neuron in the network. Each neuron is chem-
ically distinct, but for convenience we assume that the
reactions that constitute each neuron are mechanistically
similar. We allow the neurons to communicate with each
other only by the activation and inhibition reactions with the
catalyst that determines the state of a neuron.
We present hardware for computation. Since the hardware

is solely chemical, the evolution of the network is described
by mass-action kinetics. We begin with the kinetic equations
with properties similar to that of a single McCulloch-Pitts
neuron and then proceed to the construction of interneuronal
connections. With this in hand, we detail the construction of
logic gates: AND, ORJANDNOT k, and NOR gates, as well
as a chemical mechanism for synchronization in temporally
discretized networks.
We continue with a chemical implementation of a binary

adding machine and stack memories. We discuss compart-
mentalization of individual neurons either by membranes or
as in separated electrochemical cells instead ofhomogeneous
reaction mechanisms for all the neurons, as in this article.
The thermodynamics of the computational process is that of
chemical thermodynamics, and we connect computational
processes like the minimization of Hopfield's energy function
to chemical kinetics and thermodynamics.

A Chemical Neural Network

A Single Chemical Neuron. As a basis for a reaction
mechanism with neuron-like properties, we use a cyclic
enzyme system similar to one studied by Okamoto et al. (23,
24, 30) in metabolic regulation and shown by them to have
properties of a McCulloch-Pitts neuron. Okamoto et al. (23,
24) used irreversible reactions, and we modify the system so
all the steps are reversible; this allows us to define affinities
for each mechanistic step and thus to examine the thermo-
dynamics of the system. We have also modified one step to
be a catalytically mediated reaction rather than a reactant
flux. The chemical mechanism that constitutes the ith chem-
ical neuron is
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it + Ci = x1i + Ci Jji = k1Ci - kL1CiXl
X1i + Bi = Xji + Ai J21 = k2X1iBi-k2Ai
X3i + Ai - Xji + Bi J3i = k3X3iAi- k3Bi

X3i = I i J4i= k4X3i- k-4, [1]

where the concentrations of the species marked by the * are
held at a constant value either by buffering or by flows and
have been absorbed into the rate coefficients. The system is
open with respect to Ili, X2i, X4i, and I2i such that their
concentrations are held constant; however, the remaining
species are not permitted to cross the boundary of the
system. Ci is the input parameter for the chemical neuron i.
The species X1i, X3i, Ai, and Bi evolve in time to a unique
stationary state dictated by Ci according to the differential
equations

dXlj
=X~- ii - J2i [2]dt

dX~1
d- = -J3i - J4i [31

dAi dBi
d- d =J21 - J3i. [41dt dt

The concentration of the species Ai determines the state of
the neuron. The species Ai and Bi are linked by a conservation
constraint (Ai + Bi = A0); the chemical neuron is said to be
firing when the concentration of Ai is large (Bi is small) and
quiescent when Ai is small (Bi is large). The concentrations of
the species Ai and Bi in the steady state are plotted in Fig. 1
for the rate constants given in Table 1. For Ci < 0.90
mmol/liter, the concentration of Ai < 2 x 1O-4 mmol/liter,
and for Ci > 1.10 mmol/liter, the concentration ofAi > 0.999
mmol/liter. The rate coefficients k2 and k3 determine the
steepness of the jump near Ci = 1 mmol/liter and therefore
act as the gain (12) of this chemical neuron. If k2 # k3 then the
gain curve as a function of Ci is not symmetric around Ci =
1 mmol/liter. The values of k2 and k3 used by Okamoto and
used here correspond to a symmetric high gain case; how-
ever, a few trial calculations were performed where this is not
the case and the results do not differ significantly.
Okamoto et al. (23-25) use the reaction mechanism on

which our model of a chemical neuron is based for a simpli-
fied cyclic enzyme system, where Ai and Bi are cofactors of

Bi A.
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FIG. 1. Plot of the stationary state concentration of Ai and Bi as
a function of Ci given by Eqs. 1-4 and the constants in Table 1.

Table 1. Constants used in the calculations
Parameter Value

k, 100 S-
k-1 1 s-1 (mmol/liter)-
k2 5 x 104 s-1 (mmol/liter)-1
k-2 1 s-1
k3 5 x 104 s-1 (mmol/liter)1
k-3 1 s-
k4 1 s-1 (mmol/liter)-l
k-4 100 s-1*(mmol/liter)
AO 1 (mmol/liter)

Rate constants chosen for the calculations correspond to those
used by Okamoto et al. (23), with additional constants chosen
arbitrarily to make the reactions reversible.

enzymes that mediate reactions J2 and J3. For example, Ai
may be NAD' and Bi may be NADH. Although this partic-
ular model (Eqs. 1-4) is a simplification, mechanisms that
show this Heaviside response are not uncommon in meta-
bolic regulation. One example is a mechanism proposed for
bacterial sugar transport (26), and another is a mechanism
proposed for a pyruvate dehydrogenase reaction (27). See
Okamoto et al. (23-26) and references therein for further
examples and discussion. We also note that steps J2 and J3
need not be enzymatic; they may be redox reactions in which
Ai and Bi are oxidized and reduced forms of a species,
perhaps a metal ion.

Construction of Interneuronal Connections. For each neu-
ron in the network, there is one copy of mechanism 1; the
neurons are mechanistically similar but chemically distinct.
The effect ofthe state ofthe other neuronsj, k, . . . on neuron
i is contained in Ci. The species Ai and Bi may affect the
concentration ofthe catalyst Cjofother neurons by activation
and inhibition reactions. As one of many possible couplings,
we choose an enzyme mechanism in which the concentration
of one of the two species (Aj or Bj) acts as an essential
activator of an enzyme EV to form Cu. We stipulate one such
enzyme-effector pair corresponding to each connection from
neuronsj to neuron i, and the sum of the active forms ofeach
enzyme-effector pair gives Ci in Eq. 1,

Ci= E Cij.
J

t51

We may also construct a system in which the state species of
more than one neuron act as activators of the same enzyme
species Ei to form Ci. We simplify the description of the
connections by assuming that the binding of the activators
with the enzyme is a fast process compared with the relax-
ation time ofa single neuron to its stationary state, and hence
the enzyme-activator reaction is assumed to be at equilib-
rium. We also make the typical assumption that the concen-
tration ofthe enzyme is very small compared to the maximum
concentration of the effector (Ai or Bi = 1). Suppose that the
state of neuronj is to excite neuron i; then we require that if
Aj is low, CU is also low, and if Aj is high, C, is also high.
Therefore, if the species Aj is an essential activator of EV to
form CU, then we have the desired properties.

E?0
Eu+Aj-Cu Cu= 1

1 +
KAj

[6]

ER = Cv + EV is the total concentration of the enzyme in all
its forms, and K is the equilibrium constant for reaction 6. CV
contributes to Ci through Eq. 5. By adjusting the constants ER
and K, we can give this mechanism the desired properties for
a specific excitatory connection.
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Suppose that the state ofneuronjis to inhibit neuron i; then
we require that if Aj is low, C} is high, and ifAj is high, CV is
low. Therefore, if the species Bj is an essential activator ofEjto make C,, we have the desired properties

Eu+ Bj- C
Eo

Cu u
1

1 +
K(Ao - A1)

One such reaction of type 6 or 7 occurs for each connection
between neurons.

Construction of Logic Gates. We can make many different
types of combinations of connections between neurons. In
the following, we describe various possibilities for a neuron
i whose state is affected by neuronsj and k. Neuron i can be
viewed as performing logical operations on the state of
neuronsj and k, and we describe various types of logic gates.

In Fig. 2, we show schematically two reaction mechanisms
constituting neurons i andj and the influence of neuronsj, k,
and 1 on neuron i. The state of neuron j determines the
concentration of CV, and we suppose that the firing ofneuron
i is inhibited by the firing of neuron j (Eq. 7). The states of
neurons k and 1 (data not shown) likewise determine the
concentrations Cjk and Cil, and the sum of Ct, Cik, and Cil is
Ci, the parameter that determines the state of neuron i. The
state of neuron i in turn determines the concentration of Ck,,
and the firing of neuron k is inhibited by the firing of neuron
i.

AND Gate. For neuron ito perform an AND operation on
the output of neuronsj and k we allow one generic activation
reaction (Eq. 6) to occur with each of the species Aj and Ak.
The total concentration of the catalyst (Ci = C< + Ck) is

F 4/3 Aj = Ak = 1

C=1+ 1 2/3Aj=1 Ak=0
1 1 2/3 Aj= 0 Ak = 1 '

1+- 1+- 0 A-=Ak=0
24, 2Ak -k

[8]

where K = 2 and ER = 1 in Eq. 6. The two terms in this
equation represent the independent effects ofAj and Ak. Only
when both Aj and Ak are large (those neurons are firing) is Ci
> 1, which causes neuron i to fire (see Fig. 1), and neuron i

I* Cj > X1J X*

lj /
'. j -I2

Cii (- ---

I*SCi> X*

ski4 aBi Ai
Eh A.

x4i X3i <\ *

FIG. 2. Schematic of two reaction mechanisms constituting neu-
rons i andj, and the influence of neuronsj, k, and I on i. All reactions
are reversible, and the concentration of the species marked by * is
held constant. The firing ofneuronj inhibits the firing ofneuron i, and
neurons k and I (data not shown) also influence the state of neuron
i. The firing of neuron i inhibits the firing of neuron k.

thus acts as an AND gate pertaining to the inputs from
neurons j and k.
OR Gate. An OR gate is the same as an AND gate, except

we raise the value ofeach numerator, so if only one ofthe two
neuronsjork is firing then neuron i will also fire. We increase
the value of ER in Eq. 6 to El = 2 and find

F 8/3 Aj = Ak = .1
c=2+ 2 J4/3Aj=l Ak=01 + 1 1 4/3 Aj=0 Ak=1
1+- 1+- 0 Aj=Ak=02Aj A

[9]

Thus, neuron i fires if either neuronj or k fires, and therefore
acts as an OR gate.
Aj AND NOT Ak Gate. The construction of neurons whose

state may become quiescent in response to firing of other
neurons requires inhibitory connections. One excitatory con-
nection and one inhibitory connection can make an Aj AND
NOT Ak response in neuron i. Thus, the total concentration
of the catalyst Ci is

F 4/3Aj=1 Ak=°
1 1 = 2/3 Aj = Ak = 1

1 1 2/3 Aj = Ak =0
1+- 1+ 0 Aj=O Ak=124, 2(l -Ak) 0A=0k1

[10]

Aj is the excitatory input and Ak is the inhibitory input. As
long as Ak = 1 the neuron will not fire regardless of the
concentration of Aj. However, ifAk = 0 the concentration of
Aj determines whether the neuron will fire.
NOR Gate. With a NOR gate the presence of any firing

input from neurons i and k prevents neuron i from firing.
Thus, we need two inhibitory connections of the type given
by Eq. 7. The concentration of the catalyst is

4/3 Aj = Ak = 0
C 1 + 1 2/3Aj=1 Ak=0

1 1 l 2/3Aj=O Ak=1-
1+ 1+ 0 Aj=Ak=12(1-Aj) 2(1-Ak)

[11]
When any input, j or k, is firing the firing of neuron i is
suppressed.

Specific Inhibition. It is possible to construct connections
where the connection enzyme (C(1) in Eq. 5 is inhibited or
activated by more than one species. That is, Aj and Ak interact
with the same enzyme E, to form the catalyst Ci. This, for
example, allows specific inhibition of one connection instead
of the nonspecific inhibition given by Eq. 7. For a two-input
neuron, this is another way of constructing an Aj AND NOT
Ak gate. We write

El+Aj- C, [12]
Ei + Ak = (EiAk), [13]

where Aj is the excitatory input, Ak is the inhibitory input, C,
is the active form of the enzyme, and (EiAk) is inactive. The
concentration of the catalyst is given by

[14]
EI

ci=i
1 KIAk1+ +.

KAAj KAAj
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where E? = E, + Ci + (EiAk), KA is the equilibrium constant
of the activation reaction (Eq. 12), and K5 is the equilibrium
constant of the inhibition reaction 13. With the proper choice
of KA and K5, Ak can inhibit the activation of neuron i by
neuron j. Specific inhibition can effectively be produced by
using connections of the types given by Eqs. 6 and 7;
however, with a complex set of connections, the mechanism
of inhibition and activation (Eqs. 12 and 13) of the same

enzyme may be more transparent.
Synchronization. In many types of neural networks the flow

oftime is continuous, and issues regarding timing of updating
of neurons are unimportant. Such networks include some
Hopfield networks and many feedforward networks. How-
ever, in other networks the flow of time is discretized, such
as in the neural nets described by Minsky (10) for the basis
of a Turing machine. The state of all of the neurons and thus
their outputs are updated synchronously, depending on the
inputs to the neurons during the prior time step. In this
section, we describe a clock mechanism that is only used in
clocked networks. This discreteness of time and synchroni-
zation of state changes can be implemented chemically by the
use of an autonomously oscillating catalyst, e. We assume

that e oscillates in a nonsinusoidal manner as is common in
many chemical oscillators (28). The concentration of E is
assumed to be very small except during an interval that is
short compared to the oscillator period and to the relaxation
time of a chemical neuron (Eqs. 14). The catalyst e interacts
with the species Aj (or B.) of each neuron j:

6 E
Aj -- A Bj= B. [151

The equilibrium point concentration ofA;is taken to be much
smaller than that of Aj, so these reactions do not significantly
alter the concentration of A4 or B . The catalyst e is present
at a sufficiently large concentration only during a short
interval, and only then are reactions 15 allowed to proceed.
We now take A; or Bj to be the effector of the enzyme EU in
Eq. 6 or 7: EV + A; = CV, etc. The pulse of e equilibrates
reactions 15 and 6 or 7 based on the concentration ofAj at that
instant; however, the time interval ofthe pulse is too short for
the states of the neurons to change. Following the pulse, the
neurons relax to their new stationary states, and the values
ofA; and CV do not change until the next pulse of catalyst. The
short pulses of e may also be imposed on the system
externally such as by a pulse of light or gaseous material.

Input-Output. In our chemical neural networks, data are
encoded as a set of concentrations of Ais. In some neural
networks, initial conditions are specified and the network
evolves in time to the solution. In our chemical neural
network, the concentrations of the Ais are set at the initial
time and then allowed to decay in time to the solution, which
is represented as a set of stationary Ai concentrations of the
network.

In other neural networks, data are encoded as states of
neurons that are specified in time. In these chemical neural
networks, various concentrations must be modulated in time.
This may be effected, for instance, by allowing the flow of Ci
into and out of the neuron and by controlling the concentra-
tion of Ci in the feed stream or by generating and removing
Ci in an electrochemical or photochemical reaction whose
rate is controlled by the external world. The output is
represented by the concentration of A, of particular neurons
that can be monitored.

Discussion

In our implementation of neural networks, each neuron
consists of eight species. The species I,, X2, X4, and I2 may
be common to all neurons, but the species X1, A, B, and X3

must be chemically distinct from those in other neurons.
Thus, a minimum of 4 + 4N distinct species are required for
N neurons. Furthermore, each connection (Eq. 6 or 7)
requires one additional distinct species. Thus, the chemical
network as a whole requires 4 + 4N + M distinct species
where M is the number of connections. The need for large
numbers of species presents a practical problem; however, if
we assume that the species are polymer chains like proteins,
then this large variety of specificity and activity can be
imagined. Also, if we were to consider a spatially distributed
system (compartmentalized as in biological neural networks),
then the variety of species required can easily be reduced.
We have presented a versatile basis for computational

hardware based on relating chemical reaction dynamics to
neural networks. In particular, it is the stationary state
properties of reactions 1-4 that form the basis of the model.
The reaction kinetics cause each neuron i to relax toward the
stationary state dictated by Ci given in Fig. 1. However, the
species Ci may vary with time due to changes of the state of
other neurons (the concentration of A,) or due to modulation
in time by the experimenter.
We have constructed computational devices from our

chemical neurons: logic gates in this article, and binary
adding machines, stack memories, and Hopfield networks in
articles to follow. A universal Turing machine can be con-
structed from a clocked neural network of finite size aug-
mented by two stacks of infinite size (29). In contrast to
so-called "computationally reducible" systems, whose be-
havior can be predicted by a more computationally efficient
means than by direct simulation (2), the ability of a chemical
network to simulate a Turing machine guarantees in general
no such short-cut exists. The existence of a general short-cut
would represent the solution to Turing's insoluble Halting
problem (10). The lack of predictability of computationally
universal systems is stronger than deterministic chaos (4).
The motion of chaotic systems is at least confined to an
attractor that may be identified beforehand, but the arbi-
trarily and unpredictably long transients of computationally
irreducible systems preclude the a priori identification of
attractors, if any. Consideration of computational irreduc-
ibility may apply to biological networks.
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