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Abstract

Retinal ganglion cell degeneration underlies
several conditions which give rise to
significant visual compromise, including
glaucoma, hereditary optic neuropathies,
ischaemic optic neuropathies, and
demyelinating disease. In this review, we
discuss the emerging strategies for
neuroprotection specifically in the context of
glaucoma, including pharmacological
neuroprotection, mesenchymal stem cells, and
gene therapy approaches. We highlight
potential pitfalls that need to be considered
when developing these strategies and outline
future directions, including the prospects for
clinical trials.
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Introduction

Retinal ganglion cells (RGCs) provide the final
common pathway to transmit all visual
information processed by the retina to the brain.
RGC degeneration therefore has a significant
visual impact and is the leading cause of
irreversible blindness worldwide.1 There are
unmet clinical needs for many conditions affected
by RGC degeneration including glaucoma,
hereditary optic neuropathies, ischaemic optic
neuropathies and demyelinating disease.
Lowering intraocular pressure (IOP) reduces

the risk of progressive RGC loss in glaucoma but
no currently available treatments directly
prevent RGC damage. However, recent
successes in the treatment of other progressive
retinal pathologies have paved the way for the
advancement of several strategies to target RGC
degeneration. In this review, we outline the
ongoing clinical need to develop approaches to
protect RGCs specifically in the context of
glaucoma and discuss emerging strategies
(Figure 1) that show promise, potential pitfalls
and future directions including the prospects for
clinical trials of neuroprotective treatments.

The clinical need for neuroprotection

Raised IOP is the strongest risk factor for
glaucoma2,3 and all current therapeutic strategies
work by lowering the IOP either medically or
surgically. IOP lowering is a powerful, well-
tolerated approach for many patients but the
clinical need for additional strategies remains as a
proportion of patients continue to progress despite
effective IOP reduction. Even in populations with
access to the best treatments currently available, an
estimated one in eight patients will still eventually
become blind in at least one eye due to glaucoma
progression.4,5

The precise pathogenesis underlying
glaucoma progression is not fully understood
but glaucoma is now considered to be a
heterogeneous group of conditions giving rise to
RGC damage. Differing underlying aetiologies
contribute to the glaucoma phenotype with
vascular, mitochondrial or connective tissue
pathology likely to be involved to varying
extents in different individuals. While effective
neuroprotection strategies may not always
require full knowledge of the primary
degeneration process, the potential does exist for
the development of individualised treatments
according to the relative contributions of the
various disease processes in individual patients.
For example, myopic patients or those with
connective tissue disorders who are theoretically
more susceptible to RGC damage from IOP
fluctuations due to a thinner lamina cribrosa and
altered scleral elasticity may be less likely to
respond to interventions that improve vascular
dysregulation or mitochondrial function than
those identified to have predominantly other
pathologies on genetic testing. Individuals may
also have a number of different genetic
predispositions to develop glaucoma but with
advances in gene editing technology, for
example with the CRISPR/Cas9 system recently
having been used to partially restore visual
function in blind rodents,6 perhaps it is only a
matter of time before glaucoma patients will be
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able to receive targeted treatments to overcome their
innate susceptibility to the disease.
The ability to confer additional neuroprotection early to

those deemed to be at highest lifetime risk may also prove to
be beneficial and treatments that ultimately restore visual
function to those at an advanced stage of the disease process
remains an ambitious but important goal.

Neuroprotective strategies

Neuroprotection aims to augment the benefit provided by
IOP lowering in order to slow the rate of RGC cell death
and preserving the remaining level of vision. Whether any
potential neuroprotective strategies can also improve the
function of injured retinal ganglion cells remains to be
seen. Neuroregenerative approaches are a key target of
the National Eye Institute Audacious Goals Initiative.
Regeneration of the optic nerve has recently been shown
to restore some visual function in animal models7 and
there is a compelling argument for a combined
neuroprotective/neuroregenerative approach when
considering future treatment strategies for glaucoma.
Neuroregeneration of RGCs has been extensively
reviewed elsewhere8–10 and is discussed in detail in
several other papers from the Cambridge
Ophthalmological Symposium 2016, published in this
edition of Eye.

Pharmacological neuroprotection

A number of compounds targeting a variety of
mechanisms including modulation of glutamate-induced
excitotoxicity,11–14 vascular regulation via inhibition of
nitric oxide synthase15,16 or the endothelin pathway,17,18

oxidative stress,19–23 and inhibition of glial activity24,25

have been shown to be neuroprotective in animal models
of glaucoma though few have been tested in formal
clinical trials.
Laboratory studies have demonstrated that systemic

administration of brimonidine provides RGC
neuroprotection in animal glaucoma models independent
of its effect on IOP.26,27 This neuroprotective effect is
thought to be mediated via a variety of mechanisms
including brain derived neurotrophic factor (BDNF) and
basic fibroblast growth factor upregulation,28,29 the
activation of cell survival signalling pathways and
prevention of apoptosis30 and α2 modulation of
N-methyl-D-aspartate (NMDA) receptor function.31

In human clinical trials, brimonidine monotherapy
lowered the incidence of visual field progression
compared to timolol treated patients (9 vs 30%) in the
Low Pressure Glaucoma Study Group32 over a period of
30 months in patients who were able to tolerate the

treatment. In addition, brimonidine administered
topically twice a day for 2 weeks prior to vitrectomy
achieved 2 nM in the vitreous33 which was at a sufficient
concentration for neuroprotection in previous animal
studies.34 However, the repeated administration of topical
agents is associated with side effects and non-compliance
and therefore other approaches may have
additional value.
Memantine is a non-competitive NMDA receptor

antagonist which is used in the treatment of moderate to
severe Alzheimer’s disease and showed promising results
in a monkey model of glaucoma.35 However, in large
scale multicentre, randomised double-masked placebo-
controlled Phase III clinical trials36,37 conducted to test the
efficacy of oral memantine for glaucoma, there was no
evidence of any statistical benefit compared to placebo in
reducing visual field progression. The failure to
demonstrate statistical significance relative to placebo in
trials that took nearly 5 years at an estimated cost of over
$100 million highlighted a need for better glaucoma
clinical trial design and more effective use of relevant
endpoints as required by regulatory agencies.
Demonstrating that agents which have achieved

neuroprotection in animal models have translational
potential in human clinical trials presents several major
challenges. First, accurately modelling a variable and
complex multifactorial disease process such as glaucoma,
where the underlying pathology is not fully understood,
is difficult. Available animal models replicate some
aspects of the disease but all have significant limitations.
As an example, many glaucoma models involve induced
elevation of IOP but do not model the increased
susceptibility to glaucomatous damage that may be a
contributing factor in many glaucoma patients.
Second, the way glaucoma is conventionally

phenotyped is relatively unsophisticated and it is likely
that different mechanisms are relevant to varying extents
in different patients in ways that are not modelled
effectively in animals at present.
Third, differences in outcome measures used when

assessing laboratory studies and human patients are
another potential issue. In addition, neuroprotective
agents are often administered prior to the onset of
damage in animal studies which limits their relevance
when comparing any effect to therapeutic intervention in
patients who already have the disease.
Slow progression of glaucoma in patients recruited to

clinical trials of neuroprotection would suggest lengthy
trials would be required and the individual variability
that occurs when performing functional tests would be
expected to necessitate large group sizes to determine
whether there is evidence of any therapeutic effect.
It is therefore of considerable interest that recently, the

UK Glaucoma Treatment Study (UKGTS),38 which
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evaluated vision preservation in patients taking the
prostaglandin analogue Latanoprost for open-angle
glaucoma in a randomised, multicentre, placebo-
controlled trial demonstrated statistically significant
differences between treatment groups in only one year
with approximately 250 patients per group. It is
conceivable that recruitment of patients progressing at a
pre-defined rate prior to trial entry and enhancement of
functional endpoints by clustering of measurements at the
beginning and the end of studies could help to shorten
neuroprotection trials and reduce the group sizes
required still further.

Mesenchymal stem cells

Mesenchymal stem cells (MSCs) have been shown to be
strongly neuroprotective in models of Parkinson’s
disease, multiple sclerosis and spinal cord injury as well
as many other disease models. Over 200 clinical trials
using MSCs have been registered in the NIH database
with 8 trials in multiple sclerosis alone. Advantages of
MSCs compared to other types of stem cells include the
fact that they are easy to obtain from a variety of sources
including adult bone marrow, avoid ethical concerns and
can be used without immune suppression.

Figure 1 Summary of retinal ganglion cell (RGC) neuroprotection strategies.
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MSCs have also been shown to be neuroprotective in a
rat glaucoma model.39–42 An analysis of the protective
factors produced by MSCs strongly implicated platelet-
derived growth factor (PDGF) and subsequent blockage
of PDGF signalling prevents MSC-mediated
neuroprotection in animal models.43 We have also
recently demonstrated a dose dependent protection
against apoptosis with PDGF treatment with greater
protection from MSCs in human post mortem retinal
tissue (unpublished data). However, despite these
encouraging results, it should be noted that PDGF and
MSCs can induce reactive gliosis44 in retinal Muller cells
and astrocytes with upregulation of intermediate filament
proteins and retinal folding.44 Analysis of gene expression
data obtained through microarray experiments suggest
that both the STAT3 pathway and Lipocalin-2 (Lcn2)
expression are upregulated in the presence of MSCs. This
is consistent with increasing evidence that Lcn2 is
involved in astrogliosis, neuroinflammation and reactive
glia-mediated neurotoxicity in animal models of
neurodegeneration,45 perhaps through chemokine
upregulation46 and the promotion of glial migration.
There have been similar recent reports of

proinflammatory vitreous clumping of MSCs injected
intravitreally47 as well as thick epiretinal membrane
formation following MSC administration in humans.48

These adverse effects may also be due in part to the
inconsistency in MSC isolation and preparation. An
attempt to standardise the identification of these cells led
to the development of the International Society for
Cellular Therapy criteria49 but problems continue to be
reported despite this and may limit the degree to which
MSCs can successfully be used to confer neuroprotection
to RGCs.

Stem cells in glaucoma clinical trials

Although there are significant concerns with regard to the
unregulated use of MSCs in various centres around the
world, there are currently at least three registered clinical
trials evaluating the use of stem cells in glaucoma:

1. The Intravitreal Mesenchymal Stem Cell Transplantation
in Advanced Glaucoma study:50 a Phase 1 safety study in
10 patients who meet the legal definition of bilateral
blindness, with intravitreal injection of autologous MSCs
administered to the worst-affected eye. Outcome mea-
sures include visual acuity, visual fields, optical coherence
tomography and electroretinography.

2. Stem Cell Ophthalmology Treatment Study (SCOTS):51

a non-randomised, open-label efficacy study evaluat-
ing the use of MSCs in multiple eye diseases including
glaucoma delivered through either the sub-Tenon’s,

retrobulbar or intravenous route. The study is patient
funded and claims to be associated with a risk of
potential complications of 0.0008–5% depending on
the physician-selected treatment protocol chosen for
individual patients. The study website declares that it
hopes for visual improvement in the vast majority of
individuals enrolled, but very little information is
provided with regard to outcomes of those already
treated.

3. Effectiveness and Safety of Adipose-Derived Regen-
erative Cells for Treatment of Glaucomatous Neuro-
degeneration study:52 an open-label safety and efficacy
study in Russia. Stem cells are delivered via the sub-
Tenon’s route with structural and functional endpoints
and is a single-arm study with no control group.

It remains conceivable that stem cells do have the
potential to provide a useful treatment strategy for
glaucoma, either by a neuroprotective or
neuroregenerative mechanism. However, in order to
assess such strategies we need randomised, masked,
controlled clinical trials and further work on the optimal
mode of delivery. Most ‘stem cell’ treatments for
glaucoma administered worldwide are unregulated and
currently most registered trials are patient funded, open-
label studies. Care needs to be taken to prevent the
exploitation of vulnerable patients and false promise of
success with unproven treatments.

Gene therapy

There has been significant progress in the use of retinal
gene replacement strategies designed to augment loss of
function mutations in conditions such as Leber’s
congenital amaurosis and choroideraemia, with
encouraging safety and efficacy results and reports of
some possible improvement in visual function in some
patients.53,54

Advances are also being made in RGC disease and
clinical trials are currently being conducted to evaluate
the efficacy of GS010, an adeno-associated virus type 2
(AAV2) construct containing the human wild-type
NADH dehydrogenase subunit 4 (ND4) gene to treat
patients with Leber’s Hereditary Optic Neuropathy due
to the G11778A ND4 mitochondrial mutation.
Preliminary data from the Phase I/II trial55,56 showed
promising results and provided the foundation for two
Phase III clinical trials which are currently underway.57,58

Additional gene-based strategies being investigated
include the delivery of genes encoding therapeutic
proteins such as neurotrophic factors. AAV2 mediated
delivery of BDNF59 and ciliary neurotrophic factor
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(CNTF)60 have been shown to confer RGC
neuroprotection in experimental glaucoma.
Furthermore, optogenetic approaches to transform

light-naïve retinal cells such as RGCs and introduce
additional light sensitivity to the retina where the rod and
cone photoreceptors have degenerated are also being
developed. RetroSense Therapeutics are currently
recruiting for a Phase I/II trial to test the safety profile of
intravitreal RST-001, which delivers a gene encoding
channelrhodopsin-2 to RGCs. Channelrhodopsin-2
depolarises when expressed and exposed to light, thereby
generating a signal for transmission along RGC axons to
the brain.

Neuroprotection and the future

The delivery of intravitreal agents has revolutionised the
treatment of retinal conditions such as age related
macular degeneration, diabetic retinopathy and retinal
vascular pathologies and their success and widespread
therapeutic use demonstrates that patients are able to
tolerate intravitreal injections repeatedly. There remains a
strong clinical need for RGC neuroprotection with gene
therapy and cell-based therapies showing considerable
promise. As we continue to develop these strategies, the
need to ensure that vulnerable patients are not taken
advantage of with the false promise of success from
unregulated trials that rely on patient funding is
paramount. Refinement of clinical trial design to ensure
that endpoints are feasible and clear also remains a
priority.
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