Skip to main content
. 2017 Jan 31;2017:5109530. doi: 10.1155/2017/5109530

Table 2.

Comparison of mean accuracy (%) of combination of four features and ten classifiers.

Classifier Feature
SE FE AE PE Mean ± SD
AB 73.2 ± 4.4 84.2 ± 3.6 72.9 ± 5.5 65.3 ± 6.1 73.9 ± 8.4
DT 80.6 ± 3.3 89.7 ± 2.9 80.2 ± 4.2 72.7 ± 5.7 80.8 ± 7.3
GP 69.5 ± 5.4 81.7 ± 4.1 69.0 ± 6.4 62.8 ± 6.0 70.8 ± 8.8
LS 66.0 ± 5.0 79.3 ± 4.4 64.8 ± 6.4 57.3 ± 7.2 66.9 ± 9.9
GNB 67.5 ± 6.0 80.5 ± 4.3 66.8 ± 7.1 58.2 ± 7.1 68.3 ± 10.1
KNN 77.3 ± 4.4 85.8 ± 3.4 77.4 ± 5.0 71.5 ± 7.6 78.0 ± 7.4
MLP 67.7 ± 5.5 80.7 ± 4.3 67.0 ± 6.8 58.5 ± 7.2 68.4 ± 10.0
QDA 67.5 ± 6.0 80.5 ± 4.3 66.8 ± 7.1 59.3 ± 7.1 68.5 ± 9.8
RF 85.9 ± 3.1 91.8 ± 2.7 85.9 ± 3.3 79.1 ± 9.3 85.7 ± 7.0
RS 68.3 ± 5.7 81.2 ± 4.1 67.9 ± 6.8 59.2 ± 6.8 69.1 ± 9.8
Mean ± SD 72.3 ± 8.1 83.5 ± 5.6 71.9 ± 9.0 64.4 ± 10.1

Boldface indicates FE + RF is the optimal method.