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Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on
humans and ecosystems. One of the most carcinogenic PAHs,
benzo(a)pyrene (BaP), is efficiently bound to and transported
with atmospheric particles. Laboratory measurements show that
particle-bound BaP degrades in a few hours by heterogeneous re-
action with ozone, yet field observations indicate BaP persists much
longer in the atmosphere, and some previous chemical transport
modeling studies have ignored heterogeneous oxidation of BaP to
bring model predictions into better agreement with field observa-
tions. We attribute this unexplained discrepancy to the shielding of
BaP from oxidation by coatings of viscous organic aerosol (OA).
Accounting for this OA viscosity-dependent shielding, which varies
with temperature and humidity, in a global climate/chemistry model
brings model predictions into much better agreement with BaP
measurements, and demonstrates stronger long-range transport,
greater deposition fluxes, and substantially elevated lung cancer
risk from PAHs. Model results indicate that the OA coating is more
effective in shielding BaP in the middle/high latitudes compared
with the tropics because of differences in OA properties (semisolid
when cool/dry vs. liquid-like when warm/humid). Faster chemical
degradation of BaP in the tropics leads to higher concentrations
of BaP oxidation products over the tropics compared with higher
latitudes. This study has profound implications demonstrating that
OA strongly modulates the atmospheric persistence of PAHs and
their cancer risks.
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Polycyclic aromatic hydrocarbons (PAHs) are unavoidable by-
products of any kind of combustion process involving organic

matter. Exposure to PAHs is associated with cancer and other
health risks (1–3). Among the many PAHs, benzo(a)pyrene (BaP)
is one of the most highly carcinogenic agents. BaP is used as an
indicator of cancer risk from exposure to PAH mixtures (4, 5), and
is also a criteria pollutant in many countries.
PAHs are known for their persistence in the atmosphere and

their long-range transport far from sources (6–8). Despite decades
of research, the mechanisms responsible for the observed atmo-
spheric persistence and long-range transport of PAHs are not well
understood, mainly due to incomplete knowledge of gas−particle
partitioning and chemical loss rates of PAHs (9). Although gas-
phase BaP is rapidly degraded by oxidants such as OH radicals
(10–12), most of the gaseous BaP rapidly partitions to atmospheric
particulate matter due to its low volatility (12). Therefore, hetero-
geneous chemical degradation of particle-bound BaP is an impor-
tant loss mechanism (13–19). Laboratory measurements show that
BaP adsorbed on the surface of elemental carbon, solid organic
carbon, or ammonium sulfate particles reacts quickly with ozone,
and its oxidation lifetime varies from several minutes to a few hours
(15, 18, 19). However, field measurements demonstrate that BaP
persists longer in the atmosphere and is therefore transported far

from its sources (20). Consistently, chemical transport models
have suggested that BaP needs to undergo much slower hetero-
geneous loss to match observations (11, 21, 22). In this study, we
demonstrate a key missing link based on recent measurements
that mechanistically reconciles model predictions with laboratory
and field measurements.
Combining laboratory, field, and modeling results, we develop

approaches to represent how temperature- and relative humidity
(RH)-dependent variations in effective viscosity of organic aerosol
(OA) affect the heterogeneous chemistry of BaP in the atmo-
sphere. We propose three major amendments to the currently
inadequate conceptual framework for describing BaP evolution, by
(i) including laboratory-observed heterogeneous oxidation of
particle-bound BaP coated with OA, (ii) representing slowing, or
complete shutoff of BaP oxidation in cool and/or dry conditions
due to shielding by OA coatings, and (iii) including the hetero-
geneous oxidation products of BaP, which are assumed to remain
particle-bound rather than being lost, so that they can be trans-
ported in the atmosphere and removed by deposition. Although
previous measurements mostly focused on uncoated particle-sur-
face-adsorbed BaP directly exposed to ozone, it has been recently
shown that coatings of highly viscous secondary organic aerosol
(SOA) material can significantly slow the oxidation of particle-
bound BaP adsorbed on ammonium sulfate aerosols (19). Coatings
of solid organic eicosane have been shown to stop BaP oxidation
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completely (18). Other measurements have demonstrated that
heterogeneous oxidation of particle-surface-bound PAHs in the
atmosphere decreases substantially due to accumulation of SOA
species over particles during their atmospheric transport and
chemical aging (23). Heterogeneous reactions of PAHs with ozone
are limited mostly to the particle surface, where ozone can be
catalytically destroyed (24). Highly viscous SOA coatings limit the
diffusion of PAH molecules from particle bulk to particle surface
(24, 25), effectively shielding PAHs from chemical degradation
(24). In addition, OA is more viscous in cool/dry conditions (24,
26), so the effectiveness of shielding by OA is likely higher at cool
locations in the atmosphere compared with laboratory measure-
ments, which are made at room temperature [i.e., around 296° K
(18, 19, 25)]. Thus, temperature- and RH-dependent changes in
the viscosity of OA coatings can strongly affect heterogeneous
oxidation kinetics of BaP.
Here, we include these three amendments to the BaP modeling

framework in a global atmospheric chemistry climate model
(Methods), as illustrated in Fig. 1. A major fraction (generally
≥90%) of freshly emitted gaseous BaP is absorbed within coemitted
primary organic aerosol (POA) and subsequently formed SOA,
or adsorbed onto coemitted soot/black carbon (BC). At warm/
humid conditions, BaP heterogeneous oxidation is assumed to be
RH-dependent based on laboratory measurements of BaP coated
by SOA (19). At cool and/or dry conditions, however, we assume
that highly viscous OA effectively shields BaP from heterogeneous
oxidation, similar to that observed for eicosane (a highly viscous
solid organic) coatings (18) (SI Appendix, Shielding of BaP by OA in
the New Modeling Formulation). This approach is consistent with
highly viscous SOA observed at dry conditions (27, 28), persistence
of highly viscous SOA at cooler temperatures in the free tropo-
sphere (26), and also higher viscosity of complex SOA mixtures
(29) that are likely more atmospherically relevant compared with
laboratory-generated SOA (SI Appendix, Shielding of BaP by OA in
the New Modeling Formulation). We show that including the
shielding of BaP by OA results in better agreement with BaP
measurements in the field, promotes stronger long-range trans-
port, and also produces greater global incremental lung cancer
risk (ILCR) estimates due to exposure to PAHs, compared with
the default model that neglects this shielding by OA.

Results
We incorporate the two formulations (new, where OA coatings
shield BaP from heterogeneous oxidation, and default, where OA
does not shield BaP, defined in SI Appendix, Table S1) within the
global Community Atmosphere Model version 5.2 (CAM5).
Simulations are performed for 2007–2010. We use a global BaP
emissions inventory from 2008 (30) (Methods), and assign tem-
poral and vertical profiles to BaP emissions in relevant source
categories (SI Appendix, Temporal and Vertical Profiles of BaP
Emissions). Both SOA and directly emitted POA contribute to the
OA coating thickness, but SOA dominates the global budget of
OA (31). OA consists of thousands of organic species with dif-
ferent chemical compositions (32) (SI Appendix, Temporal and
Vertical Profiles of BaP Emissions, Organic Aerosol (OA) Compo-
sition). Although SOA is treated as liquid-like and semivolatile in
the default formulation, the new formulation treats SOA as an
effectively nonvolatile highly viscous semisolid, which has been
shown to agree with a suite of global OA measurements (31) (SI
Appendix, SOA Treatments). The simulated coating thickness of
OA around the BC core is calculated in every model grid and time
step and often exceeds the threshold of 20 nm for being classified
as a thick coating (SI Appendix, OA Coating Around BC Core).
Model simulated coating thickness is within the range of reported
measurements of OA coating thicknesses (33).

Model Predictions and Global BaP Measurements. Because the global
model (coarse grid resolution ∼200 km) cannot resolve high BaP
concentrations near strong urban emissions sources, we first
evaluate model predictions with global gas-plus-particle-phase
BaP measurements at 69 nonurban (background) sites, globally
(site locations are shown in SI Appendix, Fig. S1). Fig. 2A shows
that the default unshielded formulation greatly underpredicts

Fig. 1. Schematic comparing the default unshielded (top) and the new
shielded (bottom) modeling formulations for PAHs (BaP used in this study).
In both formulations, BaP (yellow circles) is either adsorbed on BC (black
spherical core) or absorbed in OA (green coating surrounding the core). In
the default unshielded formulation, BaP undergoes fast heterogeneous
oxidation by ozone, and the liquid-like organic coating can decrease due to
evaporation during transport. In the new shielded formulation, a non-
volatile, highly viscous OA coating effectively shields particle-bound BaP
from oxidation by ozone in cool and/or dry conditions.

Fig. 2. Evaluation of 2008–2010 near-surface BaP concentration predicted
by the default unshielded (red) and new shielded (blue) modeling formu-
lations against field measurements of BaP. Model results for each site are
averages over observation days. (A and B) Scatter plots of simulated and
measured concentrations at (A) 69 background/remote sites and (B) 294
nonbackground sites around the world (22, 49–51). Modified normalized
mean biases (MNMB) are calculated as in Wagner et al. (52). Areas of circles
are proportional to the number of days sampled at each site. (C) Annual
variation of measured and simulated BaP concentrations at 18 sites (6
background and 12 nonbackground) in Asia. Green boxes denote measured
values (medians and 15th and 85th percentiles of site monthly means), and
blue (new shielded model) and red lines (default unshielded model) denote
medians of model-simulated site monthly means. (D) Measured and simu-
lated BaP concentrations (medians and 15th and 85th percentiles) at the
Mount Bachelor Observatory mountain site near the west coast of the
United States during spring (March through May) (34).
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measured BaP concentrations (red circles), whereas the new
shielded model shows much better agreement (blue circles are
closer to the 1:1 line). Consistently, the default formulation shows
a large negative modified normalized mean bias (predicted values
∼77% lower than observed), whereas the bias in the new model is
only ∼13% lower than observed. However, the coarse-grid global
model significantly underestimates concentrations in near-urban
regions (SI Appendix, Fig. S2). A better estimate of model-pre-
dicted concentrations near urban sites is achieved by downscaling
calculated concentrations to 0.1° × 0.1° based on emission density,
wind speed, frequency, and direction, and gas- and particle-phase
BaP oxidation rates (22) (SI Appendix, Global Model Downscaling
Formulation). Fig. 2B compares measured and model-predicted
concentrations at 294 nonbackground sites (mostly located in
cities) around the world after downscaling the near-surface sim-
ulated concentrations. Even at these nonbackground sites, the
default formulation shows a large negative bias, with simulated
values ∼76% lower than observed on average, whereas the new
model shows better agreement with measurements (simulated
values ∼33% lower than observed). Importantly, most of the
larger blue circles are closer to the 1:1 line in Fig. 2B, indicating
that the new model agrees much better with longer-term (i.e.,
more reliable) observations.
Fig. 2C indicates that, compared with the monthly observed

data at 18 sites in Asia (green boxes), the new model (blue line)
captures both the magnitude and seasonal variations of BaP
concentrations. Both simulated and observed BaP concentrations
peak during the winter (December through February), with min-
ima during summer (June through August). Predicted seasonality
in BaP concentrations is due to seasonality in both BaP emissions
and BaP oxidation rates. Residential biofuel and fossil fuel emis-
sions peak during wintertime in this region, and contribute 78% to
BaP emissions during winter and 56% during summer (30). Also,
in the new model, lower wintertime temperatures favor complete
shielding of BaP due to higher viscosity of OA coating at cooler
temperatures (blue shaded area in SI Appendix, Fig. S3B), whereas
BaP is not shielded by OA that is more liquid-like during the
summer (orange shaded area in SI Appendix, Fig. S3B). The de-
fault formulation (red line) shows a similar seasonal cycle, but it
greatly underpredicts BaP concentrations throughout the year.
Fig. 2D compares the measured and simulated (gas-plus-particle-

phase) BaP concentrations at Mount Bachelor Observatory, lo-
cated in the Cascade Range of the northwestern United States
about 200 km from the Pacific coast (44°N, 121.7°W, 2,763 m
above sea level). This site is impacted by episodic trans-Pacific
atmospheric transport during the winter and spring, and is chosen
for evaluation of long-range and regional transport of BaP. Fig.
2D shows that the new model agrees much better with the mea-
sured (34) BaP concentrations at this site during the springtime
(March through May), compared with the default. The median
simulated new model BaP concentration of 5.7 × 10−3 ng·m−3 is
same as the observed median of 5.7 × 10−3 ng·m−3, whereas the
default formulation predicts a factor of 4.3 lower median BaP
concentration compared with the observed value.

The substantially better agreement of our new modeling for-
mulation compared with the default is mainly due to complete
shielding by OA at cool and/or dry conditions (SI Appendix,
Temperature- and RH-Dependent Shielding of BaP by OA). To
further investigate the sensitivity of simulated BaP to the shielding
assumptions of the new formulation, we conducted an additional
limited-shielding simulation where we applied the room-temper-
ature laboratory-measured oxidation kinetics of SOA-coated BaP
over a wider temperature range, i.e., down to 276° K where
measurements are lacking (SI Appendix, Limited-Shielding Treat-
ment and Fig. S3C), compared with 296° K and above in the new
modeling formulation. This limited-shielding treatment also
showed a large negative model measurement bias, similar to the
default formulation (SI Appendix, Fig. S4B). This result suggests
that more complex and aged atmospheric SOA, which is highly
viscous at cool/dry conditions (24, 26, 29), is expected to be highly
effective in shielding BaP from oxidation, as is assumed in our new
modeling formulation.
Global distributions of 2008–2010 annual average near-surface

BaP concentrations from the default (unshielded) and new
(shielded) modeling formulations are shown in Fig. 3 A and B,
respectively. Simulated BaP concentrations vary widely, with
concentrations exceeding 0.1 ng·m−3 (red and pink areas in Fig. 3)
over major source regions in Asia, Europe, Russia, and Africa.
TheWorld Health Organization (WHO) suggests a human health-
based guideline of 0.1 ng·m−3, and indicates that a lifetime ex-
posure to 0.1 ng·m−3 of BaP (as an indicator of the total PAH
concentration) would theoretically lead to one extra cancer case in
100,000 exposed individuals (4). Fig. 3 indicates that, unlike the
default (unshielded) formulation, the new model frequently pro-
duces concentrations that exceed the WHO guideline for BaP,
especially over parts of East and South Asia, Africa, and Europe.
Also, at several locations, the new (shielded) model predicts an
order-of-magnitude-higher BaP concentration compared with the
default (unshielded) formulation. Downscaling global BaP con-
centrations increases global population-weighted average BaP
concentrations by a factor of ∼2 (SI Appendix, Fig. S5), with larger
increases regionally.

Lung Cancer Risk Assessment. BaP can be used as an indicator of
risk due to exposure to all PAH mixtures (not just BaP), using a
method based on epidemiological data (4). We calculate an un-
biased best estimate of ILCR as described by Shen et al. (22) (SI
Appendix, Incremental Lifetime Cancer Risk), due to exposure to
PAHs using globally downscaled BaP concentrations (SI Appendix,
Fig. S5). Fig. 4 shows that the new shielded formulation predicts a
global population-weighted average ILCR of 2 × 10−5, which ex-
ceeds the acceptable limit of 1 × 10−5 (i.e., 1 death per 100,000
individuals), whereas the default unshielded formulation predicts a
global ILCR of 0.6 × 10−5 that is within the acceptable risk levels
due to PAH exposure. Consistent with our new model predictions,
another global modeling study (22) predicted a global population-
weighted ILCR of 3 × 10−5, but that study completely omitted the
heterogeneous oxidation kinetics of BaP. Heterogeneous oxidation

Fig. 3. Simulated (nondownscaled) global near-
surface 2008–2010 average particle-bound BaP con-
centrations (nanograms per cubic meter) predicted
by (A) the default unshielded and (B) the new
shielded BaP modeling formulations. White areas
are grid cells with BaP concentrations < 10−5 ng·m−3.
PWGA (at top of each plot) are population-weighted
global average concentrations.
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is an important global sink of BaP in both the default and new
modeling formulations in this study, consistent with measurements,
and also has important implications as discussed in Heterogeneous
Oxidation Products of BaP. The new modeling formulation also
predicts the highest ILCR in East Asia (4 × 10−5), and elevated
ILCR in other regions including South Asia, most of which is in
India (2.6 × 10−5), Russia (1.5 × 10−5) and Africa (1.1 × 10−5). In
contrast, the default formulation suggests a factor of ∼3 to 4 lower
cancer risk in these regions, which is below the threshold of 1 × 10−5

for acceptable risk (Fig. 4). Both formulations predict low and in-
significant ILCR in the United States, which only accounts for 2%
of the global BaP emissions (30).

Lifetime and Long-Range Transport of BaP. The default unshielded
formulation predicts a very short lifetime of BaP (∼2 h), due to
heterogeneous oxidation by ozone (calculated as ratio of global
burden of BaP to its heterogeneous oxidation sink), and also
greatly underpredicts global measurements of BaP (Fig. 2). In

contrast, the new shielded formulation predicts a much longer
BaP oxidation lifetime of ∼5 d, which is similar to the removal
timescale for BaP associated with wet and dry removal processes.
This increase in oxidation lifetime from hours to days results in
much stronger atmospheric long-range transport.
To demonstrate the consequences of atmospheric long-range

transport of BaP, we conduct several additional simulations in
which BaP emissions from different source regions are turned on in
the model, one at a time. Fig. 5 compares the long-range transport
of BaP emitted from three major regions, East Asia, Western
Europe, and Africa, which together comprise 63% of global BaP
emissions. The new shielded model (Fig. 5, Top) clearly shows
much farther long-range transport of BaP compared with the de-
fault unshielded formulation (Fig. 5, Bottom). For example, BaP
emitted from East Asia travels thousands of miles over the Pacific
Ocean, reaching the west coast of the United States, consistent with
previous observational studies that identified trans-Pacific atmo-
spheric transport of PAHs (34–36). Similarly, BaP emitted from
Western Europe travels to the east, and BaP emitted from South
Africa travels over the South Atlantic Ocean, reaching South
America. In sharp contrast, the default unshielded formulation (Fig.
5, Bottom) predicts much weaker long-range transport, and most
BaP is localized over respective emissions source regions. Similar
differences in the long-range transport potential of BaP between
the new shielded and default unshielded modeling formulations are
also seen for other source regions, including South Asia (including
India), Southeast Asia, and Russia (SI Appendix, Fig. S6).
Although BaP emissions are the same in the new and default

models, the new model predicts a factor of ∼9 larger deposition
flux of BaP (i.e., combined wet and dry deposition to Earth’s
surface), compared with the default (SI Appendix, Dry and Wet
Deposition of BaP and Fig. S7) because, in the default model, BaP
undergoes much faster chemical degradation. In both formula-
tions, a major fraction of BaP (77 to 90%) is deposited over land
(SI Appendix, Fig. S7), but significantly more BaP persists, and is
transported and deposited in oceans in the new shielded (22%),
compared with the default (10%), modeling formulation, which
could have ecological implications (37).

Heterogeneous Oxidation Products of BaP. Previous modeling
studies have primarily assumed that PAHs that undergo hetero-
geneous oxidation in the atmosphere are completely degraded (11,
21, 38). However, recent experimental studies show that several
oxidized PAHs could remain particle-bound, and often appear as
higher molecular weight peaks in particle mass spectra (25, 39).
Some oxidized BaP species have been shown to be toxic (40), and
some are direct-acting mutagens (39); therefore, it is important to
quantify their atmospheric exposure. Here, we track the oxidation

Fig. 5. Simulated near-surface 2008-annual average concentrations of BaP from three major source regions: East Asia (Left), Western Europe (Center) and
Africa (Right) for new shielded (Top) and the default unshielded (Bottom) modeling formulations, as indicators of long-range transport potential. BaP
emissions are only turned on for the respective source regions with emissions over the rest of the globe turned off. White areas are grid cells with BaP
concentrations < 10−5 ng·m−3.

Fig. 4. Global and regional population-weighted ILCR for PAH mixtures
calculated for the default unshielded (red) and new shielded (blue) model-
ing formulations using 0.1° × 0.1° downscaled BaP concentrations, as de-
scribed in SI Appendix. Bars that are higher than the dashed line represent
significant lung cancer risks of humans due to exposure to PAH mixtures. BaP
is used as a reference for total PAH ILCR calculations.
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products of particle-bound BaP using a separate oxidized BaP
tracer species in the model. This oxidized BaP tracer is assumed to
be particle-bound, nonvolatile, and nonreactive, and represents
the sum of all potential oxidation products of BaP, most of which
are not routinely measured. The new (shielded) formulation
predicts that oxidized BaP concentrations could be as high as fresh
BaP concentrations over several regions globally (Figs. 6A and
3B), and could be important for BaP exposure assessment. Fig. 6B
shows that, on a global population-weighted basis, oxidized BaP
constitutes ∼26% of total (fresh+oxidized) BaP. However, over
the tropics (30°S to 30°N), more than 80% of the total particle-
bound BaP is converted to oxidized BaP due to heterogeneous
oxidation by ozone (Fig. 6B). The tropics are characterized by high
temperature and high RH conditions (SI Appendix, Fig. S8), which
reduce the effectiveness of shielding by OA (SI Appendix, Fig.
S3B), because, under these conditions, OA becomes less viscous
(liquid-like) (27, 28). Model-predicted spatial differences in the
ratio of oxidized to total BaP between the tropics and high/middle
latitudes (Fig. 6B) reflect differences in the shielding effects of
OA, consistent with semisolid (highly viscous) particles observed
over boreal forests and liquid particles (less viscous) observed over
tropical forests (41, 42). In comparison with the new formulation,
the default unshielded formulation results in fast heterogeneous
oxidation of particle-bound BaP, because BaP is always available
to react with ozone (SI Appendix, Fig. S3A). Therefore, in the
default formulation, most of the BaP (∼85%) is rapidly oxidized
and converted to oxidized BaP throughout the globe (SI Appendix,
Fig. S9B), but this is inconsistent with fresh BaP measurements, as
discussed earlier (Fig. 2).

Discussion
This work has several implications for understanding the atmo-
spheric persistence, long-range transport, deposition, and health
impacts of PAHs. Most previous models including heterogeneous
oxidation of BaP (11, 20, 21) have noted large discrepancies be-
tween modeled and measured BaP concentrations. Our study
shows that shielding of particle-bound BaP by OA coatings can
reconcile these discrepancies, producing a realistic and physically
consistent picture of BaP evolution. Our study suggests that this
mechanistic interaction between climate-relevant OA and health-
relevant PAHs should be explicitly represented in PAH chemical
transport models. We show that the OA coating is likely more
effective in shielding PAHs in the middle/high latitudes compared
with the tropics because of differences in OA properties [semisolid
when cool/dry (42–44) vs. liquid-like when warm/humid, as shown
by OAmeasurements (27, 28)]. Thus, the effectiveness of shielding
depends on the viscosity of OA that varies with temperature, RH,
and the atmospheric aging of complex OA coatings. This viscosity-
dependent shielding needs to be better constrained by future
laboratory and field measurements.
Another important implication of the variable effectiveness of

shielding by OA is reflected in the predicted atmospheric con-
centrations of BaP oxidation products, which, previously, have not

been explicitly modeled. The larger fraction of BaP oxidation
products over the tropics is a direct consequence of reduced
shielding by OA at these high temperature/high humidity locations.

Methods
Model Setup. We develop and incorporate new PAH modules into the global
CAM5, and perform simulations at a grid spacing of 1.9° × 2.5° with 30
vertical levels between the surface and 3.6 hPa. Horizontal winds and tem-
perature are nudged toward the European Centre for Medium-Range
Weather Forecasts reanalysis-Interim (ERA-Interim) reanalysis data (45), with
relaxation times of 6 h and 24 h, respectively. Simulations are conducted for
2007–2010, with the first year used for initialization and model spin-up. We
use the Model for Ozone and Related Chemical Tracers (MOZART-4) gas-
phase chemistry mechanism and the three-mode version of the Modal
Aerosol Model (MAM3), with changes to both SOA and its precursor gases (SI
Appendix, Temporal and Vertical Profiles of BaP Emissions, BC, POA and SOA
Precursor Gas Emissions), as described in detail by Shrivastava et al. (31).

BaP Emissions. We use the 0.1° × 0.1° global PAH emissions inventory (30) for
BaP, available at www.ues.pku.edu.cn/inventory/home.html. This inventory
provides total annual BaP emissions within each grid cell, without any ver-
tical/temporal distribution information. We assign BaP emissions to fossil
fuel and biofuel sectors and distribute them temporally and vertically in the
model using OC emissions from respective sectors, as discussed in SI Ap-
pendix, Temporal and Vertical Profiles of BaP Emissions.

BaP Gas−Particle Partitioning. Gas−particle partitioning of PAHs is described
by various theoretical/empirical models based on single-parameter or poly-
parameter linear free energy relationships (sp- or pp-LFER) (46). The sp-LFER
models, which relate the partitioning constant for PAH to OA or BC to just
one thermodynamic property (e.g., subcooled liquid vapor pressure of
PAHs), have often been used in regional and global atmospheric chemistry
models to predict gas−particle partitioning of PAHs (11, 22). In comparison,
the pp-LFER models relate partitioning constant to more than one property,
and thus account for all significant interactions between solute and sorbent
(46). In this study, we implement the pp-LFER model to calculate partitioning
of PAHs by adsorption to BC and absorption into OA, similar to Shahpoury
et al. (46).

We also develop a new algorithm to treat gas−particle partitioning of PAHs
simultaneously to various aerosol modes of MAM3 (47) in CAM5 (SI Appendix,
Algorithm for Gas−Particle Partitioning of PAHs to Modal Aerosols).

BaP Gas−Phase Reactions.Gas-phase reaction of BaP with the hydroxyl radical
(OH) is included. The second-order rate coefficient for reactions of BaPwith OH
is set as 5 × 10−11 cm3 per molecule per second (11, 12).

BaP Particle-Phase Heterogeneous Reactions. We also include heterogeneous
reactions of particle-phase BaP with ozone and OH radicals (12, 18, 19). We
assume a constant second-order heterogeneous reaction rate constant with
OH radicals (2.9 × 10−13 cm3 per molecule per second) (48). Note that this
reaction rate is about two orders of magnitude slower than the gas-phase
reaction rate of BaP with OH radicals. However, heterogeneous oxidation
kinetics of BaP with ozone can be much faster under certain conditions. Ozone
reaction kinetics for BaP are included using the Langmuir−Hinselwood mech-
anism, indicating a surface reaction between particle-borne BaP and ozone (18,
19). In addition, as described in SI Appendix, shielding of BaP by OA can reduce
or, under certain conditions, completely stop the BaP particle-phase heteroge-
neous reactions.

Fig. 6. New shielded model-predicted BaP oxidation products. (A) Near-surface 2008–2010 annual average concentrations of BaP oxidation products. (B)
Fraction of total (fresh+oxidized) BaP that is oxidized. PWGA (above each plot) are population-weighted global averages. White areas are grid cells with
oxidized/total BaP concentrations < 10−5 ng·m−3.
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