Table 3.
Comparison of mean AUC of combination of four features and ten classifiers.
Classifier | Feature | ||||
---|---|---|---|---|---|
SE | FE | AE | PE | Mean ± SD | |
AB | 0.808 ± 0.044 | 0.904 ± 0.027 | 0.804 ± 0.053 | 0.720 ± 0.080 | 0.809 ± 0.085 |
DT | 0.886 ± 0.033 | 0.946 ± 0.025 | 0.883 ± 0.038 | 0.817 ± 0.060 | 0.883 ± 0.061 |
GP | 0.743 ± 0.059 | 0.865 ± 0.037 | 0.736 ± 0.069 | 0.667 ± 0.077 | 0.753 ± 0.095 |
LS | 0.690 ± 0.053 | 0.825 ± 0.055 | 0.674 ± 0.068 | 0.584 ± 0.098 | 0.693 ± 0.111 |
GNB | 0.726 ± 0.063 | 0.857 ± 0.036 | 0.720 ± 0.073 | 0.609 ± 0.090 | 0.728 ± 0.111 |
KNN | 0.847 ± 0.044 | 0.921 ± 0.025 | 0.847 ± 0.050 | 0.775 ± 0.099 | 0.848 ± 0.080 |
MLP | 0.716 ± 0.063 | 0.850 ± 0.040 | 0.709 ± 0.075 | 0.615 ± 0.092 | 0.722 ± 0.109 |
QDA | 0.726 ± 0.063 | 0.857 ± 0.036 | 0.720 ± 0.073 | 0.622 ± 0.090 | 0.731 ± 0.108 |
RF | 0.936 ± 0.031 | 0.969 ± 0.021 | 0.937 ± 0.031 | 0.874 ± 0.111 | 0.929 ± 0.070 |
RS | 0.0728 ± 0.062 | 0.859 ± 0.036 | 0.721 ± 0.074 | 0.610 ± 0.087 | 0.729 ± 0.111 |
Mean ± SD | 0.780 ± 0.095 | 0.885 ± 0.057 | 0.775 ± 0.104 | 0.689 ± 0.132 |
Boldface indicates FE + RF is the optimal method.