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membrane protrusions with proteolytic activity, are asso-
ciated with more aggressive disease and are sites of EV 
release. Gene levels corresponding to invasion-related EV 
proteins showed that five genes (annexin A1, actin-related 
protein 3, integrin-β1, insulin-like growth factor 2 recep-
tor and programmed cell death 6-interacting protein) were 
significantly higher in GBM tumours compared to normal 
brain in silico, with common functions relating to actin poly-
merisation and endosomal sorting. We also show that Cavi-
tron Ultrasonic Surgical Aspirator (CUSA) washings are a 
novel source of brain tumour-derived EVs, demonstrated 
by particle tracking analysis, TEM and proteome profil-
ing. Quantitative proteomics corroborated the high levels 
of proposed invasion-related proteins in EVs enriched from 
a GBM compared to low-grade astrocytoma tumour. Large-
scale clinical follow-up of putative biomarkers, particularly 
the proposed survival marker annexin A1, is warranted.
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Introduction

The need for clinically useful biomarkers is becoming 
more apparent as the clinical management of glioblastoma 
(GBM) moves towards individualised therapy and adaptive 
trial designs. Extracellular vesicles (EVs) are stable, mem-
brane-enclosed particles released from either the cell sur-
face (microvesicles, 100–1000 nm) or from an endosomal 
route (exosomes, 40–100  nm). EVs are composed of an 
array of proteins, nucleic acids, lipids, and other metabo-
lites that often reflect the cell of origin [1, 2], meaning they 
are excellent reservoirs of biomarkers. Importantly, GBM-
derived EVs can cross the brain–blood-barrier and are 

Abstract  Extracellular vesicles (EVs) play key roles in 
glioblastoma (GBM) biology and represent novel sources of 
biomarkers that are detectable in the peripheral circulation. 
Despite this notionally non-invasive approach to assess 
GBM tumours in situ, a comprehensive GBM  EV protein 
signature has not been described. Here, EVs secreted by 
six GBM cell lines were isolated and analysed by quan-
titative high-resolution mass spectrometry. Overall, 844 
proteins were identified in the GBM EV proteome, of 
which 145 proteins were common to EVs secreted by all 
cell lines examined; included in the curated EV compen-
dium (Vesiclepedia_559; http://microvesicles.org). Levels 
of 14 EV proteins significantly correlated with cell inva-
sion (invadopodia production; r2 > 0.5, p < 0.05), including 
several proteins that interact with molecules responsible for 
regulating invadopodia formation. Invadopodia, actin-rich 
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ability to form invadopodia and then explored corresponding 
tumour gene expression levels in silico. The in vitro GBM EV 
proteome profile was then compared to glioma-derived EVs 
isolated from Cavitron Ultrasonic Surgical Aspirator (CUSA) 
fluid. The CUSA system is used to fragment and extract solid 
tumours from the central nervous system [16]. CUSA wash-
ings contain tumour tissue fragments that are routinely used 
in diagnostic pathology [17]; however, the fluid component 
of CUSA washings is typically discarded. Here we show that 
this surgical fluid represents a valuable and abundant source 
of brain tumour EVs. Comparative quantitative proteome 
analysis of EVs enriched from CUSA fluid collected during a 
high-grade (GBM) and a low-grade glioma surgical resection 
was also performed to substantiate the candidate invasion 
associated EV proteins identified in vitro.

Results

Characterisation of EVs derived from GBM cells  
in vitro

The mean sizes of the U87MG and LN229 EV were esti-
mated as 92.6 ± 1.2 and 109.9 ± 2.9  nm, respectively 
(Fig. 1a). Vesicles with diameters of approximately 100 nm 
were observed using TEM (Fig. 1b, c). Overall, 844 proteins 
were identified (≥2 peptides, 95 % confidence) of which 145 
proteins (17.2 %) were common to EVs secreted by all cell 
lines (Supplementary Table  1; Vesiclepedia, dataset_599). 
We identified 15 of the top 20 previously reported exosomal 
proteins [18], eight of which were detected in all EV prepa-
rations.1 Cytochrome c, a marker for mitochondrial mem-
brane contamination found in apoptotic blebs (i.e. much 
larger vesicles) [19], was not observed in any EVs. A sche-
matic of the GBM EV proteome is provided (Fig. 2a) and 
describes a diverse set of proteins associated with MVBs 
(i.e., PDCD6IP and clathrin), cell adhesion, cytoskeleton, 
metabolism, membrane trafficking and chaperones. Primary 
sub-cellular localizations included significant enrichments 
of exosomal proteins (88.2 %; Fig. 2b). Identities of proteins 
novel to GBM EVs are annotated in Supplementary Table 1. 
This is the first account of osteonectin (SPARC; Vesiclepe-
dia ID, VP_6678) and laminin subunit alpha-4 (LAMA4, 
VP_3910) proteins in cancer EVs, although corresponding 
mRNA species were documented in GBM EVs [3]. Gene 
names (145), corresponding to proteins common to all 
GBM EVs, were mapped in the IPA environment. Promi-
nent up-stream regulators included NFE2L2 (p = 3.53E−20) 
and TP53 (p = 9.28E−20), with associations to 29 and 75 tar-
get molecules, respectively. Significant biological associa-
tions included cell growth/proliferation (81 molecules), cell 

1  Annotated in Supplementary Table 1.

detectable in the peripheral circulation. Profiling the com-
position of GBM-derived EVs may, therefore, offer a non-
invasive means of assessing tumours in situ, e.g., to identify 
molecular signatures indicative of tumour progression, 
recurrence and treatment failure. A ‘liquid biopsy’ would be 
especially valuable for patients with primary brain tumours, 
where radiological findings can be ambiguous, i.e., pseu-
doprogression and neurosurgery carries a very real risk of 
complication.

Characterisations of cancer-derived EVs are gaining 
research momentum also to delineate the role of EVs in 
the tumour microenvironment. Interestingly, EVs offer an 
intercellular route to transfer oncogenic material that can 
change the genetic programme of non-malignant cells, 
with demonstrated functional consequences in transformed 
recipient cells related to proliferation, invasion, angiogen-
esis, chemoresistance and immune repression [3–7]. Stud-
ies have described extensive RNA expression analyses of 
glioma-derived EVs [3, 8, 9], however, proteomic profiles 
are currently limited. Reported protein studies have identi-
fied small numbers of proteins (2D-gel electrophoretic or 
antibody-directed strategies), however relevant to GBM 
biology, or analysed EVs from limited sources [4, 8, 10, 11]. 
From other cancer-derived EV studies, we know that EVs 
contain a subset of cellular proteins, some of which depend 
on the cell of origin while other proteins are EV-enriched.

We recently described a comprehensive GBM mem-
brane proteome profile, including several invasion-related 
proteins that correlated with the cell’s ability to produce 
invadopodia (actin-rich cellular protrusions with proteolytic 
activity) under normal culture conditions [12]. Interest-
ingly, invadopodia act as multivesicular endosome (MVE) 
docking sites and are a site exosome release, meaning the 
ability to form invadopodia could determine the release 
of exosomes [13]. Exosome secretion is an essential part 
of invadopodia biogenesis and maturation, including the 
release of key invadopodial metalloproteinase, MT1-MMP 
that degrades the extracellular matrix [13]. Inhibition of two 
major regulators of invadopodia formation decreased exo-
some release from squamous cell carcinoma cells [13]; in 
breast cancer, there are significant associations between cell 
invasion, invadopodia maturation and EV production [14]. 
Together these findings not only indicate that EVs are genu-
ine invasion structures of cancer cells, but also point to the 
potential benefit of profiling EVs as an indirect way to dis-
sect molecular mechanisms of invadopodia biogenesis and 
function in tumour invasion [15].

Here, we provide the most extensive GBM-derived EV 
protein profile, captured from six cell lines derived from 
GBM tumours using high-resolution mass spectrometry 
(MS). To identify candidate proteins associated with more 
aggressive disease, we performed correlation analyses 
between EV protein levels and the originating GBM cells’ 
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observed for PDCD6IP. Higher ANXA1 levels were also 
indicated by increased fluorescence during nanosight par-
ticle tracking (Fig. 3c).

Tumour transcript levels of putative invasion markers 
in independent glioma patient cohorts

Relative gene expression levels corresponding to 14 inva-
sion-related EV proteins were analysed in silico to indicate 
whether these proteins might be clinically relevant. Tran-
script levels of ANXA1, IGF2R, ITGB1, PDCD6IP and 
ACTR3 were significantly higher in GBM specimens, com-
pared with normal brain across all three datasets (Fig. 4a–e). 
Significant increases in IGF2R were observed in diffuse and 
anaplastic astrocytomas and oligodendrogliomas, increased 
PDCD6IP in diffuse and anaplastic astrocytomas, and 
increased ANXA1 in anaplastic astrocytomas relative to nor-
mal brain. Interestingly, significant differences in ANXA1 
were observed across the four TCGA GBM transcriptional 
subtypes, with significantly higher levels in classical and 
mesenchymal subtypes relative to neural and proneural 
tumours; proneural tumours displayed significantly lower 
gene levels compared to other subtypes (Fig. 4f).

Cavitron Ultrasonic Surgical Aspirator (CUSA) fluid,  
a novel source of brain tumour EVs

CUSA washings were collected during resections of a 
low-grade glioma (LGG) and a high-grade GBM (HGG) 
and tissue fragments processed for diagnostic histopathol-
ogy (Fig.  5a, b). The HGG was confirmed as a primary 
WHO2007 Grade IV GBM tumour (IDH1wildtype) and 

fate (80) and cell-to-cell signalling (53); significant canoni-
cal pathways included the protein ubiquitination pathway 
(23/255), glycolysis I (7/25) and actin cytoskeleton signal-
ling (11/217). Top scoring interaction networks showed 
functional association to cellular movement, cell fate, cel-
lular growth and proliferation and cell-to-cell signalling 
(score 132, 78 molecules) and infectious disease, metabolic 
disease and amino acid metabolism (92, 61).

EV proteins significantly correlated to GBM cell 
invasion

Abundance levels of 14 EV proteins significantly correlated 
to cell invasiveness (r2 > 0.5, p < 0.05, n ≥ 5; Table 1). Sig-
nificantly associated diseases and cellular functions included 
cancer (14 molecules), neurological disease (8) cell-to-cell 
signalling and interaction (8) and cellular movement (8), 
with significant upstream regulation from TP53, DYSF, PRL, 
CTNNB1 and RAB7B (6.33E−08 < p value <8.79E− 06). An 
interaction network was generated using the Path Explorer 
tool and included links to 12 membrane proteins2 previously 
detected at higher levels on more invasive GBM cells [12]; 
several genes corresponding to significant membrane pro-
teins were also predicted to be activated in the generated 
network (Fig. 3a). Abundance changes of ANXA1, ITGB1 
and PDCD6IP in EV lysates from the most (U87MG) and 
least invasive (LN229) cell lines were confirmed by Western 
blot (Fig. 3b). ITGB1 levels were also significantly higher 
in WC lysates of U87MG cells; an inverse relationship was 

2  ANXA1, ITGA5, EGFR, FYN, CLIC1, RRAS, ARHGEF2, RAB1A, 
RAP1B, YBX1, KARS, NSF.

Fig. 1  Characterization of GBM-derived EVs. a Size distribution of U87MG and LN229 EVs; traces represent triplicate experiments. Micro-
graphs of (b1, b2) U87MG and (c1, c2) LN229 EV preparations show vesicles (indicated by arrows) with diameters of approximately 100 nm
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and mode diameters of 122.8 ± 5.6 and 95.2 ± 9.9  nm for 
HGG EVs and 134.3 ± 5.8 and 103.1 ± 8.7 nm for LGG EVs 
(Fig.  5d). TEM confirmed a vesicular morphology in the 
combined density fractions 7–9 from HGG (Fig. 5e1) and 
LGG (Fig. 5e2). Enriched EV fractions were then subject 
to quantitative MS analysis. We identified 1559 and 1133 
proteins at 95 % confidence levels in at least two of three 
MS replicates in HGG and LGG EV (Fr7–9), respectively. 
Of these, 971 proteins were confidently identified in both 
samples (Fig.  5f). There was considerable overlap with 
the 145 in vitro GBM EV signature proteins, of which 115 
were identified in HGG EVs and 90 in LGG EVs, including 
SPARC, however LAMA4 was not sequenced. Twenty-five 

the LGG, a WHO2007 Grade II diffuse astrocytoma (IDH-
1mutant immunopositive; Fig.  5b2). Crude EVs isolated 
from HGG (1.0 × 1013 particles/mL) and LGG (9.59 × 1012 
particles/mL) CUSA fluid showed particle sizes with mean 
diameters of 107.9 ± 5.6 and 130.0 ± 1.8  nm, with large 
populations of 85 and 95  nm sized particles, respectively 
(Fig. 5c). As it was likely that the crude CUSA EV prep-
arations contain tissue and cellular debris, including con-
taminating intracellular organelles, EVs were enriched 
further by density gradient ultracentrifugation and isolated 
from fractions with densities reflecting the reported range 
for EVs [20]. Fractions 7–9, corresponding to densities of 
1.09–1.11  g/mL, contained particles with combined mean 

Fig. 2  a Schematic of GBM-derived EV protein composition. Mol-
ecules are grouped based on their function or protein subclass deter-
mined by IPA. Identified EV proteins are involved in membrane 
trafficking and fusion processes including Ras-related protein 10 
(Rab10), Rab7a, Rab5c, annexins A1, A2, A4, A5, A6, A11, cathepsins 
b and d (CTSB, CTSD), EH domain-containing protein 1, (EHD1), 
tripeptidyl-peptidase 2 (TPP2), and are markers for endosomes and 
lysosomes. Other protein groups include chaperones heat shock pro-
teins (HSPA5, HSPA8, HSPA4, HSP90AB1, HSP90AA1, HSP90B1, 
HSPH1, HSPB1, HSPA1A, HSPA9), T-complex proteins (CCT2, 
CCT3, CCT4, TCP1, CCT7, CCT8, CCT5, CCT6A) and cytoskeletal 

proteins (α-actinin-1, α-actinin-4, myosin-9, α-tubulin-4a, actin and 
ezrin); cytosolic proteins are expected in EV profiles due to EV bio-
genesis and budding from the multivesicular body (MVB). Proteins 
involved in MVB formation, including exosomal marker, programmed 
cell death 6-interacting protein (PDCD6IP; ALIX) were also identi-
fied. Several transmembrane proteins were identified including inte-
grins (β1, α3, αV) and CD44 as well as transporters, e.g., sodium/
potassium-transporting ATPase subunit α1. Arp, actin related protein; 
MVP, major vault protein; Image adapted from [66]. b–d FunRich 
annotations based on 145 EV proteins common to all six GBM cells
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during the recruitment of ESCRT machinery into MVB 
[21]. Although 0.2 µm filtration would theoretically remove 
microvesicles larger than 200 nm, their presence cannot be 
discounted for NTA measurements are less precise for larger 
vesicles (Fig. 1) and our in vitro EV preparations were not 
purified by density gradient ultracentrifugation.

To our knowledge, this is the first account of SPARC and 
LAMA4 proteins in EVs secreted by cancer cells, with pre-
vious observations restricted to normal saliva [22], bloods 
from healthy donors [23] or from patients with stable coro-
nary artery disease [24], as well as cultured endothelial cells 
[25, 26] and embryonic stem cell-derived mesenchymal 
stem cells.3 TGBF1, also observed in EVs isolated from 
high-grade glioma patient sera [10], could be a candidate 
GBM EV marker. Despite the documented roles of TGFB1, 
SPARC and LAMA4 in GBM progression and invasion 
[27–29], only the SPARC protein was identified in the two 
clinical glioma EV preparations profiled here.

Annexin A1, a potential EV biomarker predictive of 
GBM patient survival

We previously reported significantly higher ANXA1 pro-
tein levels in the membrane proteomes of more invasive 
GBM cells [12]. Increased ANXA1 transcript levels were 

3  Vesiclepedia dataset_126.

EV proteins were identified in the HGG CUSA EVs alone 
and may be related to more advanced disease (indicated in 
Supplementary Table 1). While contamination of mitochon-
drial and endoplasmic reticulum proteins was observed, our 
analyses included the identities of 18 (LGG) and 19 (HGG) 
of the top 20 exosomal proteins (Supplementary Table 1), 
and approximately half of identified proteins had ‘exo-
somes’ as a sub-cellular compartment annotation (Fig. 5g). 
Of the 14 putative invasion proteins identified in the in vitro 
correlation analysis above, nine proteins (ANXA1, IGF2R, 
ITGB1, PDCD6IP, ACTR3, CALR, IPO5, MVP, PSMD2) 
were significantly higher in HGG compared to LGG CUSA 
enriched-EVs (p < 0.05; Benjamin Hochberg adjusted p 
value significance threshold p < 0.033; Fig. 5h).

Discussion

EV size distributions, morphologies and protein composi-
tions indicate that exosomes are a predominant population 
in our preparations. Several identified proteins are involved 
in EV biosynthesis, including members of the ubiquitin-
dependent complex ESCRT, i.e., vacuolar protein sorting-
associated protein 35 and ubiquitin-like modifier-activating 
enzyme 1, suggesting that EVs analysed here originate from 
MVBs. Protein ubiquitination, the top scoring canonical 
pathway, is important for exosome formation especially 

Table 1  Extracellular vesicle (EV) proteins correlate to the invasive potential of the originating GBM cell (r2 > 0.5; p < 0.05; n ≥ 5)

Acc.a Gene Protein name r2 b Unadjusted
p-value c

nd Fold- 
changee

Q13200 PSMD2 26S proteasome non-ATPase regulatory subunit 2 0.85 0.0311 6 3.4
P61158 ACTR3 Actin-related protein 3 0.93 0.0201 5 2.6
P05067 APP Amyloid beta A4 protein 0.82 0.0458 6 2.5
P04083 ANXA1 Annexin A1 0.89 0.0172 6 4.1
P27797 CALR Calreticulin 0.82 0.0471 6 3.1
P07339 CTSD Cathepsin d 0.90 0.0135 6 4.5
P11717 IGF2R Insulin like growth factor receptor 2 0.92 0.0261 5 2.3
Q16610 ECM1 Extracellular matrix protein 1 0.93 0.0215 5 3.8
P04406 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 0.94 0.0059 6 7.7
O00410 IPO5 Importin-5 0.90 0.0394 5 2.3
P05556 ITGB1 Integrin beta-1 0.92 0.0255 5 11.2
Q14764 MVP Major vault protein 0.88 0.0499 5 2.3
P07602 PSAP Prosaposin 0.86 0.0297 6 3.1
Q8WUM4 PDCD6IP Programmed cell death 6-interacting protein 0.90 0.0130 6 2.2

EV proteomes secreted by six GBM cell lines were quantified by averaging normalised precursor ion intensities. Invasive potentials were 
determined using the invadopodia assay [3]
aAccession numbers and gene names of proteins were retrieved from the Swiss-Prot database
bPearson product momentum coefficient, r2, r2 > 0 indicates a positive relationship between invasiveness and protein abundance levels
c2-tailed significance threshold set to unadjust, p < 0.05
dn number of cell lines where the protein was identified at 95 % confidence levels and ≥2 peptides
eAveraged precursor ion intensities from the most invasive divided by the least invasive cell line indicates extent of change
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tumour invasiveness between low- and high- grade tumours 
as well as the observed difference in IDH1 mutational sta-
tus (Fig. 5b2). Understanding the role of ANXA1 in GBM-
derived EV is important in determining the influence of EV 
on the brain tumour microenvironment and role in tumour 
cell invasion. Further study of ANXA1 as a prognostic bio-
marker and anti-invasion target is warranted.

ITGB1, part of the fibronectin receptor

Integrin β1 (ITGB1), a known EV protein, is important for 
invadopodia formation [31, 32] and ITGB1 gene levels are 
elevated in GBM tumours (Fig. 4). ITGB1 has multiple direct 

also observed in GBM and anaplastic astrocytoma tumours 
compared to normal tissue (Fig. 4) and high ANXA1 expres-
sion identified a group of astrocytoma and GBM patients 
with reduced survival [12]. Interestingly, ANXA1 expression 
levels change significantly across the TCGA transcriptional 
GBM subtypes with mesenchymal and classical tumours 
displaying the highest levels and proneural tumours (fre-
quently IDH1mutated) the lowest. These differences may 
reflect the molecular disparities between the different 
tumour strata or perhaps simply, the reported differences 
in overall survival [30]. ANXA1 protein levels were also 
significantly higher in the HGG EVs compared with LGG 
EVs, which again may be associated with differences in 

Fig. 3  Interaction network EV proteins significantly correlated 
to GBM invasiveness. a Genes corresponding to 14 proteins were 
mapped in a network of 54 molecules using Ingenuity Pathway 
Analysis. Proteins with significantly higher levels in more invasive 
cells have red symbols. Asterisks highlight molecules associated with 
top scoring biological functions and canonical pathways, including 
tumour cell movement/invasion, cell-to-cell signalling, brain tumour/
GBM signalling and formation and extension of cellular protrusions. b 
Confirmation of putative invasion-related EV protein changes. Whole 
cell (WC) and EV samples from the most (U87MG) and least (LN229) 

invasive cell lines were used to confirm significant abundance changes 
of ITGB1, PDCD6IP and ANXA1. Ponceau S blot stain was used as a 
loading control. Bar charts depict relative quantitation, where (*) indi-
cates significance between the most and least invasive cells (p < 0.05) 
and error bars represent standard error of mean. c ANXA1 positive 
U87MG and LN229 EVs are shown as percentages of the total EV 
population, as measured by using a NanoSight CMOS camera and 
532 nm laser in triplicate. Results represent the mean ± standard error 
of mean of three independent readings (**p < 0.01)
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invasion and reduced patient survival [12]. Following FN1-
mediated ubiquitination of ITGA5, α5β1 is sorted into MVEs 
via ESCRT machinery and destined for lysosomal degradation 
[34]. Although the orchestrated recycling of FN1-α5β1 (cycles 

and indirect interactions with other invasion-associated pro-
teins, particularly ITGA5, which dimerizes with ITGB1 to form 
the fibronectin (FN1) receptor, α5β1 [33]. We recently showed 
that ITGA5 levels are significantly associated with GBM 

Fig. 4  Tumour transcript levels of putative invasion markers in indepen-
dent glioma patient cohorts. a ANXA1, b ITGB1 c ACTR3, d PDCD6IP 
and e IGFR2 levels [Human Genome U133 Plus 2.0 Arrays, cohorts (i) 
and (iii); Human Genome U133A Array, cohort (ii)]. Expression levels 
generated by Oncomine are displayed as log2-median-centred ratio box 
plots comparing normal brain tissue to GBM or other less aggressive 
glioma tumours. Data from three cohorts (i) Sun et al. [67], (ii) TCGA 
[68] (iii) Murat et al. [69], refer to Supplementary Tables 3 and 4 for 
details; n is the number of samples, open circles represent maximum 
and minimum values; error bars represent 1.5× interquartile range; 
*p < 0.05; **p < 0.01; ***p < 1E− 04; ****p < 1E− 11. ANXA1 levels 
were significantly higher in GBM compared with normal brain tis-
sues across all three datasets, with 7.3-fold (p = 1.52E− 26), 11.7-fold 
(p = 2.50E−09) and 7.5-fold (p = 5.40E−04) increases in (i), (ii) and (iii), 
respectively. ANXA1 levels were also significantly higher in anaplas-
tic astrocytomas (3.3-fold, p = 6.34E− 04), though to a lesser degree. 
ITGB1 levels were significantly higher in GBM compared with nor-
mal brain tissues across all three datasets, with 1.7-fold (p = 3.94E−07), 
4.4-fold (p = 5.0E−12) and 5.1-fold (p = 5.0E−03) increases in (i), (ii) 
and (iii), respectively. ACTR3 levels displayed the same trend, with 
higher expression levels in GBM across all three datasets, with 1.4-
fold (p = 1.25E−07), 2.9-fold (p = 6.66E− 13) and 1.6-fold (p = 0.007) 

increases in (i), (ii) and (iii), respectively. PDCD6IP mRNA levels 
were higher in GBM (1.4-fold, p = 2.25E− 05), diffuse astrocytoma 
(1.3-fold, p = 0.04), and anaplastic astrocytoma (1.3-fold, p = 0.009) 
compared with normal brain in dataset (i). Compared to normal brain, 
GBM PDCD6IP mRNA was increased by 2.3-fold (p = 2.16E−11) in 
dataset (ii), and 2.1-fold (p = 5.90E−04) in dataset (iii). In dataset (i), 
IGF2R was significantly higher across four glioma subtypes compared 
to normal brain tissues, i.e., GBM (1.5-fold, p = 4.61E−11), diffuse 
astrocytoma (1.7-fold, p = 0.007), anaplastic astrocytoma (1.2-fold, 
p = 0.003), and oligodendroglioma (1.3-fold, p = 6.20E−07). In data-
set (ii), IGF2R expression was higher in GBM compared to normal 
brain (1.6-fold increase p = 6.51E−05) and the same trend was observed 
in (iii) where IGF2R expression was 1.4-fold higher in GBM com-
pared with normal brain tissue (p = 1.29E−11). f Box plots representing 
ANXA1 normalised gene expression across the TCGA GBM classical, 
mesenchymal, neural and proneural transcriptional subtypes. Open 
circles represent maximum and minimum outlier values; error bars 
represent 1.5× interquartile range; (*) significant expression change 
relative to the classical subtype (vs. neural, p = 0.004; vs. proneural, 
p = 1.73E− 27); (#) significant relative to mesenchymal subtype (vs. 
neural, p = 6.76E− 05; vs. proneural, p = 2.02E− 31); (§) significant rela-
tive to the neural subtype (vs. proneural, p = 1.15E− 12)
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invadopodia formation. The interaction network (Fig.  3) 
included links to several molecules with key regulatory 
roles in invadopodia formation, i.e., SRC, actin regulatory 
complex Arp2/3, WASF1 [35]. ACTR3 is an ATP-binding 
component of Arp2/3 and together with an activating nucle-
ation-promoting factor such as Wiskott-Aldrich syndrome 
protein (WASP), WASF1 (WAVE) or WASH, it mediates 
actin polymerization and invadopodia formation [36]. PDC-
D6IP and ACTR3 are both involved in endosomal sorting, 
which is important for exosome biogenesis. As invadopodia 
are proposed as sites for exosome secretion [13], this could 
imply that more invasive or invadopodia-producing cells 
secrete more exosomes. This is supported by observations 

of cell adhesion and detachment) is a requirement for migration, 
the fate of α5β1 is unknown. It is feasible that more motile cells 
endocytose more ITGB1, which is then sorted into MVEs that 
are shed as EVs. As more invasive cells express more ITGA5 
on their surface [12] and secrete EVs with more ITGB1, the role 
of FN1-α5β1 in the GBM tumour microenvironment should be 
further delineated as it may offer an attractive therapeutic target.

Increases in key invadopodia formation protein, 
ACTR3 and exosomal marker PDCD6IP

There was a significant association between high levels of 
PDCD6IP (also known as ALIX) and ACTR3 and increased 

Fig. 5  Cavitron Ultrasonic Surgical Aspirator (CUSA) fluid collected 
during High Grade Glioblastoma (HGG) and Low Grade Glioma 
(LGG) Surgical Resections. Haematoxylin and Eosin stained sec-
tions of tissue fragments recovered from CUSA washings collected 
during (a) HGG (WHO2007 Grade IV primary GBM) and (b1) LGG 
(WHO2007 Grade II diffuse astrocytoma) surgeries (scale bar 50 µm). 
b2 The LGG tumour specimen was immuno-positive for IDH1 
(R132H) mutation (scale bar 20  µm). c Nanosight particle tracking 
analysis showed size distributions of particles in crude EV prepara-
tions from fluid recovered from HGG and LGG CUSA washings. d 
Mean sizes (nm) of particles isolated from Optiprep™ ultracentrifuga-
tion density fractions (Fractions 1–12), and corresponding densities 
(g/mL). Error bars indicate the standard error of mean. Transmission 

electron microscopy showed morphologies consistent with vesicles in 
combined density fractions 7–9 from (e1) HGG (scale bar 100 µm) 
and (e2) LGG (scale bar 200  µm). f Venn diagram depicts overlap 
of proteins identified at 95 % confidence levels by mass spectrometry 
(MS) in fractions 7–9 from HGG and LGG preparations, with the 
in vitro GBM EV signature proteins. g FunRich generated bar chart 
reveals percentage of genes corresponding to identified proteins in 
HGG and LGG fractions 7–9 corresponding to sub-cellular compart-
ments. h Quantitative mass spectrometry analysis revealed nine puta-
tive ‘invasion’ proteins significantly higher in HGG compared to LGG 
CUSA-enriched EVs, and one protein with borderline significance (*). 
Fold changes are relative to the HGG sample
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brain (Fig.  4). Insulin-like growth factor-binding protein 
2, a glioma marker linked to poor prognosis [52], binds to 
and modulates IGF2R. IGF2R also bind cathepsins [53] 
that are typically localised to lysosomes; EV biogenesis is 
now understood to involve pathways common to lysosome 
degradation [54]. Cathepsin D (CTSD) was also increased 
in EVs from more invasive cells, its release and activity 
is linked to glioma invasion [55], and may act directly by 
degrading local ECM structures or indirectly through acti-
vation of cysteine proteinases [56]. Interestingly, elevated 
CTSD serum levels correlate with glioma grade [57] and 
high CTSD transcript levels in GBM tumours is associated 
with reduced survival [58]. CTSD levels in circulating EVs 
might offer valuable, non-invasive prognostic information. 
ECM1 overexpression is associated with poor prognoses in 
breast, gastric and laryngeal cancer [59–62]. ECM1 mRNA 
is enriched in GBM-EVs compared to cells [3]. Higher EV 
protein levels detected here as well as previous links to 
more aggressive cancer phenotypes suggest that ECM1 is 
an interesting target for further study.

While the phenotype of a cell or tissue correlates directly 
with protein expression, they may not correlate with mRNA 
levels [63, 64], therefore the expression levels of the nine 
invasion-associated proteins that did not show significance 
in silico may still be useful protein biomarkers. Along with 
the five proteins that did show concordance with mRNA 
levels in silico, CALR, IPO5, MVP and PSMD2 protein 
levels were significantly higher in HGG compared to LGG 
enriched EVs; ECM1 levels were also higher, however with 
borderline significance (p = 0.060).

In vivo considerations for translational EV biomarker 
studies

Although the ability to detect appropriate biomarkers in the 
peripheral circulation is the sine qua non of a liquid biopsy, 
EVs isolated from peripheral blood pose two key problems 
during the initial discovery phase of biomarker development 
and should be considered for translation of the in vitro GBM 
EV protein signature described here. Firstly, the presence of 
high abundance proteins (albumin, immunoglobulins, trans-
ferrin and lipoproteins etc.) comprise ~99 % of the protein 
content of blood, masking the presence of low abundance 
proteins that are of major interest for biomarker discovery 
and make high throughput proteomic analysis of serum or 
plasma-derived EVs problematic [65]. Secondly, EVs are 
secreted by all bodily organs with a significant proportion 
in the blood being platelet-derived [9]. Tumour-derived 
EVs exist at relatively low concentrations within the blood 
compared to the total EV population [10]; high enough for 
targeted detection, but not sufficient for the bottom-up, high 
throughput analytical approaches for biomarker discovery 
[11]. This necessitates enrichment steps, which are still in 

that tumours cells produce more exosomes per cell than nor-
mal cells [37] and PDCD6IP and ACTR3 levels are higher 
in GBM tumours compared to normal tissue (Fig. 4).

Intracellular Ca2+ regulation and exosome secretion

Calreticulin (CALR) levels were increased in EVs secreted 
by more invasive GBM cells. CALR is a critical regulator of 
Ca2+ homeostasis [38], its overexpression increases intracel-
lular Ca2+ [39]. Increased cellular Ca2+ stimulates exosome 
secretion [40], which again supports the notion that more 
invasive GBM cells secrete more exosomes. Major vault 
protein (MVP) mRNA was previously observed in GBM-
derived EVs [3] and significantly higher protein levels were 
identified in more invasive GBM EVs here. MVP facilitates 
the nuclear tumour-suppressing function of PTEN in a Ca2+ 
dependent manner [41]; nuclear PTEN is unable to inhibit 
PI3K signalling, leading to a more malignant phenotype 
[42]. Interestingly, EVs are highly enriched in vault RNAs 
[8] that complex with MVP to form the vault organelle that 
plays important roles in transport mechanisms, signalling 
and immune responses [42, 43]. MVP is upregulated dur-
ing malignant transformation and tumour progression and 
has been linked to chemoresistance [42]. CALR was shown 
to promote invasion by increasing MMP-2 and MMP-9 
[44] and is implicated in regulating radiosensitivity and 
radiation-induced apoptosis in GBM [45]. CALR is also a 
critical component of antigen processing and loading into 
MHC I [46]. Higher CALR levels in more invasive GBM 
EVs might be important for local and distant intercellular 
communication and have immunogenic modulatory effects.

CALR functions as a chaperone for amyloid beta A4 pro-
tein (APP) [47], also identified at significantly higher levels 
in EVs from more invasive cells. Increased APP protein lev-
els were observed in GBM tumours [48] and APP metabo-
lites are enriched in exosomes purified from brain tissues 
[49]. Increased APP was shown to up-regulate leucine-
rich glioma inactivated-3 in rat astrocytes, which interacts 
with flotillin-1 to mediate APP trafficking, endocytosis and 
exosome formation in neuronal cells [50]. Elevated APP 
expression is also associated with gliosis and is the main 
component of the senile plaques; Alzheimer’s pathology 
is present in about half of all cases of GBM [51]. While 
APP seems to be a part of a poorly understood cell-contact 
signalling pathway [48], elevated APP levels in invasive 
GBM-derived EVs suggests that this communication occurs 
via EV delivery.

Other EV invasion proteins

Insulin-like growth factor 2-receptor (IGF2R) was mea-
sured at higher levels in more invasive GBM EVs and 
tumour mRNA levels were higher in gliomas than normal 
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