Skip to main content
. 2017 Jan 31;2017:5109530. doi: 10.1155/2017/5109530

Table 3.

Comparison of mean AUC of combination of four features and ten classifiers.

Classifier Feature
SE FE AE PE Mean ± SD
AB 0.808 ± 0.044 0.904 ± 0.027 0.804 ± 0.053 0.720 ± 0.080 0.809 ± 0.085
DT 0.886 ± 0.033 0.946 ± 0.025 0.883 ± 0.038 0.817 ± 0.060 0.883 ± 0.061
GP 0.743 ± 0.059 0.865 ± 0.037 0.736 ± 0.069 0.667 ± 0.077 0.753 ± 0.095
LS 0.690 ± 0.053 0.825 ± 0.055 0.674 ± 0.068 0.584 ± 0.098 0.693 ± 0.111
GNB 0.726 ± 0.063 0.857 ± 0.036 0.720 ± 0.073 0.609 ± 0.090 0.728 ± 0.111
KNN 0.847 ± 0.044 0.921 ± 0.025 0.847 ± 0.050 0.775 ± 0.099 0.848 ± 0.080
MLP 0.716 ± 0.063 0.850 ± 0.040 0.709 ± 0.075 0.615 ± 0.092 0.722 ± 0.109
QDA 0.726 ± 0.063 0.857 ± 0.036 0.720 ± 0.073 0.622 ± 0.090 0.731 ± 0.108
RF 0.936 ± 0.031 0.969 ± 0.021 0.937 ± 0.031 0.874 ± 0.111 0.929 ± 0.070
RS 0.0728 ± 0.062 0.859 ± 0.036 0.721 ± 0.074 0.610 ± 0.087 0.729 ± 0.111
Mean ± SD 0.780 ± 0.095 0.885 ± 0.057 0.775 ± 0.104 0.689 ± 0.132

Boldface indicates FE + RF is the optimal method.