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Abstract The effect of bovine serum albumin (BSA),

whey protein isolate (WPI), whey protein hydrolysate

(WPH), sodium caseinate (SC), carboxymethylcellulose

sodium (CMC), fish gelatin (FG), high methoxyl apple

pectin (HMAP), low methoxyl apple pectin (LMAP), gum

Arabic (GA), i-carrageenan (CGN), and hydroxypropyl

chitosan (HPCTS) on physical stability of internal or

external aqueous phase of water-in-oil-in-water (W/O/W)

emulsions was evaluated. WPI and CGN in the internal

aqueous phase, and GA, HPCTS, and CMC in the external

phase reduced the size of emulsion droplets. BSA, WPI,

SC, FG, CGN, and HPCTS improved the dilution stability

of W/O/W emulsions, but HMAP had a negative effect.

BSA, WPI, SC, FG, LMAP, GA, CGN, HPCTS, or CMC

significantly improved the thermal stability of W/O/W

emulsions. Results also indicated that the addition of CGN

(1.0%), HMAP (1.0%), WPH (1.0%), or HPCTS (1.0%) in

internal aqueous phase significantly increased the viscosity

of emulsions, however, addition to the external aqueous

phase had insignificant effects. A protein-knockout exper-

iment confirmed that proteins as biomacromolecules, were

the key factor in improving physical stability of emulsions.

Keywords W/O/W emulsions � Biomacromolecules �
Physical stability � Rheological properties

Introduction

Water-in-oil-in-water (W/O/W) emulsions are types of

complex, structured liquid multiphase systems known as

‘‘emulsions of emulsions’’, in which, the droplets in the

dispersed phase contain even smaller dispersed droplets

(Dickinson 2011; Garti and Bisperink 1998; Zhang et al.

2014). Generally, W/O/W emulsions are prepared by a

two-step emulsification reduced using two surfactants. A

hydrophobic emulsifier with a low hydrophilic-lipophilic

balance to stabilize the internal interface of the primary

emulsion (W/O), and an outer interface of oil-in-water

emulsions (O/W) stabilized by a hydrophilic emulsifier

with a high hydrophilic-lipophilic balance (Benichou et al.

2004; Garti 1997a; Garti and Aserin 1996; Garti and Bis-

perink 1998; Giroux et al. 2013; Li et al. 2014; Palencia

and Rivas 2011; Zhang et al. 2014).

Over the past few decades, W/O/W emulsions have been

proven to be useful vehicles for encapsulating and deliv-

ering active components in agricultural and food industries,

pharmaceuticals, biomedical sciences, and cosmetics, or

for fat reduction in food (Akhtar and Yazan 2008; Beni-

chou et al. 2002; Dickinson 2011; Ferreira et al. 1995;

Frasch-Melnik et al. 2010; Hernández-Marı́n et al. 2013;

Khopade and Jain 1999; Li et al. 2013, 2014; Lindenstruth

and Muller 2004; Matos et al. 2014, 2015; Miladi et al.

2015; Muschiolik 2007; Okochi and Nakano 2000; Regan

and Mulvihill 2009; Sela et al. 1995; Wroński et al. 2012).

However, compared with simple emulsions such as O/W

and W/O, W/O/W emulsions are thermodynamically

unstable. One of major challenges of generating W/O/W
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emulsions is the low stability arising from the excess free

energy associated with the high droplet surface of the

primary and secondary emulsions (Matos et al.

2014, 2015). In particular, the use of two different emul-

sifiers, a lipophilic emulsifier to stabilize the W/O emul-

sions and a hydrophilic emulsifier to stabilize the oil

droplets, leads to several interactions and instabilities in the

W/O/W emulsions (Kanouni et al. 2002). On the one hand,

water molecules can diffuse from the inner water phase

(W1) into the outer water phase (W2) and vice versa. These

movements change the amount of water encapsulated in the

oil droplets. On the other hand, coalescence, both between

oil droplets in W1/O emulsions or between two W1 dro-

plets, as well as between W1 droplets and the W2 phase,

can change the structure stability of W/O/W emulsions, and

also change the amount of water encapsulated in the oil

droplets, resulting in low encapsulation efficiency and/or

fast release of the encapsulated component, and limits the

further application of W/O/W emulsions. All these insta-

bilities can occur during processing, as well as storage of

the emulsions (Florence and Whitehill 1981; Pays et al.

2001; Schuch et al. 2014). As mentioned previously, for-

mulation and stabilization of the structures of W/O/W

emulsion are still challenging and become much more

difficult than that of simple emulsions (Dickinson 2011).

Previous studies showed that numerous parameters

determine the stability of W/O/W emulsions, including the

emulsification method (Hemar et al. 2010; Sugiura et al.

2004; Surh et al. 2007; Vandergraaf et al. 2005), the dro-

plet size distribution characteristics of both the W1/O

droplets and the external O/W2 droplets (Bonnet et al.

2009, 2010a, b; Garti 1997b; Weissa and Muschiolik

2007), the type and concentration of different emulsifiers

(Chávez-Páez et al. 2012; Garti 1997b; Jager-Lezer et al.

1997; Kanouni et al. 2002; Pays et al. 2001, 2002; Sch-

midts et al. 2010a, b), the phase volume fraction (Bonnet

et al. 2010a, b; Herzi et al. 2014; Weissa and Muschiolik

2007), the osmotic pressure (Delample et al. 2014; Garti

and Aserin 1996; Guery et al. 2009; Mezzenga et al. 2004;

Schmidts et al. 2010a, b; Wen and Papadopoulos 2001),

and the properties of oil phase (Bonnet et al. 2009; Garti

and Aserin 1996; Weiss et al. 2005).

Some studies showed that the W/O/W emulsions

became more stable if the surfactants have a large molec-

ular size. The large molecules are able to ‘‘anchor’’

themselves to the respective interface (so the energy

required to remove large molecules from an interface is

high), so that made themselves less likely to diffuse

between interfaces (Benichou et al. 2007; Dickinson 2011;

Garti 1997b). Moreover, the additive of some biomacro-

molecules (Benichou et al. 2004; Bonnet et al. 2010a, b;

Dickinson 2011; Garti 1997a; Garti and Aserin 1996; Garti

and Bisperink 1998; Michaut et al. 2003; Muschiolik 2007;

Pays et al. 2002) can improve the stability of W/O/W

emulsions. For example, globular proteins such as bovine

serum albumin (BSA) or hemoglobin severed as active co-

emulsifier were effective to improve the stability of W/O/

W emulsions (Al Haushey et al. 2007; Benichou et al.

2004; Gaiti et al. 1994; Meng et al. 2004; Rojas and

Papadopoulos 2007). Our previous study found similar

conclusions that BSA or whey protein isolate (WPI) added

into the internal phase improved the stability and controlled

release properties of W/O/W emulsions (Li et al. 2014).

However, still very less studies have provided a convincing

theoretical justification or experimental evidence to explain

the observed improvements from biomacromolecules.

Even in some experiments, the conclusions have suggested

that higher concentrations of BSA might play a negative

role on long-term stability (Dickinson 2011). Furthermore,

it’s more necessary to define a more general rule about the

different effects of wide types of biomacromolecules on the

stability if W/O/W emulsions, rather than a single type of

biomacromolecules.

The present work was undertaken to investigate the

effect of different hydrocolloids (bovine serum albumin,

whey protein isolate, whey protein hydrolysate, sodium

caseinate, carboxymethylcellulose, fish gelatin, high and

low methoxyl pectin, gum arabic, carrageenan, and

hydroxypropyl chitosan) on the physical stability of W/O/

W emulsions.

Materials and methods

Materials

Polyglycerol polyricinoleate (PGPR) and polyglycerol fatty

acid ester (PGFE) were obtained from Taiyo Kagaku Co.,

Ltd. (Yokkaichi, Japan). Gum arabic (GA) and i-car-
rageenan (CGN) were purchased from Beijing Banxia

Science and Technology Development Co., Ltd. (Beijing,

China). Fish gelatin (FG) with two bloom value (280 and

180) was purchased from Hubei Jusheng Technology Co.,

Ltd (Wuhan, China). Both high methoxyl apple pectin

(HMAP) and low methoxyl apple pectin (LMAP) were

obtained from Herbstreith and Fox KG (Mannheim, Ger-

many). According to the supplier, the degrees of esterifi-

cation of the pectin samples were 68 and 38%,

respectively. BSA (98% pure) was purchased from Roche

(Basel, Switzerland). WPI (Provon� 292) and whey protein

hydrolysate (WPH, Thermax� 690) powders were obtained

from Glanbia Nutritionals, Inc. (Twin Falls, ID, USA).

Sodium caseinate (SC) and carboxymethylcellulose sodium

(CMC) were purchased from Sigma–Aldrich (St. Louis,

MO, USA). The water-soluble hydroxypropyl chitosan

(HPCTS) with a degree of substitution of more than 80%
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was purchased from Lushen Bioengineering Co., Ltd.

(Nantong, China). Soybean oil was purchased from a local

supermarket and used without further treatment.

Preparation of W/O/W emulsions

W/O/W emulsions were prepared using an established two-

step procedure (Li et al. 2014). First, the stable primary

W/O emulsion was prepared using PGPR as the

hydrophobic emulsifier. Sodium chloride solution (NaCl,

0.1 M) was used as the internal aqueous phase. To inves-

tigate the effects of different macromolecules in the

internal aqueous phase, they were added separately at

various mass fractions (of the total W/O emulsion). Soy-

bean oil containing PGPR was used as the oil phase. The

mass ratio of the internal aqueous phase to the oil phase

was 4:6. The mixture was preheated to 60 �C for 15 min,

then the primary emulsions were prepared by homogeniz-

ing at 12,000 rpm for 3 min using a high-speed shearing

mixer homogenizer (T25 digital ULTRA-TURRAX, IKA,

Germany). The primary emulsions were then high-pressure

homogenized (NS1001, GEA Niro Soavi, Italy) at 60 MPa

to generate the final W/O emulsions. The mass fraction of

PGPR of the whole W/O emulsion was 1.2%. Secondly, the

primary W/O emulsion was dispersed in an aqueous solu-

tion of PGFE (which served as a hydrophilic emulsifier)

with a mass ratio of the W/O emulsion to the external

aqueous solution of 6:4. After mixing, the final W/O/W

emulsion was prepared using the high-speed shear machine

at 10,000 rpm for 3 min. The mass fraction of PGFE with

respect to the whole W/O/W emulsion was 0.5%.

Light microscopy

After dilution in distilled water, W/O/W emulsion samples

were observed at 100 9 magnification using a light

microscope (BX53, Olympus, Japan) equipped with a

camera to observe the particle size of emulsion droplets.

The light microscopy experiments were conducted to show

visual images of particle size distribution.

Physical stability evaluation of W/O/W emulsions

The creaming index was measured to evaluate the physical

stability of W/O/W emulsions via the method described ear-

lier (Li et al. 2012, 2014). The emulsion samples were trans-

ferred into a centrifuge tube, and then were separated into an

optically opaque ‘‘cream’’ layer at the top, and transparent (or

turbid) ‘‘serum’’ layers at the bottom after dilution, heating,

and freeze–thaw cycles. The entire transparent layer was

defined as the serum layer, and the total height of the emulsion

(HT) and the height of the serum layer (HS) were measured to

calculate the creaming index (%), using equation that

creaming index (%) = 100 9 (HS/HT). To test dilution sta-

bility, 1.0 mL of emulsion sample was added to a centrifuge

tube and was diluted with distilled water to a 5.0 mL. To

evaluate thermal stability, emulsion samples were heated at

60 �C for 15 min in a water bath. To evaluate freeze–thaw

stability, all sampleswere frozen at-18 �C for 12 h, and then

thawed at room temperature. The entire freeze–thaw cycle

was repeated thrice. The creaming index provided indirect

information about the extent of droplet aggregation in the

emulsion after various processing steps. With emulsions, a

small creaming index indicates that the emulsion is more

stable than one with a high creaming index.

Cryogenic scanning electron microscope

Themicrostructures of theW/O/W emulsions were analyzed

by a HELIOS NanoLab 600i cryogenic scanning electron

microscope (Cryo-SEM, FEI, Hillsboro, Oregon, USA).

Before scanning, the sample was quickly frozen by liquid

nitrogen, and then the frozen sample was fractured to expose

an irregular fracture surface. This Cryo-SEM analysis was

expected to show the detailed changes in emulsion mor-

phology before and after freeze–thaw treatment.

Rheological properties of W/O/W emulsions

A coaxial cylinder rheometer (R/S-CC plus, BROOK-

FIELD, Harlow Essex, UK) was used to measure emulsion

viscosity at increasing rotational speeds from 1 to

200 min-1 at room temperature.

Protein-knockout experiment

A biomacromolecule-knockout experiment was conducted to

investigate the behavior and impact of the biomacromolecules

present at the internal interface. Since our approach was

limited to remove polysaccharide biomacromolecules by pH

adjustment, we only conducted protein-knockout experi-

ments. The detailed conditions of protein-knockout were

shown inTable 1.Control groupswere established that had no

added protein with original pH or the pH adjusted to the pI of

the protein (WPI/BSA). Treatment groups were established

with 1.0% WPI or 1.0% BSA added to the internal aqueous

phase. The pH value of the internal aqueous phase was either

not adjusted or was adjusted to the pI of the protein.

Results and discussion

Particle size distribution of W/O/W emulsions

The droplet size in emulsions decreases slightly by most of

biomacromolecules (Fig. 1a, b). Amongst all of the
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biomacromolecules tested, WPI or CGN at concentration

of 1.0% decreased the droplet size to the highest extent.

The results also showed that the droplet size of emulsions

was not dependent on the concentration of biomacro-

molecules as the emulsions with 0.2 and 1.0% biomacro-

molecules showed similar droplet size, which may be

because that W/O/W system was such a complex system,

that each macromolecule had its own mass fraction range

to play its positive role on droplet size.

The effect of different biomacromolecules in external

aqueous phase on emulsion droplet size was also investi-

gated. FG (both bloom values 280 and 180), HMAP,

LMAP, and CGN increased the viscosity of the emulsions

to a level that it became difficult to attain complete

emulsification. Hence, the effect of other biomacro-

molecules in the external aqueous phase was evaluated.

Figure 1 showed that different biomacromolecules showed

variable effects on the droplet size distribution. BSA, WPI,

WPH, and SC slightly decreased the droplet size, whereas

GA, HPCTS and CMC significantly decreased the same. It

was found that as the concentration of biomacromolecules

increased, droplet size decreased.

Physical stability of W/O/W emulsions

Physical instability such as creaming, sedimentation, floc-

culation, coalescence, or phase separation directly determi-

nes the shelf life ofW/O/W emulsion, and thus is considered

as key factor for further application. In the present study, the

effects of biomacromolecules in the internal and external

aqueous phases on dilution stability and thermal stability of

W/O/W emulsions were also investigated. Figure 2a showed

that the data could be categorized into two groups. Onewas a

protein group that contained BSA, WPI, WPH, SC, FG280,

and FG180, the other was a polysaccharose group that con-

tained HMAP, LMAP, GA, CGN, HPCTS, and CMC.

Adding proteins could slightly improve the dilution stability,

while the dosage of proteinswas a key factor. Our results also

indicated that when the concentration of BSA, SC, and FG

(both 280 and 180) increased from 0.2 to 1.0% an

improvement in stability of W/O/W emulsions was

observed. WPH, a protein hydrolysate of WPI, and is com-

posed of amino acids and peptides (with relatively low

molecular weights). Thus, adding WPH showed slight

improvement to the dilution stability of W/O/W emulsions.

Similarly, when the effect of two types of FG on the stability

were compared, the FG with a higher bloom value produced

a greater improvement in stability than FG with the lower

bloom value, because higher bloom value corresponded to a

higher molecular weight of fish gelatin. In the polysaccha-

rose group, results showed that HMAP had a negative effect

on the stability. LMAP, GA, and CMC showed very little

positive effects. CGN and HPCTS showed the larger

improvements in stability, especially at higher

concentrations.

Figure 2b showed the effects of biomacromolecules in

the internal aqueous phase on the thermal stability of W/O/

W emulsions. In the protein group, adding BSA, WPI, SC

(at high concentration), FG280, and FG180 improved the

thermal stability significantly, while no creaming effect

was found. WPH played slightly role in improving thermal

stability, which was also affected by the concentration. In

the polysaccharose group, all of the additives could

improve thermal stability. In particular, LMAP (0.6 or

1.0%), GA (1.0%), CGN, HPCTS, and CMC (0.6 or 1.0%)

did not cause any creaming.

As shown in Fig. 2c and Fig. 2d, the biomacromolecules

added to the external aqueous phase affected the physical

stability of W/O/W emulsions. Slightly different from the

trend shown in Fig. 2a or b, it was difficult to divide the

biomacromolecules into protein and polysaccharose group

when present in the external aqueous phase. The addition

of the various biomacromolecules in the external aqueous

phase played less positive role on the dilution stability

(Fig. 2c), sometimes even resulted in an increase of

creaming index, indicating the decrease of dilution stabil-

ity. While investigated the effect of biomacromolecules in

the external aqueous phase on the thermal stability, results

showed that BSA, SC, WPI, CMC, and HPCTS resulted in

better thermal stability of W/O/W emulsions, without

creaming was observed. GA addition to the external

aqueous phase had virtually no effect on the thermal sta-

bility of W/O/W emulsions. However, WPH had a negative

effect on thermal stability, which increased when the usage

was increased.

The above results indicated that some types of

biomacromolecules did possess the ability to improve the

Table 1 Conditions of the protein-knockout experiment

Groups pH of the internal

aqueous phase

Addition of protein

CG 1 Normal None

CG 2 5.0 None

CG 3 4.7 None

TG 1-a Normal WPI, 1.0% (w/w)

TG 1-b 5.0 WPI, 1.0% (w/w)

TG 2-a Normal BSA, 1.0% (w/w)

TG 2-b 4.7 BSA, 1.0% (w/w)

CG control groups, TG treatment groups

cFig. 1 Microscope images of W/O/W emulsions with proteins or

polysaccharide in the internal or external aqueous phase. a Protein in

the internal aqueous phase; b polysaccharide in the internal aqueous

phase; c protein in the external aqueous phase; d polysaccharide in the

external aqueous phase
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physical stability of W/O/W emulsions. Our findings were

consistent with the previous studies (Garti 1997a; Garti and

Aserin 1996; Garti and Bisperink 1998). They have sug-

gested that a polymeric surfactant (such as a biomacro-

molecule) in the internal aqueous phase probably forms a

thick, strongly, and gelled film, which was a ‘‘complex’’

with the monomeric lipophilic surfactant, to impart internal

interface elasticity and resistance to rupturing of the inner

droplets (Benichou et al. 2004; Garti 1997a; Garti and

Aserin 1996; Garti and Bisperink 1998). Thereby, the

complex can improve the mechanical and steric stability of

double emulsions. However, in the external aqueous phase,

biomacromolecules served only as a protective colloid at

the outer interface.

Freeze–thaw stability is an indicator of storage stability

of W/O/W emulsions. Figure 3a showed that when

biomacromolecules were added to the internal aqueous

phase, two trends could be observed: i) the stability

decreased as freeze–thaw cycles proceeded, and ii) no

matter how stable the original emulsions were or how

stable the single freeze–thaw cycle processed emulsions

were, the final emulsions with three freeze–thaw cycles

displayed similar level of creaming index. The explanation

for the above results in Fig. 3a is reflected Fig. 3b. When

compared the images before and after freeze–thaw treat-

ments, we found that the external interface disappeared,

and the amount of internal W1/O droplets decreased. These

were mainly the consequence of interface disruption and

Fig. 1 continued
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Fig. 2 The influence of the biomacromolecules type and concentra-

tion in the internal or external aqueous phase on the physical stability

of W/O/W emulsions. a Dilution stability for internal aqueous phase;

b thermal stability for internal aqueous phase; c dilution stability for

external aqueous phase; d thermal stability for external aqueous phase
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emulsion coalescence. The arrows in the images clearly

indicated channels between the two external interfaces of

two neighboring emulsion droplets.

Fig. 2 continued

cFig. 3 The influence of freeze–thaw treatment on the stability of

W/O/W emulsions when biomacromolecules present in the internal

aqueous phase. a Creaming index, b Cryo-SEM images before (-1)

and after (-2) freeze–thaw treatment
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Rheological properties of W/O/W emulsions

To investigate the effect of biomacromolecules on rheological

properties of W/O/W emulsions, seven types of biomacro-

molecule were added to the internal aqueous phase, and three

types of biomacromolecule were added to the external aqueous

phase. Figure 4a indicated that different biomacromolecule

showed different effects on the rheological properties. Gener-

ally, the order of the effect on the apparent viscosity ofW/O/W

emulsions was: CGN (1.0%) = HMAP (1.0%) � WPH

(1.0%[HPCTS (1.0%) � Control. The effects of remaining

biomacromolecules were almost the same as the control.

However, Fig. 4b indicated that adding biomacromolecule to

the external aqueous phase had only a little effects on the

apparent viscosity of W/O/W emulsions.

Biomacromolecule behaviors

A protein-knockout experiment to identify the impact of

biomacromolecules in the internal aqueous phase. As

shown in Fig. 5, if the pH value of the internal aqueous

phase was normal (no adjustment), no creaming layer was

found when WPI or BSA were added, indicating a large

stability improvement compared with the control (CG1),

consisted with the results shown in Fig. 2. However, when

the pH value was adjusted to the protein’s pI values (5.0 for

WPI or 4.7 for BSA), the result was reversed, with no

improvement in stability and the appearance of an obvious

creaming layer. By comparing the control group of normal

internal aqueous phase pH with the control group that the

internal aqueous phase pH at the pI values, both in the

presence and absence of proteins, it was clear that the

Fig. 4 The influence of the biomacromolecules type and concentra-

tion in the internal aqueous phase (a) or external aqueous phase (b) on
the rheological properties of W/O/W emulsions

Fig. 5 The observation of emulsion stability during protein-knockout

experiment. CG 1 control group with normal pH value and without

protein added in the internal aqueous phase; CG 2 control group with

pH value at 5.0 and without protein added in the internal aqueous

phase; CG 3 control group with pH value at 4.7 and without protein

added in the internal aqueous phase; TG 1-a treatment group with

normal pH value and WPI added in the internal aqueous phase; TG 1-

b treatment group with pH value at 5.0 and WPI added in the internal

aqueous phase; TG 2-a treatment group with normal pH value and

BSA added in the internal aqueous phase; TG 2-b treatment group

with pH value at 4.7 and BSA added in the internal aqueous phase
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reversal in stability increase was not only caused by pH

adjustment, but also by the removal of proteins through

protein aggregation at their pI. These results in the protein-

knockout experiment indicated that the physical stability

improvements obtained were caused by biomacromolecule

addition, mainly by protein.

Conclusion

Our studies indicate that, 1.0% WPI or CGN decreases the

emulsions droplet size to the greatest extent in comparison

to all the macromolecules added in the internal aqueous

phase. The addition of BSA, WPI, SC, FG280, or FG180

slightly improved the dilution stability and thermal stability

of W/O/W emulsions. The dosage and molecular weight of

the biomacromolecules were the key factors for emulsion

stabilization. For the polysaccharide group, the results

showed that HMAP had a negative effect on dilution sta-

bility, while LMAP, GA, and CMC had a positive effect,

and CGN and HPCTS had a relatively larger effect, espe-

cially at higher concentrations. We also found that adding

polysacchar could improve thermal stability, especially

when LMAP (0.6 or 1.0%), GA (1.0%), CGN, HPCTS, or

CMC (0.6 or 1.0%) were added. For the external aqueous

phase, GA, HPCTS, and CMC significantly reduced the

droplet size of W/O/W emulsions. The effects of GA,

HPCTS, and CMC on droplet size distribution were espe-

cially pronounced when they were added at high mass

fractions. Furthermore, adding various biomacromolecules

to the external aqueous phase had no effect on dilution

stability. However, BSA, SC, WPI, CMC, and HPCTS had

a positive effect on thermal stability. The results also

indicated that the effect of biomacromolecules added to the

internal aqueous phase, on rheological properties were in

the following order: CGN (1.0%) = HMAP

(1.0%) � WPH (1.0%)[HPCTS (1.0%) � Control. The

effect of the remaining biomacromolecules was similar to

the control. In addition, biomacromolecules added to the

external aqueous phase did not affect the rheological

properties of W/O/W emulsions too much.

A biomacromolecule-knockout experiment confirmed

that the improvement in the physical stability of emulsions

seen were related to biomacromolecule, especially protein.

In conclusion, all biomacromolecules did not have a pos-

itive impact on the physical stability of W/O/W emulsions

suggesting their careful selection.
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