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Self-sustained waves of electrophysiological activity can cause
arrhythmia in the heart. These reentrant excitations have been
associated with spiral waves circulating around either an anatom-
ically defined weakly conducting region or a functionally deter-
mined core. Recently, an ablation procedure has been clinically
introduced that stops atrial fibrillation of the heart by destroying
the electrical activity at the spiral core. This is puzzling because
the tissue at the anatomically defined spiral core would already
be weakly conducting, and a further decrease should not improve
the situation. In the case of a functionally determined core,
an ablation procedure should even further stabilize the rotat-
ing wave. The efficacy of the procedure thus needs explanation.
Here, we show theoretically that fundamentally in any excitable
medium a region with a propagation velocity faster than its sur-
rounding can act as a nucleation center for reentry and can anchor
an induced spiral wave. Our findings demonstrate a mechanis-
tic underpinning for the recently developed ablation procedure.
Our theoretical results are based on a very general and widely
used two-component model of an excitable medium. Moreover,
the important control parameters used to realize conditions
for the discovered phenomena are applicable to quite different
multicomponent models.
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In their seminal theoretical work, Norbert Wiener and Arturo
Rosenblueth (1) showed in 1946 that the self-sustained activ-

ity in the cardiac muscle can be associated with an excitation
wave rotating around an obstacle. This mechanism has since
been very successfully applied to the understanding of the gen-
eration and control of malignant electrical activity in the heart
(2). It is also well known that self-sustained excitation waves,
called spirals, can exist in homogeneous excitable media. It has
been demonstrated that spirals rotating within a homogeneous
medium or anchored at an obstacle are generically expected for
any excitable medium. Examples are known in myocardial tissues
and the mammalian brain (3, 4), in the aggregation of amoeba
colonies (5), in autocatalytic chemical reactions (6, 7), and in the
spreading depression in chicken retina (8), as well as in the cat-
alytic reactions of carbon monoxide gas on a platinum surface
(9) and also in intracellular calcium dynamics (10). Spirals have
important consequences for medicine, where they are known to
cause sudden cardiac death (11, 12). Recently, an atrial defibril-
lation procedure was clinically introduced that locates the spiral
core region by detecting the phase-change point trajectories of the
electrophysiological wave field and then, by ablating that region,
restores sinus rhythm (13, 14). This is clearly at odds with the
Wiener–Rosenblueth mechanism because a further destruction
of the tissue near the spiral core should not improve the situation.

Here, we show theoretical results that help to resolve this
issue. We found that spirals can be anchored not only at an obsta-
cle, but also at a region where the propagation velocity is higher
than in the surrounding medium. Moreover, in the presence of
such a fast propagation region (FPR), spirals can be nucleated
after application of one stimulus only. Thus, FPRs can be more

disruptive to plane wave propagation than the obstacle, where
spiral generation needs at least two stimuli (15–17). In general,
our findings have important consequences for excitable media
dynamics and, in particular, provide understanding of the medi-
cal ablation procedure that can stop atrial fibrillation (13, 14) by
destruction of a FPR at the spiral core.

Mathematical Model
Because the phenomenon of spiral generation is universal, it is
best investigated from a general point of view. Let us consider
a medium that consists of active elements locally connected to
each other by a diffusion-like coupling (characterized by a cou-
pling strength D). The medium’s resting state can be excited by
the application of a suprathreshold external stimulus that initi-
ates a propagating excitation wave. Such a wave consists of a
rapid transition (wavefront) from a stable resting state to an
excited state, followed by a plateau, and finally by a recovery tran-
sition (waveback) toward the resting state.

This type of dynamics is usually modeled by a system of non-
linear reaction–diffusion equations. For instance, such systems
are commonly used to simulate electrophysiological waves in
cardiac or nervous tissue (18), chemical waves in Dictyostelium
discoideum (19), and in the chemical Belousov–Zhabotinsky
reaction (20).

Our study is based on the general two-component reaction–
diffusion system of the form

∂u

∂t
= ∇ · (D∇u) + AF (u, v), [1]
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∂v

∂t
= εG(u, v). [2]

Here, the local kinetics of an activator u and an inhibitor v is
specified by the nonlinear functions F (u, v) and G(u, v). Our
numerical simulations are based on a slightly modified Barkley
model (21) that is a very common example of a two-component
reaction–diffusion system (Eqs. 1 and 2), where the nonlinear
functions F (u, v) and G(u, v) are:

F (u, v) = u(1− u)

(
u − v + b

a

)
, [3]

G(u, v) =

{
u − v , u ≥ v ,
kε(u − v), u < v .

[4]

The parameter ε� 1 predetermines a large time-scale difference
between the fast activator u and the slow inhibitor v . This
excitable medium model assumes the existence of a stable resting
state at u = 0 and v = 0.
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Fig. 1. Conditions for a unidirectional propagation block due to a sharp
increase of the coupling strength D. (A) The stepwise spatial variation of
the parameter D, with D0 = 2. (B) A right-traveling wave is blocked because
it cannot overcome a large step in D, where D/D0 is greater than the critical
value. (C) A left-traveling wave propagates over the two steps in D, both
of which are less than the critical value. (D) The critical value of the cou-
pling strength Dc/D0 at the inhomogeneity boundary as a function of the
excitation threshold β.

BA

Fig. 2. Stationary profile of a front initially propagating from left to right
and stopped due to a jump in the medium’s parameters at x = 0. Numerical
simulations of a slightly modified Barkley model (Eqs. 1–4) with ε= 0. (A)
D = 1 for x< 0, D = 2 for x> 0 and A = 1 everywhere. (B) A = 1 for x< 0,
A = 2 for x> 0, and D = 1 everywhere.

Unidirectional Propagation Block in a One-Dimensional
Medium
For a general excitable medium, unidirectional propagation
block can be realized based on a phenomenon termed source–
sink mismatch in the cardiology literature (22). This we demon-
strate exemplarily in Fig. 1, where we assume that an initially
homogeneous one-dimensional (1D) medium with the coupling
strength D =D0 is remodeled so that the coupling strength is
decreased everywhere except in a central region (Fig. 1A). In the
central region, we assume a stepped variation so that the cou-
pling strength steps from left to right from D/D0 = 0.5, over
D/D0 = 1.0, to D/D0 = 0.75, and then back to D/D0 = 0.5. A
wave traveling to the right is blocked (Fig. 1B), whereas a wave
traveling to the left passes through. The conduction block for
the right-traveling wave can be explained by the source–sink mis-
match induced by a sharp increase of the coupling strength D
above a critical value (23–25). In other words, the flux gener-
ated by the poorly coupled cells (source) with D/D0 = 0.5 is
insufficient to raise the activity of the well-coupled cells (sink)
with D/D0 = 1.0 above the excitation threshold. Because of the
two-step increase, the left-traveling wave propagation continues
because the individual changes in D at each step do not exceed
the critical value (Fig. 1C). Finally, the left-traveling wave is leav-
ing the central region because well-coupled elements (source)
very easily excite poorly-coupled cells (sink). Although this step
sequence might seem artificial at first sight, let us point out that
the phenomenon is general. All it requires is a sufficiently steep
increase of the coupling strength on one side and a smoother one
on the other.

To clarify the conditions for a possible propagation block
induced by a fast parameter increase in a 1D medium, we con-
sider a limiting case ε→ 0 and set v(x , 0) = 0. In this limit, Eq. 1
describes a bistable distributed system, where, in addition to the
resting state, there exists an excited state u = 1 and an unsta-
ble steady state u =β, which represents the excitation thresh-
old. Under certain conditions, it is possible to induce a wavefront
(e.g., propagating from left to right) and corresponding to a tran-
sition from u = 0 to u = 1 (26). The propagation velocity of this
front reads

cp =
√

2ADf (β), [5]

where the function f (β) is determined by the specific form
of F (u, 0). Thus, in a homogeneous medium, the propaga-
tion velocity is an increasing function of both parameters A
and D .

To analyze the conditions for a conduction block, we are
taking into account that the time derivative in Eq. 1 vanishes
in the case of a motionless front. Hence, the profile of the
front in the general case of the synchronous jumps of the
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parameters A and D at x = 0 is a solution of the ordinary
differential equation

d

dx

(
D(x )

du

dx

)
+ A(x )F (u, 0) = 0, [6]

where A(x ) =AL, D(x ) =DL for x ≤ 0 and A(x ) =AR, D(x ) =
DR for x > 0. The boundary conditions and the continuity condi-
tion at x = 0 read as

u
∣∣
x=−∞ = 1, u

∣∣
x=∞ = 0,

du

dx

∣∣∣∣
x=−∞

=
du

dx

∣∣∣∣
x=∞

= 0, [7]

DL
du

dx

∣∣∣∣
x=−0

= DR
du

dx

∣∣∣∣
x=+0

. [8]

Multiplying Eq. 6 by du/dx , integrating over x from −∞ to
∞, and using Eqs. 7 and 8, we obtain the following equation:

DLAL

∫ u(0)

1

F (u, 0)du = DRAR

∫ u(0)

0

F (u, 0)du, [9]

that determines the value u(0) at the point of the parameter
jump as a function of the ratio DRAR/(DLAL). Note that the
front can be stopped only if u(0)≤β. Thus, Eq. 9 for u(0) =β
gives the critical ratio DRAR/(DLAL), above which the prop-
agating block can be observed for general form of the kinetic
function F (u, 0).

Fig. 1D summarizes the analytical results for the critical value
of the relative increase of the coupling strength Dc/D0 that leads
to propagation block as a function of excitation threshold β. Note
that a region with a stronger coupling strength D/D0 can be
recognized as a FPR because the propagation velocity is pro-
portional to

√
D , according to Eq. 5. For the function F (u, 0),

given by Eq. 3, the critical ratio DRAR/(DLAL) can be expressed
analytically as

DRAR

DLAL
≥ (1− β2)(1− β)2

β3(2− β)
. [10]
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Fig. 3. Spiral wave initiation due to a FPR in a 2D inhomogeneous medium.
Within the left-hand part of the central circular FPR D = D0 = 2 (dense
filling). Within the right-hand part, D/D0 = 2/3 (rare filling). Within the
rest of the medium, D/D0 = 1/2. Snapshots of a left-traveling wave (A–C)
and a wave propagating in the opposite direction (D–F) are shown. The
trajectories of the created phase-change points are shown by white lines
(E and F).
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Fig. 4. Spiral wave initiation due to an asymmetric FPR slightly shifted
of center. Within the FPR D = D0 = 2 (dense filling), except a small region
where D/D0 = 5/6 (rare filling). Within the rest of the medium, D/D0 = 0.5.
(A) A wave initially propagating from the left is blocked and broken.
(B–D) The trajectories of the spiral tips are shown by white solid and dot-
ted lines. (E and F) One spiral tip disappears due to the collision with the
medium’s boundary (dotted line). The trajectory of the remaining tip is
shown (solid line).

For β= b/a = 0.44 used in our simulations, it gives DRAR/
(DLAL) ≥ 1.903.

This analytic prediction agrees with direct numerical compu-
tations as illustrated by Fig. 2. In Fig. 2A, the propagation block
is due to a jump of the coupling strength D . Here Dl = 1 and
DR = 2, while A= 1 everywhere. A wave initiated in the left part
of this 1D medium is blocked and approaches a stationary profile
shown in Fig. 2A. Note that the spatial derivatives of the variable
u has a jump at the point x = 0 that, however, corresponds to the
continuity condition (Eq. 8). Moreover, the front can be stopped,
if the parameter A is nonuniformly distributed (27) (e.g., Al = 1
and AR = 2), whereas D = 1 everywhere, as shown in Fig. 2B.
Here, the profile of the variable u is perfectly smooth. In both
cases, the ratio DRAR/(DLAL) = 2 slightly exceeds the critical
value determined by Eq. 10. Because of this, the approached
value u(0) is slightly smaller than the excitation threshold β.

The Effect of FPRs in Two Dimensions
To extend our results on a 2D case, numerical simulations of
Eqs. 1–4 with no-flux boundary conditions have been performed
for a = 1, b = 0.44, kε = 10, and ε= 0.00011 in a rectangular
region of size lx = ly = 540. Spatial step ∆x = ∆y = 0.3, time
step ∆t = 0.01. The variable u and v are varied within the
well-determined range 0< u < 1 and 0< v < a − 2b. This spa-
tiotemporal dynamics of the variables u and v is represented in
Figs. 3–7 by color-coded distribution of the excitation phase φ,
where−π<φ<π. The phase is defined as φ = α+ 3π/4, where
an angle α determines the direction of the vector with compo-
nents (u − 1/2) and (v − a/2 + b)/(a − 2b) on the (u, v) phase
plane. According to this definition, φ = 0 corresponds to the
resting state of the medium (green areas in Figs. 3–7), yellow
(dark blue) narrow regions represent the wavefront (waveback),
and red areas correspond to a wave plateau, whereas blue ones
represent the refractory regions.

Let us now consider a 2D excitable medium with a FPR.
Although this example may seem again rather simple, it cap-
tures the generic and essential mechanism. Fig. 3 shows numer-
ical results of the wave propagation simulated for the excitable
media model described by Eqs. 1–4. Everywhere, except the
circular FPR of radius R = 90, D/D0 = 1/2 (with D0 = 2) and
within the left half of the FPR D/D0 = 1 and in the right half
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Fig. 5. Spiral wave initiation due to a FPR breaking up of a plane wave
induced near the left edge of the medium and propagating to the right.
(A–C) The parameter A is fixed to A = A0 = 2 within the left part of the
central circular region (dense filling) and A = 0.75A0 in the right part (rare
filling). Within the rest of the medium, A/A0 = 0.5. The trajectories of two
created spiral tips are shown by white solid lines in B and C.

D/D0 = 2/3. A planar left-traveling excitation wave initiated at
the right propagates unbroken (i.e., the wave travels through
the region with a continuous wavefront that speeds up slightly
within the FPR) (Fig. 3B). Finally, the wave approaches the left
medium’s boundary and disappears due to the no-flux boundary
conditions.

This is in stark contrast to a right-traveling wave. There, a
plane wave created near the left side of the medium is blocked at
the FPR due to the sharp increase of the parameter D exceeding
the critical value. This results in a wave break and the creation
of two phase-change points (spiral tips), where the wavefront
coincides with the waveback, as shown in Fig. 3D. Because of
the propagation block, the spiral tips move along the boundary
of the FPR until they reach its vertical symmetry axis. There,
the increase of the parameter D is not sufficient to block the
wave anymore, and the spiral tips penetrate into the FPR (solid
white lines in Fig. 3E). Moreover, the waves are able to pene-
trate into the left-hand part of the FPR like a 1D wave does in
Fig. 1C. They start to rotate around the phase-change points, and
two counterrotating spirals separate from the FPR, as shown in
Fig. 3F. The further dynamics of these counterrotating spirals is
determined by the parameters of the medium and the boundary
conditions. They represent a source of a self-sustained activity. It
is remarkable that they were created immediately with the first
incoming wave.

In the above example, we demonstrated a generic mechanism
for the generation of two spirals. Of course, the perfect symme-
try observed is a direct consequence of the chosen geometry, and
this will not be the case in general. Let us therefore demon-
strate an example where the symmetry is broken. As we shall
show below, the asymmetry of the inhomogeneity within the FPR
allows one of the spirals to travel away, while the other pins to
the region. This we show exemplarily in Fig. 4, where an asym-
metric inhomogeneity of the region was simulated. As in the pre-
vious case, a right-traveling wave is blocked at the FPR (Fig. 4A),
and two spiral tips are created. A clockwise-rotating spiral pene-
trates into the central region, while the other, counterclockwise-
rotating spiral moves around the FPR (Fig. 4B). As a result,
the clockwise spiral rotates faster and pushes the counterclock-
wise spiral toward the medium’s boundary (Fig. 4C), where it
eventually disappears (Fig. 4D). The clockwise-rotating spiral
continues to move around the FPR (Fig. 4E). In other words,
the single remaining spiral is pinned and circulates around
the FPR.

Spatial Inhomogeneity of the Parameter A
Note that in the two examples illustrated by Figs. 3 and 4, the
medium inhomogeneity is solely due to the variations of the cou-
pling strength D , while the parameter A is spatially uniform. This
parameter characterizes, for example, cardiac ion channel den-
sity, which can be effected by heart disease (28). According to

Eq. 10, the inhomogeneity of the parameter A is equally impor-
tant for the wave block. To check these predictions, the corre-
sponding numerical computations have been performed for the
2D inhomogeneous medium, where the coupling strength D is
fixed as D = 1, while A=A0 = 2 in the left part of the central
circular-shaped FPR of radius R = 90 and A/A0 = 0.75 in the
right part, as shown in Fig. 5. Within the rest of the medium,
A/A0 = 0.5.

Initially, a plane wave is originated near the left edge of the
medium, and the motion of this wave to the right is blocked by
the FPR. Again, because of a nonzero value of ε, the propagat-
ing wave is broken, and two spiral tips are created, as shown in
Fig. 5A. These spiral tips are moving along the FPR boundary.
They can penetrate into this region only near the right part of
the FPR boundary, where A/A0 = 0.75. After this penetration,
they also can cross the boundary between the right and left parts
of the inhomogeneity, because here the ratio A/A0 is below the
critical one determined by Eq. 10 (Fig. 5B). The wavefronts start
to rotate around the spiral tips, and then two spiral waves leave
the central region, as shown in Fig. 5C.

As before, pure mirror symmetric dynamics of two simulta-
neously created spiral waves can be destroyed by the use of an
asymmetric shape of the FPR, as shown in Fig. 6. A planar wave
propagating from the left medium’s boundary is stopped and bro-
ken. As a result, two spiral tips are created (Fig. 6A). These
two spiral tips first move along the FPR boundary. Then, the
clockwise-rotating wave reaches the right part of the FPR, where
the ratio A/A0 = 0.75 is less than a critical value for a wave block.
Here, the front can penetrate into the FPR and starts to rotate.
This rotation pushes the counterrotating wave toward the bottom
boundary of the medium and forces it to disappear (Fig. 6B). The
remaining spiral wave first makes several rotations near the FPR
and then starts to rotate around it, as shown in Fig. 6C.

This scenario is very similar to the one illustrated in Fig. 4.
Thus, the numerical results obtained for the FPR created by spa-
tial variation of the parameter A are very similar to ones for spa-
tial variations of the coupling strength D .

Discussion
General Properties. Our results demonstrate a generic mecha-
nism for spiral wave creation in an excitable media with FPRs.

t=6000 t=16000

−π

0t=0

t=26000 t=40000 t=52000

π

A B C

FD E

Fig. 6. Spiral wave initiation due to an asymmetric FPR. The parameter A is
fixed to A = 0.5 A0 everywhere except the circular region, where A = A0 = 2
(dense filling) and A = 0.75 A0 (rare filling). Snapshots of a wave propagat-
ing from left to right are shown. (A–F) The trajectories of two created spiral
tips are shown by white solid and dotted lines in B–F. One spiral tip disap-
pears due to the collision with the medium’s boundary (dotted line). The
trajectory of the remaining spiral tip is shown in C–F (white solid line).
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Fig. 7. Dynamics of an initially planar wave propagating from left to right
in a medium with a small-size FPR. The coupling strength D is fixed to D = 1
everywhere except the central circular region of the radius R = 51, where
D = D0 = 2 within the left part (dense filling) and D/D0 = 2/3 in the right
part (rare filling). A = 1 everywhere.

The mechanism requires a sufficiently steep increase of the prop-
agation velocity, due to spatial variations of the parameter D
and/or A. Please note that spatial variations of the excitation
threshold β will not result in a wave break and thus the creation
of spiral waves. Moreover, our numerical results clearly demon-
strate that the existence of a propagation block strongly depends
on the local curvature of the inhomogeneity boundary. In the
special case of a straight boundary, the critical ratio DcAc/D0A0

is given by Eq. 10. With decreasing radius of the FPR, the critical
ratio increases. This can be seen from the following numerical
result: Let us assume that the parameter A is spatially homo-
geneous (A= 1), but within the left part of the central circu-
lar shaped FPR D =D0 = 2, while in the right one D/D0 = 2/3.
Everywhere else, D/D0 = 0.5. If the radius of the inhomogene-
ity region is given as R = 90, an initially planar wave is stopped
at its boundary, as shown in Fig. 3D. Nevertheless, for smaller
R = 51, a planar wave penetrates into the FPR, and no spiral tips
are created, as shown in Fig. 7.

In addition, as is well known for the case of obstacles, our find-
ings carry over to three dimensions, where the FPRs can nucleate
scroll waves (or rotors), which are a 3D version of spirals. In this
situation, of course, geometry and inhomogeneity structure will
also be very important, just as they are in two dimensions.

Let us stress again that the exemplary shown phenomena are
truly generic. In the simulations, the shape and size of the chosen
FPR can easily be extended to other geometry and other struc-
tured inhomogeneity. The fundamental and generic properties
reported remain the same.

The FPR mechanism also represents an important generic cor-
rection to the commonly accepted notion that at least two stim-
uli are needed to create spiral waves in an excitable medium
(15–17). Our analysis emphasizes the important role of the FPR
as the nucleation center for reentry in contrast to the common
expectation that a wave break occurs at the boundary between
an excitable and unexcitable region. Please note that a possibility
to initiate a permanent reentry activity after a single stimulation
was also demonstrated in a much less generic reaction–diffusion
system (29, 30) and in a strongly anisotropic 2D tissue (31, 32).
In a medium with a nonlocalized inhomogeneity, a creation of a
drifting spiral wave, which disappears after several rotations, has
been reported (25).

The proposed mechanism for an initiation of a well-developed
and permanently rotating spiral wave represents an alternative
to the scenarios mentioned above. Because of its simplicity and
generality, it can be realized in quite different excitable media.

Relevance to Ablation Procedures in Medicine. The spiral wave
dynamics illustrated by Fig. 4 resembles many features of the
electrophysiological excitation dynamics observed during atrial
fibrillation (13, 14). Indeed, it is well known that atrial fibrosis in
the aging heart can lead to spatial variations in the electrical con-
ductivity of the functional syncytium, comprising interconnected

cardiomyocytes embedded in a variably sized nonconducting
extracellular matrix (33). This can decrease the conductivity of
a part of the cardiac muscle, and it is reasonable to assume that
some regions within this part remain unchanged. These high-
conductivity regions resemble the FPRs in our model. These
FPRs can cause malignant electric activity. As shown in our the-
oretical examples, the single spiral pinned at the FPR can deter-
mine the dynamics, because it would have a faster period than the
wave trains produced by the pacemaker. This then would lead to
the destruction of the cardiac rhythm and would be identified by
a cardiologist as cardiac tachycardia or fibrillation.

Of course, the structure of a real atrial tissue is much more
complicated than the very general model description considered
above. In the modern literature, the Fenton–Karma (FK) model
(34, 35) is widely used to simulate electrical activity in atrial tissue
in more detail (35, 36). To validate the applicability of our find-
ings, the simulations with the FK model have been performed
and are shown in SI Text. These data not only reproduce all sce-
narios obtained above with the Barkley model, but also open new
possibilities for self-sustained reentry creation (see Figs. S1–S3).
It is shown that for the chosen parameter set of the FK model,
the propagation block is achievable at the relatively strong inho-
mogeneity, which is, however, not unusual for cardiac tissue
(36–38).

Note that a variety of cardiac disease processes can cause ion-
channel remodeling, in particular, resulting in a variation of the
ion current density (28). This remodeling can be simulated in the
framework of our model as a variation of the parameter A. It is
natural to assume that, in a living organism, this remodeling can
occur not uniformly in space, and one can expect the existence of
some spots with relatively small remodeling or even remodeling-
free regions. Thus, the ion-channel remodeling is also able to
create FPRs and can cause spiral wave creation.

In the context of the proposed mechanism, one can assume
that the self-sustained electric activation pattern is due to a spi-
ral wave pinned to a FPR. Hence, a FPR would be identified
as the spiral wave core region in this measurement (13, 14).
This could be clinically validated by the measurement of the
coupling strength within the spiral core and in the surrounding
tissue. By destroying the spiral core region (i.e., by completely
suppressing propagation in this area), the FPR would be trans-
ferred to a real obstacle, where the Wiener–Rosenblueth mech-
anism would act. This mechanism, however, is less likely to pro-
duce reentry, and thus the probability for spiral wave initiation
should be significantly reduced. What we described above pro-
vides a mechanistic underpinning of the recently clinically intro-
duced local ablation procedure terminating atrial fibrillation
(13, 14).

We believe that the FPR mechanism also has important conse-
quences for the understanding of the effects of surgical treatment
on epilepsy in the human brain (39). There are already direct
experimental measurements indicating the existence of true spi-
ral waves of cortical neuronal activities, which may provide a spa-
tial framework to organize cortical oscillations (4). The discov-
ered mechanism can be one possible reason for a spontaneous
spiral wave creation. Like in the case of the cardiac tissue, the
necessary conditions for spiral wave initiation can be created by
variations of the coupling strength or ion-channel density due to
different disease processes.

In conclusion, this study may have important consequences
for the treatment of malignant electrical activities in the heart
and brain. The generic mechanism presented here remains, of
course, to be investigated in more detail.
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Naturwissenschaften 58:430–438.

6. Zaikin AN, Zhabotinsky AM (1970) Concentration wave propagation in two-
dimensional liquid-phase self-oscillating systems. Nature 225:535–537.

7. Winfree AT (1972) Spiral waves of chemical activity. Science 175:634–636.
8. Gorelova NA, Bures J (1983) Spiral waves of spreading depression in the isolated

chicken retina. J Neurobiol 14:353–363.
9. Jakubith S, Rotermund HH, Engel W, von Oertzen A, Ertl G (1990) Spatiotemporal con-

centration patterns in a surface reaction: Propagating and standing waves, rotating
spirals, and turbulence. Phys Rev Lett 65:3013–3016.

10. Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation
and annihilation in Xenopus laevis oocytes. Science 252:123–126.

11. Carmiliet E, Vereecke J (2002 ) Cardiac Cellular Electrophysiology (Kluwer, Dordrecht,
The Netherlands).

12. Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J (1992) Stationary and drift-
ing spiral waves of excitation in isolated cardiac muscle. Nature 355:349–351.

13. Narayan SM, et al. (2012) Treatment of atrial fibrillation by the ablation of localized
sources. J Am Coll Cardiol 60:628–636.

14. Shivkumar K, Ellenbogen KA, Hummel JD, Miller JM, Steinberg JS (2012) Acute termi-
nation of human atrial fibrillation by identification and catheter ablation of localized
rotors and sources: First multicenter experience of focal impulse and rotor modula-
tion (FIRM) ablation. J Cardiovasc Electrophysiol 23:1277–1285.

15. Zykov VS (1987) Simulation of Wave Processes in Excitable Media (Manchester Univ
Press, Manchester, UK).

16. Fox JJ, Gilmour RF Jr, Bodenschatz E (2002) Conduction block in one-dimensional
heart fibers. Phys Rev Lett 89:198101.

17. Quail T, Shrier A, Glass L (2014) Spatial symmetry breaking determines spiral wave
chirality. Phys Rev Lett 113:158101.

18. Hodgkin AL, Huxley AF (1952 ) A quantitative description of membrane current and
its application to conduction and excitation in nerve. J Physiol 117:500–544.

19. Martiel JL, Goldbeter A (1987) A model based on receptor desensitization for cyclic
AMP signaling in Dictyostelium cells. Biophys J 52:807–828.

20. Tyson JJ (1979) Oscillations, bistability, and echo waves in models of the Belousov-
Zhabotinskii reaction. Ann N Y Acad Sci 316:279–295.

21. Barkley D (1991) A model for fast computer simulation of waves in excitable media.
Physica D 49:61–70.

22. Rudy Y (1995) Reentry: Insights from theoretical simulations in a fixed pathway. J
Cardiovasc Electrophysiol 6:294–312.

23. Mornev OA (1984) Elements of “Optics” of autowaves. Self-Organization Autowaves
and Structures Far from Equilibrium, ed Krinsky VI (Springer, Berlin), Vol 28,
pp 111–118.

24. Zemlin CW, Pertsov AM (2007) Bradycardic onset of spiral wave re-entry: Structural
substrates. Europace 9:vi59–vi63.

25. Zemlin CW, Mitera BG, Pertsov AM (2009) Spontaneous onset of atrial fibrillation.
Physica D 238:969–975.

26. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:355–
369.

27. Gao X, Zhang H, Zykov V, Bodenschatz E (2014) Stationary propagation of a wave
segment along an inhomogeneous excitable stripe. New J Phys 16:033012.

28. Nattel S (2008) Effects of heart disease on cardiac ion current density versus current
amplitude: Important conceptual subtleties in the language of arrhythmogenic ion
channel remodeling. Circ Res 102:1298–1300.

29. Kohl P, Hunter P, Noble D (1999 ) Stretch-induced changes in heart rate and rhythm:
Clinical observations, experiments and mathematical models. Prog Biophys Mol Biol
71:91–138.

30. Weise LD, Panfilov AV (2012) Emergence of spiral wave activity in a mechanically
heterogeneous reaction-diffusion-mechanics system. Phys Rev Lett 108:228104.

31. Christensen K, Manani KA, Peters NS (2015) Simple model for identifying critical
regions in atrial fibrillation. Phys Rev Lett 114:028104.

32. Kudryashova NN, Teplenin AS, Orlova YV, Selina LV, Agladze K (2014) Arrhythmogenic
role of the border between two areas of cardiac cell alignment. J Mol Cell Cardiol
76:227–234.

33. Rother J, et al. (2015) Crosstalk of cardiomyocytes and fibroblasts in co-cultures. Open
Biol 5:150038.

34. Fenton F, Karma A (1998) Vortex dynamics in three-dimensional continuous
myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8:20–47.

35. Fenton FH, Cherry EM, Hastings HM, Evans SJ (2002) Multiple mechanisms of spiral
wave breakup in a model of cardiac electrical activity. Chaos 12:852–892.

36. Rappel WJ, Zaman JAB, Narayan SM (2015) Mechanisms for the termination of atrial
fibrillation by localized ablation: Computational and clinical studies. Circ Arrhythm
Electrophysiol 8:1325–1333.

37. Arora R, et al. (2003) Arrhythmogenic substrate of the pulmonary veins assessed by
high-resolution optical mapping. Circulation 107:1816–1821.

38. Hocini M, et al. (2002) Electrical conduction in canine pulmonary veins:
Electrophysiological and anatomic correlation. Circulation 105:2442–2448.

39. Engel J (2003) A greater role for surgical treatment of epilepsy: Why and when?
Epilepsy Curr 3:37–40.

1286 | www.pnas.org/cgi/doi/10.1073/pnas.1611475114 Zykov et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1611475114

