Skip to main content
. 2017 Feb 10;18:1. doi: 10.1186/s12932-017-0039-y

Table 1.

Photochemical reactions of naturally occurring substances

Reaction Descriptor Facilitators References
Carbon compounds
Plant material → CO2 (Oxidative) photochemical decomposition (mineralization) [124, 125, 166 (CO2 implied), 167]
Plant material (litter and living foliage) → CO Photochemical decomposition (mineralization) [125, 168171]
plant material (litter) → CH4 (Reductive) photochemical decomposition (mineralization/methanification) [172174]
Plant material (foliage) → CH4 (Reductive) photochemical mineralization [171, 173176]
Plant material → ethane, ethene, propene, butane, other hydrocarbons (Reductive) photochemical decomposition [171, 177]
Plant material → dissolved organic matter Photochemical decomposition + dissolution [115]
Plant material → biologically more labile compounds Photochemical priming (encouraging subsequent biotic decomposition) [136, 178, 179]
Solid organic matter → CO2 (Oxidative) photochemical decomposition (mineralization) Sand [180]
Soil organic matter → CH4 (Reductive) photochemical decomposition (mineralization/methanification) [181]
Sorbed or particulate organic matter → dissolved organic matter Photochemical dissolution [115, 182, 183]
Dissolved and colloidal organic matter → amino acids Photochemical decomposition (depolymerization) [184]
(Nonspecific) decomposition of dissolved organic matter Photochemical decomposition No facilitator
Aqueous and solid iron(III) species
[70, 109, 185187]
Dissolved organic matter → CO (Oxidative) photochemical decomposition (mineralization) [188 191]
Dissolved organic matter → CO2 (Oxidative) photochemical decomposition (mineralization) No facilitator
TiO2
[190, 192194]
Dissolved organic matter → CH4 (Reductive) photochemical decomposition (mineralization/methanification) [195]
Dissolved organic matter → biologically more labile compounds Photochemical priming (encouraging subsequent biotic decomposition) [134, 135, 196]
Humic substances → humic substances with increased carboxylic acid content photochemical oxidation + acidification [185]
Dissolved organic matter → organic matter with increased aliphatic content Photochemical aliphatization [63, 193]
Humic substances → small carboxylic acids; increased hydrophobicity of remaining organic matter photochemical decomposition + acidification [135, 186]
Humic substances → simple carbonyl compounds (e.g., formaldehyde, acetone, pyruvate) Photochemical decomposition [189, 197]
Dissolved organic matter → condensed aromatic structures (soluble and particulate) Photochemical condensation [193]
Carbohydrates and lipids → oxidized products Photochemical oxidation With and without ZnO [198]
(Nonspecific) decomposition of cellulose Photochemical decomposition No facilitator
Organic dyes
Fe(III) compounds, ZnO, ZnS, TiO2
[14, 50, 96, 97, 199]
Cellulose → less polymerized cellulose with increased carbonyl and carboxyl content Photochemical depolymerization + oxidation [96, 200]
(Nonspecific) decomposition of chitosan Photochemical decomposition [201]
(Nonspecific) decomposition of wool Photochemical decomposition [99]
(Nonspecific) decomposition of lignin Photochemical decomposition No facilitator
TiO2
[98, 202, 203]
Lignin → CH4, ethane (Reductive) photochemical decomposition [204]
Lignin → quinones (Oxidative) photochemical decomposition [99, 204, 205]
Lignin → aromatic and aliphatic aldehydes (Oxidative) photochemical decomposition [206]
Proteins → larger, aggregated proteins e.g., via intermolecular tyrosine dimerization Photochemical crosslinking [207]
Unconjugated unsaturated lipids → conjugated unsaturated lipids + insoluble material Photochemical isomerization, condensation Observed in seawater [208]
Polyunsaturated lipids → humic substances (proposed reaction) (Oxidative) photochemical crosslinking [209]
Fatty acids →
CO2, alkenes, aldehydes, ketones, fatty acid dimers
Photochemical oxidation, cleavage,
dimerization
No facilitator
TiO2
[210, 211]
Hydrocarbons e.g., ethane, ethene, propane, butane, paraffin → CO2 Photochemical oxidation TiO2 [211, 212]
Long-chain alkanes → ketones, alcohols, acids Photochemical oxidation Naphthol, xanthone, anthraquinone [101]
Dienes + NOx → carboxylic acids Photochemical oxidation [213]
Aromatic compounds + NOx, NO2 , or NO3 → nitrated aromatic compounds Photochemical nitration No facilitator
TiO2, Fe2O3
[214218]
(Nonspecific) decomposition of polycyclic aromatic hydrocarbons Photochemical decomposition No facilitator
Algae (live or dead)
TiO2
[138140, 219]
Polycyclic aromatic hydrocarbons → quinones Photochemical oxidation Al2O3 [78]
Condensed aromatic compounds (dissolved black carbon) → nonspecific products, CO2 (Oxidative) photochemical decomposition [63, 220, 221]
Soot → oxygen-containing species Photochemical oxidation [222]
Crude oil → CO2 Photochemical oxidation (mineralization) Sand containing magnetite and ilmenite [223]
Amino acids → CO2 Photochemical oxidation (mineralization) Cu(II) (aq) [224, 225]
Amino acids and peptides → smaller carboxylic acids, amines, and amides, NH3, CO2 (Oxidative) photochemical decomposition, mineralization [226]
Lysine → pipecolinic acid
ornithine → proline
Photochemical cyclization HgS, ZnS, CdS [227, 228]
Phenolic ketones and aldehydes → brown carbon Photochemical oxidation, oligomerization [155]
Phenol → hydroquinone, catechol → further oxidation products, CO2 Photochemical oxidation Fe2O3, TiO2 [211, 229, 230]
Decomposition of aqueous phenol, naphthol, methylphenols, methoxyphenols, anilines Photochemical oxidation Humic and fulvic acids, flavins
Algae (live or dead)
[219, 231, 232]
Phenols → phenol dimers Photochemical coupling/dimerization Fe(III) (aq) [102]
Phenols → quinones, naphthols, aminonaphthols → naphthoquinones Photochemical oxidation No facilitator
NO3
[217, 233, 234]
Quinones → quinone dimers Photochemical coupling/dimerization [235, 236]
Quinones + benzocyclic olefins → addition products Photochemical coupling [237]
Ketones → carboxylic acids Photochemical cleavage + acidification [238 240]
Ketones → CH4, ethane photochemical reduction [174, 240]
Aromatic ketones → condensed aromatic ring systems Photochemical condensation [241]
Vicinal diols → ketones, aldehydes, carboxylic acids Photochemical cleavage + oxidation Fe(III) porphyrins [242]
Cinnamic acid → cinnamic acid dimer Photochemical coupling/dimerization [243]
Acetic acid → CH4 + CO2 Photochemical disproportionation/dismutation TiO2; α-Fe2O3; Fe2O3 on montmorillonite (in the absence of O2); TiO2, Fe2O3, SrTiO3 plus an electron acceptor [121, 122, 244]
Acetic acid → CO2, CH4, ethane; methanol, ethanol, propionic acid, other products Various α-Fe2O3; TiO2, Fe2O3, SrTiO3, WO3 plus an electron acceptor [122, 211, 244]
Acetate, terpenes + O2 → organic (hydro)peroxides Photochemical peroxidation No facilitator
ZnO, organic sensitizers
[245247]
Unsaturated lipids + O2 → lipid hydroperoxides Photochemical peroxidation Chlorophyll [248, 249]
Propionic acid → ethane + CO2
Butyric acid → propane + CO2
Salicylic acid → phenol + CO2
Photochemical decarboxylation Fe2O3 alone or on montmorillonite
Algae (live or dead)
[122, 250]
Lactic acid → pyruvic acid + H2 Photochemical oxidation + dehydrogenation ZnS [251]
Lactic acid → acetaldehyde + CO2 (Oxidative) photochemical decarboxylation Aqueous Cu(II) and Fe(III) [251, 252]
Glucose → CO2 Photochemical oxidation TiO2 [211]
Oxalic acid → CO2 Photochemical oxidation TiO2, sand, ash,
α-Fe2O3, γ-Fe2O3,
α-FeOOH, β-FeOOH,
γ-FeOOH, δ-FeOOH
[71, 211, 253, 254]
Tartaric, citric, oxalic, malonic acids → oxidized products Photochemical oxidation Ferritin [255]
Pyruvic acid → pyruvic acid oligomers Photochemical oligomerization [256]
Salicylic acid → humic-like substances Photochemical condensation Accelerated in the presence of algae [250]
Syringic acid and other methoxybenzoic acids → methanol Photochemical decomposition [257]
Syringic acid and related compounds + Cl → CH3Cl Photochemical decomposition + chlorination [257]
Methanol → ethylene glycol + H2
Ethanol → butane-2,3-diol + H2
Photochemical coupling + dehydrogenation ZnS in the absence of air [258]
Isoprene → methylthreitol and methylerythritol (aerosols) Photochemical oxidation [259]
(Specific) plant compounds → compounds toxic to other organisms Phototoxicity [260, 261]
CO2 → CO, HCOOH, HCHO, CH3OH, CH4 Photochemical reduction (one-carbon products) Fe(III) oxides, FeCO3, NiCO3, CoCO3, CuCO3, Mn(II) (aq), ZnO, TiO2, ZnS, CdS, ZrO2, WO3, CaFe2O4, BiVO4, hydrous Cu2O, transition metal ions and oxides in zeolites [30, 31, 33, 262268]
CO2 + H2 → CH4 Photochemical reduction α-Fe2O3 and Zn-Fe oxide in the presence of water, NiO [269, 270]
CO2 + H2 → CO, HCOOH, CH3OH Photochemical reduction α-Fe2O3 and Zn-Fe oxide in the presence of water [269]
CO2 → HCOOH Photochemical reduction Porphyrins, phthalocyanines
Elemental Cu on silicate rocks such as granite and shale
[271, 272]
CO2 → ethanol
CO2 → ethane, ethene, propane, propene
CO2 → tartaric, glyoxylic, oxalic acids
Photochemical reduction (products with more than one carbon) SiC, ZnS, BiVO4, montmorillonite-modified TiO2 [273277]
CH4 → HCOOH
CH4 → CO, CO2
Photochemical oxidation TiO2 [211, 278]
CH4 → ethane + H2 Photochemical coupling + dehydrogenation SiO2-Al2O3-TiO2 [279]
Nitrogen compounds
Plant foliage → NOx [280]
Plant foliage → N2O [281]
Particulate organic N → dissolved organic N and NH4 + Photochemical decomposition (dissolution + mineralization) [115]
Dissolved organic N → biologically more labile N Photochemical priming [282]
Amino acids and other organic N (including biologically recalcitrant organic N) → NH4 + Photochemical decomposition (mineralization/ammonification) No facilitator
Organic matter,
Fe2O3, soil
[132, 184, 193, 194, 283286]
Humic substances → NO2 (Oxidative) photochemical decomposition (mineralization) [104, 287]
NH3 → NO2
NH3 → NO3
Photochemical oxidation (nitrification) TiO2, ZnO, Al2O3, SiO2, MnO2, soil
Observed in seawater
[288 290]
NH3 → N2O, N2 Photochemical oxidation TiO2 [290, 291]
NH4 + + NO2  → N2
urea, protein → [NH4NO2] → N2
Photochemical oxidation + reduction (denitrification) TiO2, ZnO, Fe2O3, soil [292, 293]
NH4NO3 → N2O Photochemical oxidation + reduction (denitrification) Al2O3 [294]
NOx → NO3 Photochemical oxidation TiO2 [295, 296]
NO2 → HONO, NO, N2O Photochemical reduction TiO2 [296]
NO2  → NO3 Photochemical oxidation TiO2, ZnO, Fe2O3, WO3 [297]
NO3  → NH3 Photochemical reduction TiO2 plus electron acceptor [298]
NO3 or HNO3 → N2O, NO, HONO, NO2 Photochemical reduction (denitrification/renoxification) Al2O3, TiO2, SiO2,
α-Fe2O3, ZnO, CuCrO2, Na zeolite, sand
Observed in snow
[299305]
NO3  → NO2 (+ O2) Photochemical reduction (+oxidation) No facilitator
Iron(III) oxide, soil, organic matter; TiO2 plus humic acids
[103, 306309]
NO2 → HONO Photochemical reduction Humic acids, soot, soil
Observed in ice
[157, 310, 311]
N2O → N2 Photochemical reduction ZnO, Fe2O3, sand
Humic and fulvic acids
[94, 95, 151, 312]
N2O → N2 + O2 Photochemical dissociation ZnO, Cu(I) zeolites [313, 314]
N2 → NH3 Photochemical reduction/(reductive) photochemical fixation ZnO, Al2O3, Fe2O3, Ni2O3, CoO, CuO, Fe(III) in TiO2, Fe2O3-Fe3O4, MnO2,
Sand, soil
Aqueous suspensions of TiO2, ZnO, CdS, SrTiO3, Ti(III) zeolites
Hydrous iron(III) oxide in the absence of O2
[2, 229, 315321]
N2 + H2O → NH3 + O2 Photochemical reduction + oxidation TiO2 in the absence of O2, α-Fe2O3,
Fe(III)-doped TiO2
[58, 321, 322]
N2 → N2H4 Photochemical reduction Sand [2]
N2 + H2O → N2H4 + O2 Photochemical reduction + oxidation TiO2 in the absence of O2 [322]
N2 + O2 → NO Photochemical oxidation (oxidative) photochemical fixation TiO2 in air [323]
N2 → NO2
N2 → NO3
Photochemical oxidation (oxidative) photochemical fixation Suspension of ZnO in the absence of O2
Aerated suspension of hydrous iron(III) oxide
TiO2, soil
[320, 324, 325]
N2 + H2O → NO2  + H2 Photochemical oxidation + reduction ZnO-Fe2O3 under N2 [326]
Metal compounds
Organic complexes of Fe, Al, Co, Ni (aq) → ionic Fe, Al, Co, Ni (aq) Photochemical decomposition + decomplexation [327, 328]
Organic complexes of Fe, Cu, Cr, Pb, V (aq) → colloidal Fe, Cu, Cr, Pb, V Photochemical decomposition + precipitation [328]
Organic matter (aq) + iron (aq) → organic matter + iron (s) Photochemical flocculation [193, 329]
FeOH+ (aq) → FeOOH Photochemical oxidation [330]
Fe(III) (hydr)oxides (s) →
Fe(II) (aq)
(Reductive) photochemical dissolution of FeOOH + photochemical oxidation of organic matter (if present) No facilitator
Coprecipitated or dissolved organic matter, HSO3 , montmorillonite
Accelerated in ice
[70, 71, 92, 122, 331338]
Fe(II) (aq)/Fe(OH)2 + H2O → Fe(III) + H2 Photochemical oxidation + reduction No facilitator
Chromophores such as chlorophyll
[339, 340]
Fe(III)-carboxylate complexes (aq) → Fe(II) (aq) Photochemical reduction + decomplexation [66, 70, 341, 342]
Mn(IV) oxide → Mn(II) (aq) (Reductive) photochemical dissolution Dissolved organic matter
Accelerated in ice
[337, 343347]
Mn(II) (aq) → MnOx (x = 1 to 2) Photochemical oxidation Organic matter, TiO2 [348, 349]
Cu(II) (aq) → Cu(I) Photochemical reduction Amino acids [224, 225]
Cr(VI) (aq) → Cr(III) (aq) Photochemical reduction Ferritin, phenol [350, 351]
ZnS + H2O → H2S → H2 Photochemical reduction + dissolution [21, 251]
ZnS → Zn(0) + S(0) Photochemical oxidation + reduction [21]
CdS → Cd(II) + S(0) Photochemical oxidation [211]
HgS → Hg(II) (aq) + H2S Photochemical dissolution [228, 352]
HgS → Hg(0) + S(0) Photochemical oxidation + reduction Cl [25]
HgS → [Hg2Cl2 and other intermediates] → HgCl2 Photochemical oxidation, reduction/photochemical dissolution Cl [25]
Hg(0) (aq) → Hg(II) (aq) Photochemical oxidation [352, 353]
Hg(II) (aq) → Hg(0) (aq) photochemical reduction Fe(III) species, TiO2, organic matter
Observed in freshwater, seawater, and snow
[352, 354357]
Hg(II) (aq) → HgCH3 + Photochemical methylation [358]
HgCH3 + → Hg(II) Photochemical demethylation [359, 360]
HgCH3Cl → Hg(II) + Hg(0) + CHCl3 + HCHO Photochemical demethylation + reduction [361]
Other elements
Plant material → H2 (Reductive) photochemical decomposition [362, 363]
Dissolved organic P → inorganic phosphate Photochemical decomposition (mineralization) [364]
Phosphate adsorbed to Fe(III) oxides or Fe(III)-organic matter complexes → free phosphate Photochemical desorption [161, 365, 366]
HS/S2− → H2 Photochemical reduction CdS, α-Fe2O3 [367, 368]
SO2 → SO4 2− Photochemical oxidation TiO2, Fe2O3, ZnO, CdS [369372]
Thiols and SO3 2− → oxidized products Photochemical oxidation Ferritin [255]
Alkyl sulfides + NOx → aldehydes, sulfonic acids, SO2, SO4 2− Photochemical oxidation [373]
O2 → H2O2 Photochemical reduction ZnO, TiO2, sand in the presence of organic electron donors
Aqueous Fe(III)-carboxylic acid complexes
Tryptophan and tyrosine
Porphyrins and phthalocyanines
Algae (live or dead)
[34, 107, 246, 298, 374 376]
O2 → H2O Photochemical reduction α-Fe2O3
Dissolved Fe and humic substances
(a catalytic cycle)
[123, 377]
H2O → H2 Photochemical reduction Numerous catalysts, usually in the absence of O2, e.g., TiO2, ZnS, α-Fe2O3, hydrated Cu2O, tungstosilicate on TiO2, Ti(III)-zeolite, graphite oxide [21, 22, 262, 315, 377382]
H2O → O2 Photochemical oxidation α-Fe2O3 + Fe(III) (aq), BiVO4 + electron acceptor, Mn2O3, λ-MnO2, Mn3O4, Co3O4 + sensitizer, AgCl, layered double hydroxide minerals
Fe(OH)2+ (aq)
[383390]
H2O → H2 + O2 Photochemical water splitting (oxidation + reduction) TiO2, Fe2O3-Fe3O4, Fe2O3-FeS2, Cu2O, ZrO2, Ag zeolite, diverse two-mineral systems [60, 137, 321, 322, 391393]
As(III) (aq) → As(V) (aq) Photochemical oxidation No facilitator
Ferrihydrite, kaolinite
[158, 394, 395]
As4S4 → As4S4 (polymorph) Photochemical structural (crystal) modification [396]
As2S3 → [As + S] + O2 → As2O3
As4S4 → As2O3
Photochemical oxidation/dissolution Water [396, 397]
Volatile organic compounds + NOx → O3 Photochemical oxidation [398]
Cl → Cl 2 (dichloride radical anion) Photochemical oxidation Chlorophyll, Hg(II) [65, 352]
Cl + O3 → Cl2 Photochemical oxidation [399]
NO3  + Br → Br2 Photochemical oxidation [400]

A suggested descriptor is given for each reaction as well as substances reported to facilitate the reaction (if any) and some relevant notes. These facilitating substances also occur naturally, or (in just a few instances) are reasonably similar to something that might occur naturally. About 15% of the studies cited here can be considered field studies, which means that a reaction was observed with both natural sunlight and natural substances as well as under representative environmental conditions, as opposed to the use of artificial light and/or laboratory-prepared equivalents of natural compounds

Note on terminology The term “photochemical” can be used to maintain a clear distinction between abiotic photoreactions and analogous reactions involving light and living organisms (phototrophy). For example, “iron(II) photooxidation” can refer to either a biological process driven by light (photobiological/phototrophic iron(II) oxidation) or a strictly chemical, abiotic process (photochemical iron(II) oxidation). Similarly, an abiotic process that converts water to O2 under the action of light may be described as “photochemical oxidation of water” rather than simply “photooxidation of water” (even though the latter is shorter and often understood to mean a photochemical reaction); this distinguishes it from light-induced biological oxidation of water that might occur simultaneously in the same environment