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we investigated the potential relationship between the GR 
and Bcl-2 proteins. Using an in  vitro test system, thymo-
cytes from 4-week-old BALB/c mice, were treated with 
the GC-analogue dexamethasone (DX). Bax accumulated 
in mitochondria upon DX treatment. Mitochondrial GR 
showed association with members of the Bcl-2 family: Bak, 
Bim, Bcl-xL. Elevated Cytochrome C, and active caspase-3, 
-8, and -9 levels were detected in thymocytes after DX 
treatment. These results support the hypothesis that in early 
phases of GC-induced thymocyte apoptosis, the mitochon-
drial pathway plays a crucial role, confirmed by the release 
of Cytochrome C and the activation of caspase-9. The 
activation of caspase-8 was presumably due to cross-talk 
between apoptotic signaling pathways. We propose that the 
GC-induced mitochondrial accumulation of Bax and the 
interaction between the GR and Bim, Bcl-xL and Bak could 
play a role in the regulation of thymocyte apoptosis.

Keywords  Glucocorticoid receptor · Glucocorticoid 
hormone · Non-genomic pathway · Mitochondria · 
Thymocyte apoptosis · Bcl-2 proteins

Introduction

Despite their multiple side effects and broad organ-specific-
ity, high-dose synthetic glucocorticoid hormone (GC) ana-
logues are frequently used in the therapy of autoimmune 
diseases, hematological malignancies and allergies [1, 2]. 
GC analogues have been shown to promote apoptosis of 
leukemic cells and to trigger complex anti-inflammatory 
actions by targeting both the molecular and cellular com-
ponents of the immune system [3, 4]. GCs induce apoptotic 
death of immature, developing thymocytes and also some 
groups of mature, activated T-cells [5]. In mouse models, 

Abstract  Glucocorticoids (GC) are important in the reg-
ulation of selection and apoptosis of CD4+CD8+ double-
positive (DP) thymocytes. The pronounced GC-sensitivity 
of DP thymocytes, observed earlier, might be due to the 
combination of classical (genomic) and alternative (non-
genomic) glucocorticoid receptor (GR) signaling events 
modifying activation or apoptotic pathways. In particular, 
the previously demonstrated mitochondrial translocation 
of activated GR in DP thymocytes offered a fascinating 
explanation for their pronounced GC-induced apoptosis 
sensitivity. However, the fine molecular details how the 
mitochondrial translocation of GR might regulate apopto-
sis remained unclear. Therefore, in the present study, we 
intended to examine which apoptotic pathways could be 
involved in GC-induced thymocyte apoptosis. Furthermore 
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GCs cause robust thymocyte depletion, primarily by the 
induction of CD4+CD8+ double positive (DP) thymocyte 
apoptosis [6–9].

Most of the GCs therapeutic actions are the results 
of their genomic effects mediated by the ligand-induced 
nuclear translocation of the cytoplasmic glucocorticoid 
receptors (GR) leading to the transactivation or -repression 
of numerous genes [10–13]. However, some effects, espe-
cially those at high GC concentrations, for example, used 
for intravenous pulse therapy or intraarticular injections, 
are too rapid to be mediated by changes at the genomic 
level which take hours or even days to develop. These 
“non-genomic”/alternative GC actions include the physico-
chemical interactions of the GC hormone with biological 
membranes [14] and the effects mediated by the glucocorti-
coid–glucocorticoid receptor (GC-GR) complex. These lat-
ter involves non-nuclear actions like rapid eNOS (endothe-
lial nitrogen oxide synthase) activation or alterations in 
signaling events and effector mechanisms of the cells [15], 
for example the interaction of the activated GR with cyto-
plasmic proteins like NF-κB (nuclear factor-kappaB) [16], 
or with molecules of the TCR (T-cell receptor) signaling 
pathway like Lck (lymphocyte-specific protein tyrosine 
kinase), Fyn [17] and ZAP-70 (zeta-chain-associated pro-
tein kinase 70 kDa) [18]. The third non-genomic GC action 
is the translocation of GR to the mitochondria, which cor-
relates to the sensitivity of a given cell type to GC-induced 
apoptosis [19, 20]. The GC-induced mitochondrial apop-
totic pathway leads to the disruption of the mitochondrial 
membrane-potential and the release of key apoptosis induc-
ing factors like Cytochrome C [21, 22]. This study focuses 
on this third type of accidental apoptotic cell death and its 
regulation.

The mitochondrial, or intrinsic, apoptotic pathway is 
regulated by pro-and anti-apoptotic members of the Bcl-2 
protein family at the level of the mitochondria [23]. Within 
the pro-apoptotic members of the Bcl-2 family there are the 
Bcl-2 homology 3 (BH3)-only group proteins such as Bim, 
Bid, Bad, PUMA, Noxa, which transmit the apoptotic stim-
uli by activating Bax and Bak. The anti-apoptotic members 
such as Bcl-2 and Bcl-xL counteract this process by binding 
and neutralizing the pro-apoptotic proteins. After Bax and 
Bak formed pores on the mitochondrial outer membrane, 
Cytochrome C is released and it participates in the forma-
tion of the apoptosome with Apaf1 and caspase-9 and acti-
vates caspase-3 [23, 24]. Caspase-3 can also be activated 
by caspase-8 after the initiation of the extrinsic apoptotic 
pathway [25, 26].

In a preliminary work, in a TCR transgenic mouse 
model, we have shown that thymocytes surviving during T 
cell selection up-regulated their mitochondrial anti-apop-
totic Bcl-2 protein, suggesting that the mitochondria were 
directly involved in the regulation of thymocyte apoptosis 

[22]. Other studies with murine models have demonstrated 
the importance of Bax, Bak, Bim and Bcl-xL in mediating 
dexamethasone (DX)-induced apoptosis [27, 28]. Previ-
ously we have shown, that upon short-term in vitro expo-
sure of DP thymocytes to GCs the GR translocated to the 
mitochondria within 30 min, having a direct effect on the 
mitochondrial function and decreasing the mitochondrial 
membrane potential [6]. Taking these preliminary data 
together, we hypothesize that the mitochondrial GR trans-
location could play an important role in the GC-induced 
apoptosis of thymocytes. On the other hand the relation of 
Bcl-2 family proteins like Bak, Bax, Bim or Bcl-xL with 
the GR has not been investigated so far in the GC-induced 
mitochondrial apoptotic pathway of thymocytes.

Therefore, in this study, we analyzed the short term 
in vitro DX treatment-induced interactions between the GR 
and Bcl-2 family member proteins in mouse thymocytes, 
paying special attention to their distribution between the 
cytoplasm and mitochondria. Parallel with this we char-
acterized the activation of different caspases as markers of 
apoptosis. Here, we provide evidence for the activation of 
the mitochondrial apoptotic pathway as well as direct asso-
ciation between the GR and Bak, Bim, and Bcl-xL after 
short term GC analogue treatment in thymocytes.

Materials and methods

Mice

3–4 weeks old BALB/c mice (obtained from The Jackson 
Laboratory, Bar Harbor, ME, USA) were kept under con-
ventional conditions and provided with pelleted rodent 
chow and water ad  libitum. All animal experiments were 
carried out in accordance with the regulations of Com-
mittee on Animal Experimentations of University of Pécs 
(#BA 02/2000–16/2015).

Short‑term in vitro GC‑analogue treatment of isolated 
thymocytes

After sacrifice, thymi were removed and homogenized 
mechanically in RPMI-1640 medium (Sigma-Aldrich, 
Budapest, Hungary) followed by filtration through nylon 
mesh. Cell viability was determined by trypan-blue dye 
exclusion test using a hemocytometer. 5 × 107 thymocytes 
were treated with 10−6 M DX (synthetic steroid compound, 
which has primarily GC-like effects), 10−2  M stock dis-
solved in dimethyl sulfoxide [(DMSO), both from Sigma-
Aldrich] in serum-free RPMI for 1 and 3 h for western blot-
ting, 0.5  h for confocal microscopy and for 0.5, 1, 2 and 
3 h for flow cytometry at 37 °C. Control samples were kept 
under the same conditions for the same time in the presence 
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of the solvent alone. The treatment was stopped by adding 
ice-cold phosphate buffered saline (PBS), containing 0.1 % 
NaN3 (Sigma-Aldrich).

Antibodies

The following antibodies (Abs) were used for flow cytom-
etry: anti-CD4-Phycoerythrin-Cyanine5 (PE-Cy5) (clone# 
RM4–5) and anti-CD8-Phycoerythrin (PE) (clone# 53–6.7) 
(all from BD Pharmingen, San Jose, CA, USA), for analy-
sis of activated (cleaved) caspases rabbit anti-caspase-3 
(clone# 5A1E), rabbit anti-caspase-8 (clone# D5B2) and 
rabbit anti-caspase-9 (all from Cell Signaling Technology, 
Danvers, MA, USA) were used with anti-rabbit IgG-Fluo-
rescein (FITC) (Sigma-Aldrich) as secondary Ab.

For confocal microscopy the following Abs were used: 
anti-CD4-Pacific Blue (clone# RM4–5, BD Pharmingen), 
anti-CD8-Pacific Orange (clone# 5H10, Life Technolo-
gies, Waltham, MA, USA), anti-GR-FITC (clone# 5E4-
B1, produced in our laboratory) [29] and rabbit anti-Bak, 
-Bax, -Bcl-xL (all from Santa Cruz Biotechnology, Dallas, 
TX, USA) and -Bim (clone# C34C5, Cell Signaling Tech-
nology) with goat anti-rabbit IgG-Cyanine3 (Cy3) sec-
ondary Ab and goat anti-rabbit IgG-FITC secondary Ab 
(Sigma-Aldrich).

For western blot analysis of the activated (cleaved) cas-
pases in the subcellular fractions the following Abs were 
used: rabbit anti-caspase-3, -8, and -9 (all from Cell Sign-
aling Technology) in 1:1000 dilutions. The pro-apoptotic 
proteins were detected with mouse anti-Cytochrome C 
(clone# 7H8.2C12, BD Pharmingen) in 1:2000 dilution, 
rabbit anti-Bax (Santa Cruz Biotechnology) in 1:500 dilu-
tion. For reprobing mouse anti-β-actin (clone# AC-74, 
Sigma-Aldrich) in 1:5000 dilution and anti-Cytochrome C 
Abs were used.

For immunoprecipitation, anti-GR (clone# 8E9, pro-
duced in our laboratory) [29] was used. For western-blot 
analysis of immunoprecipitated samples the following pri-
mary Abs were used: anti-Bak, anti-Bax (both from Santa 
Cruz Biotechnology), mouse anti-Bcl-xL (BD Pharmingen) 
in 1:1000 dilution, rabbit anti-Bim (Cell Signaling Tech-
nology) in 1:1000 dilution and mouse anti-GR (clone# 
5E4, produced in our laboratory) in 1:2000 dilution [29].

For visualization of the western blots peroxidase conju-
gated anti-mouse- or anti-rabbit IgG (produced in our labo-
ratory) were used as secondary Abs in 1:1000 dilutions.

Subcellular fractionation

Mitochondria Isolation Kit (Pierce, Rockford, IL, USA) 
was used to separate cytoplasmic, mitochondrial and 
nuclear fraction from thymocytes, according to manufac-
turer’s instructions, with minor modifications according to 

Stasik et al. [30]. Briefly, isolated solvent control and DX-
treated thymocytes were washed in cold PBS-azide (PBS 
containing 0.1 % NaN3) and lysed. After centrifugation at 
800×g for 10  min, the nuclear pellet was separated. The 
post-nuclear supernatant was centrifuged first at 3000×g 
for 15 min and then at 12,000×g for 5 min. The pellet con-
taining mitochondria was either dissolved in sodium dode-
cyl sulfate (SDS) sample buffer (125  mM Tris, 4 % SDS, 
10 % mercaptoethanol, 0.006 % bromo-phenol-blue (all 
from Sigma-Aldrich) and 10 % glycerol (Molar Chemi-
cals, Budapest, Hungary)) or used for immunoprecipitation 
and the clear supernatant was used as a cytosolic fraction. 
The supernatant was either used for immunoprecipitation 
or boiled immediately in SDS sample buffer for 10  min. 
To use mitochondria for immunoprecipitation the pellet 
was lysed in TEGM lysis buffer (10 mM Tris base, 4 mM 
EDTA (all from Sigma-Aldrich), 50 mM sodium chloride, 
20  mM sodium molibdate (Molar Chemicals), 10 % glyc-
erol, pH 7.6) complemented freshly with protease inhibi-
tor and Na-orthovanadate (both from Sigma-Aldrich). The 
samples were frozen and thawed five times in liquid nitro-
gen and then incubated for 30 min on ice and centrifuged 
for 10 min at 13,000 rpm and the supernatant was used for 
immunoprecipitation.

Immunoprecipitation

For immunoprecipitation, the cytosolic and mitochondrial 
fractions were incubated overnight under continuous rota-
tion with the appropriate amount of precipitating antibod-
ies (see in “Antibodies” section) in blocking buffer (10 mM 
Tris, 100  mM sodium chloride, pH 7.4 containing 10 % 
bovine serum albumin (BSA, Sigma-Aldrich)); then Pro-
tein-G (Santa Cruz Biotechnology) was added to the sam-
ples and they were incubated for additional 2 h under con-
tinuous rotation. Finally, samples were washed five times 
in PBS and immune complexes were removed from the 
Protein-G with boiling for 3 min in SDS sample buffer.

Western blotting

Cell fractions were subjected to sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) on a 10 
or 15 % gel. The gels were blotted for 2 h to nitrocellulose 
membranes using Mini Trans-Blot Cell blotting equipment 
(both from Bio-Rad, Hercules, CA, USA). After transfer, 
nitrocellulose membranes were soaked in blocking buffer 
(2 % BSA or 1 % non-fat dry milk (Bio-Rad), 10 mM Tris, 
100  mM sodium chloride and 0.1 % Tween 20 (Molar 
Chemicals), pH 7.4) and then incubated with the appropri-
ate primary antibodies. Anti-β-actin and anti-Cytochrome 
C antibodies were used to control the equal loading and 
purity of the fractions. Blots were then probed with the 
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appropriate secondary Abs. Blots were washed in a buffer 
containing 10  mM Tris, 100  mM sodium chloride and 
0.1 % Tween 20 (pH 7.4). Western blot visualization was 
performed by enhanced chemiluminescence as described in 
the manufacturer’s instructions (SuperSignal West Femto 
Chemiluminescent substrate, Pierce). Luminescent light 
signals were detected with Fujifilm LAS 4000 blot docu-
mentary system.

Analysis of blots

Densitometry of blots was done with the Image J software 
(http://rsb.info.nih.gov/ij). Densitometric data was calcu-
lated using the original, unmodified images. Relative den-
sities of caspases and cytoplasmic Bax blots were normal-
ized to the relative densities of β-actin, the mitochondrial 
fraction of Bax to Cytochrome C to determine the relative 
expression in the subcellular fractions. Relative densities 
of Bim, Bak, and Bcl-xL immunoprecipitation blots were 
normalized to the relative densities of GR. Brightness and 
contrast of representative images have been adjusted.

Labeling cells for confocal laser scanning microscopy

After 30  min DX treatment CD4-Pacific Blue and CD8-
Pacific Orange labeling of thymocytes was performed 
in binding buffer (PBS containing 0.1 % BSA and 0.1 % 
NaN3) then cells were fixed in 4 % paraformaldehyde 
(Sigma-Aldrich) and washed in permeabilization buffer 
(PBS containing 0.1 % BSA, 0.1 % NaN3 and 0.1 % sapo-
nin (Sigma-Aldrich)). The intracellular labeling of the cells 
was performed in saponin buffer with rabbit anti-Bak, Bax, 
Bcl-xL, and Bim as primary Abs and anti-rabbit IgG-Cy3 
as secondary Ab then with 1  µg/ml anti-GR-FITC anti-
body [29]. The cells were incubated for 1 h with the Abs 
and washed twice in saponin buffer. After the labelling the 
cells were washed again twice in saponin buffer and once 
with PBS then cytospined onto slides. The excess fluid 
was carefully aspirated and the slides were covered using 
Promofluor Antifade Reagent (PromoKine, Heidelberg, 
Germany).

Mitotracker chloromethyl‑X‑rosamine (CMX‑Ros) 
staining of mitochondria for confocal laser scanning 
microscopy

CMX-Ros (Invitrogen, Waltham, MA, USA) is a cell-per-
meant lipophilic reagent, which diffuses through the plasma 
membrane and accumulates in active mitochondria due to 
normal mitochondrial membrane potential [31]. Briefly, 
106 thymocytes were incubated in 1 ml serum-free RPMI 
containing 10  µl CMX-Ros stock solution (1  µg/ml in 
DMSO) for 30 min at 37 °C, following the manufacturer’s 

instructions, parallel with 1 µM DX treatment. Cell surface 
labelling with anti-CD4-Pacific Blue and anti-CD8-Pacific 
Orange and intracellular labeling with rabbit anti-Bax as 
primary Ab, and anti-rabbit IgG-FITC as secondary Ab 
was performed as indicated in “Labeling cells for confocal 
laser scanning microscopy” section.

Confocal microscopic image acquisition and analysis

Visualization and analysis of the samples were carried out 
using an Olympus Fluoview 300 confocal microscope with 
an Olympus Fluoview FV1000S-IX81 image acquisition 
software system. Data were collected in four separate chan-
nels, including differential interference contrast (DIC), UV 
for CD4, virtual red for CD8, FITC for GR, red for Bak, 
Bax, Bcl-xL, and Bim or red for mitochondria and FITC for 
Bax. Sequential scanning was used for image acquisition. 
Signals were collected from cells in 3–3 frames and Bak, 
Bax, Bcl-xL, Bim-GR and CMX-Ros-Bax morphological 
association was analyzed with the ImageJ software (http://
rsb.info.nih.gov/ij) using co-localization plug-in. Co-local-
ization data was calculated using the original, unmodified 
images. Based on the analysis of pixel fluorescence inten-
sities, ranging from 0 to 255, specific staining was distin-
guished from background by using a threshold value of 50 
as described elsewhere [32, 33]. Then, co-localized pixels 
between Cy3-GR and CMX-Ros-Bax were counted. One 
hundred DP cells per sample were analyzed altogether 
using this approach. Brightness and contrast of representa-
tive images have been adjusted.

Labeling cells for flow cytometry

106 cells were treated with DX for 0.5, 1, 2 and 3 h. Cell 
surface labelling with CD4-PECy5 and CD8-PE and intra-
cellular labelling with rabbit anti-caspase-3, -8, -9 as pri-
mary antibodies and with anti-rabbit IgG-FITC as second-
ary antibody was performed as indicated in “Labeling cells 
for confocal laser scanning microscopy” section followed 
by flow cytometric analysis.

Flow cytometric data acquisition and analysis

Samples were measured and analyzed in a FACSCalibur 
flow cytometer (Becton Dickinson, San Jose, CA, USA), 
using the CellQuest Pro software. Thymocyte subpopula-
tions were analyzed separately based on their cell surface 
CD4/CD8 expression for FITC intensity detected in the 
FL1 channel. Fluorescent histogram plots were used to 
compare the ratio of active caspase-3, -8, -9 expressing 
cells (FITC positive) of different samples.

http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij
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Statistical analysis

Data are presented as mean ± SEM. GraphPad Prism (ver-
sion 6.01, GraphPad Software, La Jolla, CA) program was 
used to create the artwork and perform the statistical analy-
sis using Student’s t test. p < 0.05 was considered statisti-
cally significant.

Results

DX‑induced changes in the co‑localization between GR 
and members of Bcl‑2 protein family

Previous studies have shown the importance of Bax, Bak 
and Bim in mediating DX-induced apoptosis [27, 28, 
34–36] and in our preliminary work, in a TCR transgenic 
model, we have observed that thymocytes, surviving T cell 
selection, up-regulated their Bcl-2 protein level [22]. We 
have also shown, that upon in vitro exposure of DP thymo-
cytes to GC the activated GR translocated to the mitochon-
dria within 30 min which was followed by the decrease of 
the mitochondrial membrane potential [6], indicating the 
importance of non-genomic effects and the mitochondrial 
apoptotic pathway in the GC-induced apoptosis of thymo-
cytes. Therefore, now we set out to find potential molecular 
partners for the activated GR in the mitochondrial apoptotic 
pathway. To this end we investigated possible protein inter-
actions between the GR and Bcl-2 family proteins, which 
are responsible for the control of the mitochondrial mem-
brane potential [37]. To test our hypothesis the co-locali-
zation of GR and Bak, Bax, Bcl-xL or Bim was analyzed 
in DP thymocytes before and after 30 min of high dose DX 
treatment (Fig.  1). We found that the GR co-localized to 
some extent with all four investigated Bcl-2 family proteins 
(Fig. 1a1–d1). Upon DX treatment the GR-Bak association 
showed minimal change (Fig.  1a1), the GR-Bax, -Bcl-xL 
association decreased (Fig.  1b1, c1), while the GR-Bim 
association increased (Fig. 1d1).

To quantify the rate of co-localization, we calculated 
and compared the number of co-localized pixels in indi-
vidual DP cells after 30 min of DX treatment to their con-
trols. After DX treatment the co-localized pixel number 
minimally changed between Bak and GR (1463 ± 76 versus 
1342 ± 65 in the control) (Fig. 1a2) but decreased slightly 
between Bax and GR (937 ± 77 versus 1156 ± 44 in the 
control) (Fig.  1b2). The co-localization between GR and 
Bcl-xL decreased significantly after DX treatment (234 ± 19 
versus 314 ± 1 in the control) (Fig.  1c2). We observed a 
remarkable, but statistically not significant, increase in the 
co-localization of Bim and GR upon 30 min DX treatment 
(719 ± 159 versus 501 ± 60 in the control) (Fig. 1d2).

The GR interacts with members of the Bcl‑2 protein 
family in the cytoplasm and the mitochondria 
of thymocytes

To confirm our confocal microscopic results, we investi-
gated the interaction of the GR with Bcl-2 family mem-
ber proteins: Bak, Bax, Bcl-xL and Bim proteins in thy-
mocytes using co-immunoprecipitation with anti-GR 
antibody. We also wanted to elucidate whether the high 
dose DX treatment changed the active GR-Bcl-2 family 
protein complexes’ subcellular distribution. Therefore, 
we performed subcellular fractionation and isolated cyto-
plasmic and mitochondrial fractions from 30 min DX or 
vehicle-treated, unseparated thymocytes. After subcel-
lular fractionation immunoprecipitation was performed 
with anti-GR antibody and then the samples were further 
analyzed by western blot to visualize the co-precipitated 
Bcl-2 family proteins. Densitometric quantification of 
western blots was carried out. The Bcl-2 family protein 
levels were compared in both untreated and DX-treated 
samples. Note: although thymocytes were not separated, 
based on their cell surface phenotype, in these experi-
ments, 70–80 % of the cells are DP in 3-to-4-week-old 
BALB/c mice [38]; therefore the results from our immu-
noprecipitation and western blot experiments give a good 
impression about the DP cells. Results of representative 
experiments are shown in Fig. 2. Confirming our confo-
cal microscopic data (see “DX-induced changes in the co-
localization between GR and members of Bcl-2 protein 
family” section), association of the GR with Bak, Bim, 
Bcl-xL proteins could be observed both in the cytoplas-
mic and mitochondrial fractions of both untreated and 
DX-treated thymocytes (Fig.  2a–c, respectively), how-
ever, Bax protein did not show any direct association 
with the GR (data not shown).

Bak co-precipitated with the GR, and upon DX treat-
ment the Bak-GR co-precipitation increased in the cyto-
plasmic and slightly changed in the mitochondrial frac-
tion (Fig.  2a). We also observed the co-precipitation of 
Bim with the GR (Fig.  2b). Bcl-xL also co-precipitated 
with GR (Fig.  2b). The rate of their co-precipitation 
increased in the cytoplasmic and decreased in the mito-
chondrial fraction upon DX treatment in comparison to 
the control (Fig.  2b). Finally, the GR-Bim association 
changed only minimally in the cytoplasmic fraction, but 
remarkably increased in the mitochondrial compartment 
(Fig.  2c). This pronounced mitochondrial accumulation 
of Bim suggests its potential role in the mitochondrial 
(intrinsic) apoptotic pathway in the GC-induced thymo-
cyte apoptosis.
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DX treatment‑induced mitochondrial accumulation 
of Bax

Bax is a key pro-apoptotic protein in the mitochondrial 
apoptotic pathway. It has been shown earlier, that Bax has 
a constant turnover between the mitochondrial membrane 
and the cytoplasm [39] and it has also been demonstrated 
to be important in GC-induced apoptosis together with Bak 
[27, 28, 34]. In the case of Bax we could not confirm the 
co-localization, observed by confocal microscopy, with 
co-immunoprecipitation (data not shown). Therefore, we 
investigated whether the high dose DX treatment caused 
any redistribution of Bax between the cytoplasmic and 
mitochondrial fractions of thymocytes, and we have found 

that Bax accumulated in the mitochondrial fraction after 
30 min of DX treatment, compared to the control (Fig. 3a). 
This result was confirmed by confocal microscopy 
(Fig. 3b1); the number of Bax-CMX-Ros co-localized pixel 
number increased upon 30 min of DX treatment (910 ± 68 
versus 626 ± 33 in the control) (Fig. 3b2).

Kinetics of caspases’ activation in DP thymocytes

Preceding studies with knock-out (KO) models have 
shown the importance of the intrinsic apoptotic pathway 
in GC-induced apoptosis of thymocytes [40, 41]. How-
ever, others have emphasized the role of caspase-8 and 
the extrinsic pathway in this process [42, 43]. In our 

Fig. 1   Co-localization of 
the GR with members of the 
Bcl-2 protein family: Bak, 
Bax, Bcl-xL and Bim in DP 
thymocytes. Representative 
confocal microscopic images 
from at least three independent 
experiments showing GR-Bak 
(A1), GR-Bax (B1), GR-Bcl-xL 
(C1) and GR-Bim (D1) co-
localization in control (Ctrl) and 
30 min DX-treated cells. DIC, 
CD4 (blue channel) and CD8 
(virtual red channel) overlaid, 
intracellular GR (green channel) 
and Bak, Bax, Bcl-xL, Bim (red 
channel) images are shown. 
The co-localization of the GR 
with Bak, Bax, Bcl-xL and Bim 
(GR-Bak, Bax, Bcl-xL, Bim 
merged images) is indicated 
by the yellow areas. Scale bars 
8 µm each. Bar diagrams show 
the quantification of the changes 
in the GR-Bak (A2), GR-Bax 
(B2), GR-Bcl-xL (C2) and 
GR-Bim (D2) co-localization 
in DP thymocytes after in vitro 
DX treatment. Bars represent 
the number of co-localized 
pixels per cell as calculated 
by the co-localization plugin 
of the ImageJ software. The 
mean ± SEM was calculated 
from the data of 100 DP cells 
per treatment, respectively. 
Significant changes (p < 0.05) in 
DX-treated cells versus controls 
are indicated by asterisk. (Color 
figure online)
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previous research, with DP thymocytes, we have shown 
that the translocation of GR to the mitochondria was fol-
lowed by the decrease of the mitochondrial membrane 

potential [6], which supported the significance of the 
mitochondrial apoptotic pathway in DP thymocyte apop-
tosis induced by GCs.

Hence, now to investigate the activation of caspases 
in DP thymocytes, separately from other thymocyte 
subpopulations, we examined the activation of cas-
pase-3,-8, and -9 after 0.5, 1, 2 and 3  h of DX treat-
ment in DP thymocytes (Fig.  4). The ratio of DP cells 
containing cleaved caspase-9 increased significantly 
after 2 and 3 h of DX treatment (Fig. 4c). The percent-
age of DP cells in which active caspase-3 was detected 
showed increase already after 1 h of DX treatment, and 
after 2 and 3 h of DX treatment the rate of DP cells hav-
ing active caspase-3 increased significantly (Fig.  4d). 
The activation of caspase-9 together with the cleav-
age of caspase-3 implied the activation of the intrinsic, 
mitochondrial apoptotic pathway upon DX treatment. 
The ratio of active caspase-8 containing DP cells was 
slightly elevated upon 0.5 and 1 h of DX treatment, and 
this increase continued and became significant after 
2 and 3  h DX treatment showing a similar tendency 
to the active caspase-9 (Fig.  4e). The changes in cas-
pase-9 activation seemed to be more pronounced than 
in the case of caspase-8 after 2 and 3 h of DX treatment, 
which may suggest a pivotal role of caspase-9 in DX-
induced thymocyte apoptosis.

DX‑induced caspase activation and Cytochrome C 
release to the cytoplasm in thymocytes

To confirm our flow cytometric results we performed 
western blot analysis of activated caspases in unsepa-
rated thymocytes (70–80 % of the cells are DP [38]) 
upon 3 h of DX treatment (which was the peak activation 
seen with flow cytometry, see Fig.  4) together with the 
analysis of Cytochrome C release to the cytoplasm after 
1 h DX treatment. Cell lysates of untreated, control, and 
in vitro DX-treated thymocytes were compared for active 
caspase-3, -8, -9 and Cytochrome C levels (Fig. 5). 1 h, 
high dose DX treatment caused the significant increase 
of Cytochrome C level in the cytoplasm (Fig.  5a). We 
observed the significant elevation of active caspase-9, -3 
levels (Fig.  5b, c, respectively) compared to the control 
after 3  h of high dose DX treatment which are charac-
teristic signs of the activation of the intrinsic (mitochon-
drial) apoptotic pathway. Interestingly, the initiator cas-
pase-8 of the extrinsic pathway was also significantly 
elevated upon DX treatment (Fig.  5d), which might 
reflect a cross-talk between the intrinsic- and extrinsic 
pathways or may indicate the activation of another paral-
lel apoptotic pathway.

Fig. 2   Association of the GR with members of the Bcl-2 family in 
thymocytes. Anti-Bak (a), Bcl-xL (b) and Bim (c) western blots are 
shown from cytoplasmic and mitochondrial fractions of thymocyte 
lysates after anti-GR precipitation with or without DX treatement. 
Blots were reprobed with anti-GR antibody to confirm equal loading 
of the samples. The figure shows representative blots and densitom-
etry data of at least three independent experiments. Diagrams below 
each blot show the relative Bak, Bcl-xL and Bim levels in the cyto-
plasm (normalized to GR) and the mitochondria (normalized to GR). 
Bars represent the mean ± SEM of relative densities compared with 
the controls. IgL: immunoglobulin light chain



246	 Apoptosis (2017) 22:239–253

1 3

Discussion

Glucocorticoid receptor (GR) signaling plays an impor-
tant regulatory role in the selection and apoptosis of 
thymocytes [6–8]. Besides the nuclear-, mitochondrial 
translocation of the ligand-bound GR might dictate GC-
induced apoptosis sensitivity of the cells [6, 44–49]. In 
a previous study, we followed the ligand-induced GR 
trafficking in GC-sensitive CD4+CD8+ DP thymocytes 
[50–52] upon short term in vitro GC treatment and dem-
onstrated the GR translocation into the mitochondria, 
which correlated well with their pronounced GC-induced 
apoptosis sensitivity [6, 51]. However, the molecular 
events following the short-term GC treatment-induced 
mitochondrial translocation remained to be elucidated. In 
our present work we clarified that the GR regulates the 
mitochondrial apoptotic pathway of thymocytes in close 
collaboration with the Bcl-2 family proteins.

We observed both co-localization and direct molecular 
association of Bak with GR (Figs.  1, 2). After DX treat-
ment this association was unchanged in the mitochondrial 
fraction but increased in the cytoplasm of thymocytes upon 
high-dose short-term DX treatment. Upon apoptotic stim-
uli, Bax translocates to the mitochondria where it forms a 
complex with Bak leading to mitochondrial pore formation 
[24]. Our findings suggest that Bax has a primary role in 
the early phase of DX-induced apoptosis of thymocytes, 
although not associating directly with the GR. We cannot 
rule out the possibility that Bak also plays a role in GC-
induced apoptosis, but probably joins at a later stage than 
we examined in our work. This is supported by earlier 
observations in thymocytes form Bax/Bak double KO mice 
which were completely resistant to GC-induced apoptosis, 
whereas Bax or Bak single KO mice thymocytes were still 
sensitive to GCs [34]. These studies, with knock-out mice, 
have strengthened the importance of Bak in GC-induced 

Fig. 3   Subcellular distribution of Bax in thymocytes upon DX treat-
ment. a Western blot shows the DX treatment-induced redistribution 
of Bax between the cytoplasmic and mitochondrial fractions of thy-
mocytes. Blots were reprobed with anti-β-actin or anti-Cytochrome 
C (Cyt C) antibodies to confirm the purity of the cytoplasmic and 
mitochondrial fractions, respectively. The figure shows a representa-
tive blot and the densitometry data of at least three independent 
experiments. The diagram shows the relative Bax expression in the 
cytoplasm (normalized to β-actin) and the mitochondria (normalized 
to Cytochrome C). Bars represent the mean ± SEM of relative densi-
ties compared to the controls. b Mitochondrial translocation of Bax 
in DP thymocytes. b1 Representative confocal microscopic images 

of at least three independent experiment showing CMX-Ros-Bax co-
localization in control (Ctrl) and 30 min DX-treated cells. DIC, CD4 
(blue channel) and CD8 (virtual red channel) overlaid, mitochon-
dria (CMX-Ros, red channel) and Bax (green channel) images are 
shown. The co-localization of mitochondria with Bax (CMX-Ros-
Bax merged images) is indicated by yellow areas. Scale bars are 8 µm 
each. b2 Quantification of the changes in the CMX-Ros-Bax co-local-
ization in DP thymocytes after in vitro DX treatment was performed 
using the co-localization plugin of the ImageJ software. Bars repre-
sent the number of co-localized pixels. The mean ± SEM was calcu-
lated from the data of 100 DP cells per treatment, respectively. (Color 
figure online)
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apoptosis, but also have suggested that Bax and Bak may 
compensate for each other [34].

Our results showed the association of Bim, a BH3-only 
protein, with GR and their interaction increased especially 
in the mitochondrial fraction upon DX treatment (Figs. 1, 
2). Bim−/− knock-out mice showed impaired GC-induced 

apoptosis [35, 36] showing its important but not exclusive 
participation in this death process. This is also supported 
by the results of other research groups [53]. GCs have been 
found to induce the expression of Bim in murine thymo-
cytes after 2 or 3  h of DX treatment [47, 54]. Increased 
expression of Bim has correlated with increased sensitivity 

Fig. 4   Flow cytometric analysis of the kinetics of caspase activation 
in DP thymocytes upon 30  min to 3  h of DX treatment. a Thymo-
cyte subpopulations were gated based on their CD4/CD8 expression. 
b The representative fluorescent histogram plot shows the active cas-
pase-9 positive percentage of DP thymocyte subpopulation before 
and after 3 h of DX treatment. Bar diagrams show the mean ± SEM 

of cleaved, active caspase-9 (c), -3 (d) and -8 (e) positive percentage 
of cells (calculated from the data of three animals) in the DP thymo-
cyte population and its changes upon 30 min to 3 h of DX treatment. 
Significant (p < 0.05) differences compared to the untreated controls 
are indicated by asterisk
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to GC-induced apoptosis [55, 56], dysregulation of its 
gene expression has been found in solid and hematopoi-
etic malignances [57], where reduced expression corre-
lated with increased disease risk [58], and single nucleo-
tide polymorphisms have been associated with impaired 
responsiveness to anticancer therapies [59–61]. Our results 
also support that Bim plays a crucial role in the initiation 
of GC-induced apoptosis of DP thymocytes; the increased 
association of Bim with the GR in the mitochondria may 
promote the activation and oligomerization of Bax in the 
mitochondrial outer membrane.

Interestingly, we also observed interaction between Bcl-
xL, an anti-apoptotic member of the Bcl-2 family, and the 
GR during the DX-induced apoptotic processes. Bcl-xL has 
been shown to retrotranslocate Bax from the mitochon-
dria to the cytoplasm by binding to it and thus inhibiting 
its pro-apoptotic activity [62]. We hypothesize that the 
interaction between the GR and Bcl-xL would cause the 
inhibition of this particular Bcl-xL function. After 30 min 
DX treatment the GR bound ratio of Bcl-xL increased in 
the cytoplasmic but decreased in the mitochondrial frac-
tion (Fig. 2) which suggests that Bcl-xL, after translocating 
to the cytoplasm from the mitochondria, binds to the GR, 
and this sequestration could abolish its antagonistic effect 
on the apoptotic process. This hypothesis about the inhibi-
tory effect of the GR on Bcl-xL is supported by the result 
of another research group where it has been observed that 
the expression of Bcl-xL decreased significantly after 2 or 
3  h of DX treatment [54]. However, the co-localization 

between Bcl-xL and the GR decreased significantly after 
DX treatment (Fig. 1), which might be due to the fact that 
the co-localization results are only from DP cells and it 
gives the overall ratio of co-localization, both in the cyto-
plasm and the mitochondria, while unseparated thymocytes 
were used for the co-immunoprecipitation experiment and 
the cytoplasmic and mitochondrial fractions were analyzed 
separately.

The rate of co-localization between Bax and the GR 
slightly changed upon DX treatment (Fig. 1), but we could 
not confirm the co-localization, observed by confocal 
microscopy, with co-immunoprecipitation experiments. 
Co-localization expresses molecular proximity, but does 
not reflect necessarily direct molecular interaction between 
two molecules. In the case of Bax, where the co-localiza-
tion with the GR was not confirmed by co-immunopre-
cipitation, the results suggest that the two molecules were 
very close to each other, but there were no direct interac-
tion between them. According to our results GR, a 94 kDa 
molecule, associates with other members of the Bcl-2 pro-
tein family, which are in the vicinity of Bax. It is known 
from the work of others [62–65] that these Bcl-2 proteins 
interact with each other, which may explain the proximity 
of the GR to Bax without direct association. Besides we 
detected a clear redistribution of Bax from the cytoplasm to 
the mitochondria (Fig. 3) which correlated with the results 
of others [27, 28] suggesting the central role of Bax in DX-
induced apoptosis of thymocytes. Bax trafficking between 
the mitochondrial outer membrane and the cytoplasm is a 

Fig. 5   Western blot analy-
sis of DX treatment induced 
Cytochrome C release to the 
cytoplasm and caspase-3, -8, 
-9 activation in thymocytes. 
The cytoplasmic presence 
of Cytochrome C (a), active 
(cleaved)-caspase-9 (b), -3 (c) 
and -8 (d) were detected in 
thymocyte lysates by western 
blot. Blots were reprobed with 
anti-β-actin antibody to confirm 
equal loading of the samples. 
The figure shows representative 
blots and the densitometry data 
of at least three independent 
experiments. Diagrams below 
each blot show the relative 
Cytochrome C and caspase-9, 
-3, -8 levels (normalized to 
β-actin). Bars represent the 
mean ± SEM of relative densi-
ties compared to the untreated 
controls. Significant (p < 0.05) 
differences are indicated by 
asterisk
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key regulator of the intrinsic (mitochondrial) pathway of 
apoptosis [24, 39, 66]. Bax oligomerization in the mito-
chondrial membrane leads to the formation of a permeabil-
ity pore, which causes the decrease of the mitochondrial 
membrane potential [24], as it has been detected in our pre-
vious experiments [6].

Caspases are important effectors of both, intrinsic and 
extrinsic, apoptotic pathways [23, 26]. In our experiments 
we analyzed the kinetics of caspases’ activation from 0.5 to 
3 h of DX treatment. We observed significantly increased 
number of DP thymocytes containing active, cleaved cas-
pase-3, -8, -9 after 2 and 3 h of DX treatment. After 1  h 
of DX treatment, the caspase-3 activation was probably the 
result of caspase-9 activation following the decrease of the 
mitochondrial membrane potential observed after 30  min 
DX treatment in our previous work [6]. But the activation 
of caspase-3 after 1  h of DX treatment may be partially 

the result of the activation of parallel apoptotic pathways. 
These include ceramide and sphingosine generation which 
were reported to be able to induce caspase-3 activation in a 
mitochondria independent manner [42, 67]. The prominent 
caspase-9 activation after 2 h DX treatment was followed 
by remarkable caspase-3 activation after 3 h DX treatment. 
The number of DP cells containing activated caspase-9 was 
almost doubled after 2  h and the number of cleaved cas-
pase-8 containing DP cells increased significantly but to 
a lesser extent than caspase-9. This observation suggests 
that the activation of caspase-9 may be prior to caspase-8 
activation and strengthen the importance of the mitochon-
drial apoptotic pathway in DX-induced apoptosis of DP 
thymocytes.

Our results are supported by the work of other research 
groups. Several knock-out models have been generated 
already, where one or more members of the Bcl-2 family 

Fig. 6   Hypothetical model of the GC-induced apoptosis of thymo-
cytes via the regulation of the mitochondrial apoptotic pathway by 
members of Bcl-2 protein family. Upon high dose GC treatment the 
GR translocates to the mitochondria (dashed arrow) where its inter-
action increases with Bcl-2 family proteins, especially with Bim. 
Then Bax is presumably activated by Bim, leading to permeability 
pore formation in the mitochondrial outer membrane, and the leakage 
of Cytochrome C into the cytoplasm, which triggers the caspase-cas-

cade. The accumulation of Bax in the mitochondrial outer membrane 
is most likely further enhanced by the increased cytoplasmic associa-
tion of the liganded GR and the Bcl-xL which suspends the latter’s 
inhibitory effect on the mitochondrial pore formation by Bax. The 
role of the GR-Bak association remains to be elucidated. Caspase-8 
activation (extrinsic pathway) may be the result of the interaction 
between the GR and other apoptotic pathways (dotted arrow)
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or caspases were inactivated and thus, the deficiency of 
these proteins can be studied effectively. These mod-
els have provided an important insight into the different 
apoptotic pathways. For example, caspase-9−/− KO thy-
mocytes have been found to be resistant to DX-induced 
apoptosis, but remained sensitive to apoptosis induced 
by TNF-α, α-CD95 [40]. Apaf−/− KO thymocytes have 
shown only partial resistance to DX-induced apoptosis 
and impaired procaspase-8 processing, but were sensitive 
to apoptosis induced by Fas ligation [41]. GC-induced 
thymocyte apoptosis has been unaffected in Bid-deficient 
mice suggesting the dispensable role of the extrinsic 
apoptotic pathway in GC mediated cell death [68]. On 
the other hand, using small peptide inhibitors of caspases 
have shown the importance of caspase-3 and -8 in GC-
induced thymocyte apoptosis [42, 43], but the specificity 
of these inhibitory molecules might be unclear [69–71]. 
Some results have suggested the primary role of caspase-9 
in GC-induced apoptosis [40, 41]. However, others have 
not supported these findings [42, 72]. The activation of 
caspase-8 could also be the result of the activation of 
caspase-9 either through the release of cathepsin B from 
lysosomes leading to caspase-8 activation [73] or through 
the activation of caspase-3 and -6, which then cleaves 
caspase-8 [74]. But the activation of caspase-8 can be 
the result of the induction of other apoptotic pathways 
activated by GCs including; ceramide and sphingosine 
production, Cyclin-dependent kinase 2 activation, or as 
already mentioned above, the lysosomal release of cathep-
sin B [42, 72, 73, 75].

In conclusion, our results demonstate the complexity 
of early steps of the DX-induced mitochondrial apoptotic 
pathway in GC sensitive, DP thymocytes (Fig.  6). In the 
absence of its ligand some association could be observed 
between the GR and members of the Bcl-2 family (Bak, 
Bim, Bcl-xL) proteins. There is a constant turnover of the 
pro-apoptotic Bax between the mitochondrial outer mem-
brane and the cytoplasm. When no apoptotic stimuli are 
present Bcl-xL retrotranslocates Bax from the mitochon-
drial outer membrane, thus the majority of Bax is located 
in the cytoplasm in an inactive conformation [62]. Upon 
high dose GC treatment the liganded GR changes the equi-
librium between the Bcl-2 family proteins, in such a way, 
which promotes apoptosis. GR translocates to the mito-
chondria where its interaction increases especially with 
Bim. Bim presumably activates Bax leading to the accu-
mulation and permeability pore formation of Bax in the 
mitochondrial outer membrane, causing the decrease of 
the mitochondrial membrane potential [6], the release of 
Cytochrome C and the activation of caspase-9 (Fig.  6). 
The pore formation of Bax in the mitochondrial outer 
membrane might be supported by the increased cytoplas-
mic association of the activated GR with Bcl-xL,which 

interferes with the latter’s inhibitory effect on the mito-
chondrial pore formation by Bax. The role of the GR-Bak 
association needs further investigations. Caspase-8 activa-
tion (extrinsic pathway) may be the result of the interaction 
of GR and other apoptotic pathways [42, 72, 73, 75]. Taken 
together, our results emphasize the importance of the mito-
chondrial apoptotic pathway and the non-genomic effects 
in GC-induced thymocyte apoptosis.
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