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The heterogeneous elastoplastic deformation of structural glasses
is explored using the framework of the random first-order tran-
sition theory of the glass transition along with an extended
mode-coupling theory that includes activated events. The theory
involves coupling the continuum elastic theory of strain transport
with mobility generation and transport as described in the the-
ory of glass aging and rejuvenation. Fluctuations that arise from
the generation and transport of mobility, fictive temperature, and
stress are treated explicitly. We examine the nonlinear flow of a
glass under deformation at finite strain rate. The interplay among
the fluctuating fields leads to the spatially heterogeneous dislo-
cation of the particles in the glass, i.e., the appearance of shear
bands of the type observed in metallic glasses deforming under
mechanical stress.

glass transition | mode-coupling theory | strength of materials |
shear bands

Whether and how glasses flow have been fascinating ques-
tions for a long time. In the absence of stress, a glass seems

to be static on human timescales, the molecules being arranged
like a frozen snapshot of the liquid state. In fact, molecules in
the glass are constantly moving and the glass itself is not in
a state of equilibrium. Even without applied stress, molecules
do change their locations through rare, activated events. These
events occur at a rate that is both spatially and temporally het-
erogeneous. Glasses therefore continue to evolve, albeit slowly,
as they approach equilibrium and age (1). These activated events
are accelerated by applied stresses and typically will act to reduce
the stress so that under sufficient stress the glass will not just
deform elastically but visibly flow and possibly break. The defor-
mations caused by stress are not uniform in the glass, but appear
to concentrate in shear bands (2–4). In this work, we show
how shear bands arise dynamically by the coupling of the acti-
vated dynamics of configurationally rearranging regions with
elastic strain transport. The heterogeneous activated dynamics
of glasses under mechanical deformation are described using a
first-principle framework based on the random first-order transi-
tion (RFOT) theory along with an extended mode-coupling the-
ory that describes how activated events are coupled in space and
time (5–10).

The random first-order transition theory of glasses is a micro-
scopic theory that has already provided a unified quantitative
description of large number of aspects of the behavior of super-
cooled liquids and structural glasses (11). The theory brings
together two seemingly disparate aspects of glass formation: the
breaking of replica symmetry that occurs in mean-field models
and a theory of the activated events that tend to locally restore
replica symmetry in systems with short-range interactions (7, 8,
12–14). In mean-field models, there is a special temperature Td

at which a dynamical transition to immobility occurs discontin-
uously. Above this temperature the system is well described by
ordinary mode-coupling theory. Below this temperature, how-
ever, an exponentially large number of frozen states suddenly
emerge. In the mean-field theory these states individually live for-
ever. For systems of finite dimensions with finite range forces, this
transition at the dynamical temperatureTd is wiped out by locally

activated events. A theory of these ergodicity-restoring activated
events resembling the nucleation theory of ordinary first-order
transition allows one to estimate relaxation timescales. These
thermally activated motions cease only at a lower thermodynamic
transition temperature TK where the configurational entropy
would vanish, as happens in the mean-field approximation. When
these features are combined, one finds that cooperatively rear-
ranging regions (CRRs) emerge that reach the nanometer length
scale at the usual laboratory glass transition temperature. These
regions continue to evolve as the glass ages. The rate at which
rearrangement occurs locally may be called the “mobility.” Mode-
coupling effects then allow the mobility once it has been gener-
ated by activated events below Td to be transported out from its
source—giving a microscopic basis for the notion of facilitation
(15, 16). Mobility transport is an essential feature determining
the detailed distribution of relaxation times in glasses and super-
cooled liquids (17).

Within RFOT theory the heterogeneous dynamics of the glass
can be understood in terms of a mobility field µ(x , t) that has
space and time dependences. Previously we detailed how a con-
tinuum description of the mobility-field dynamics can be derived
by explicitly expanding the mode-coupling memory kernels of a
spatially inhomogeneous system, using a Taylor series in terms
of the gradients of the mobility that is basically the local memory
kernel (10, 18). To account for the random nature of molec-
ular motion in the glasses, the equations for the mobility field
are then completed by introducing stochastic terms for mobility
generation and transport effects to describe a state of con-
strained local equilibrium. We have shown this framework quan-
titatively describes a broad range of experimental measurements
on dynamics both in glasses and in equilibrated supercooled
liquids. One of the theory’s most dramatic predictions is the
existence and speed of the front-like transformation of stable
glasses that occurs when they are heated (10, 16). The theory
also predicts the hysteretic character of calorimetric experiments
and the temperature dependence of the stretching exponent in
the supercooled liquids and explicitly quantifies the appearance
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of two seemingly distinct equilibration mechanisms in aging
glasses found recently in experiment (19) but predicted earlier
by Lubchenko and Wolynes (1).

To describe shear bands we must first understand how stress
affects glass mobility (19). RFOT theory describes this effect
by first noting that when a sample of glass is put under a uni-
form shear stress σ, the energy per unit volume is immediately
raised by an amount σ2/2G , where G is the elastic shear mod-
ulus. This additional energy can be released by accessing a state
of zero local shear through a reconfiguration event. Stress then
can rejuvenate glasses much as they rejuvenate when they are
heated because stress increases the rate at which local recon-
figuration events occur. For sufficient applied stress, the addi-
tional stress energy becomes so large that reconfiguration can
occur without any free energy barrier. By determining the crit-
ical value of stress that makes the free energy barrier vanish,
RFOT theory has predicted the mechanical strength of the glass,
explaining why glasses are among the strongest known materi-
als (20). In this work, we describe the dynamical behavior of the
glass when external forces are applied by coupling the RFOT
theory of mobility generation and transport under stress with
elastic theory.

Several phenomenological models have been developed to
explain how amorphous solids deform (3, 4, 21, 22). The free-
volume model proposed by Spaepen and colleagues (23–25)
nearly three decades ago inspired the notion of a shear trans-
formation zone (STZ). That model postulates that plastic flows
are caused by a series of driven creation events of free vol-
ume via individual jumps of particles. The shear transforma-
tion zone theory argues that the plastic deformation involves
irreversible rearrangements of small clusters of particles whose
detailed nature is, however, left unspecified (26). It was later
realized that particle rearrangements in a shear transforma-
tion zone might be triggered by neighboring particle jumps
that again are described by the free-volume model (27–30).
Impressionistically this model has many points in common
with the present framework but the STZ theory introduces
many phenomenological parameters. In contrast, the RFOT the-
ory allows first-principle calculation of all of the elements of
elastoplastic deformation, using only input thermodynamic and
elastic data.

Theoretical Framework
To account for the dynamics of a deformed glass, we first recount
the continuum mechanics for a glass, emphasizing the role of
spatiotemporal fluctuations. Initially the fluctuations of the local
properties of the glass are inherited from the liquid state from
which it is formed. When the liquid is cooled at a rate faster
than the basic relaxation time, persistent disordered structures of
the liquid state are to a first approximation frozen in at the glass
transition temperature. The structure, however, actually contin-
ues to evolve, proceeding to lower-energy states. This protocol
gives rise to frozen internal stresses within the sample of a glass.
At the continuum level the equation of motion for these stresses
can be found by equating the internal stress force ∂σik/∂xk to
the product of the acceleration üi and its mass density ρ,

ρüi =
∂σik

∂xk
, [1]

where ui is the i th component of the displacement vector, and
σik is the element of the internal stress tensor (31). This stress is
a key to understanding the nontrivial behavior of the glass under
applied forces.

Glass dynamics occur on a range of length scales and timescales
and strongly depend on the glass’s history. When a stress is
applied for times short compared with the structural relax-
ation time (τα), a glass elastically deforms much like a familiar

crystalline solid. During this time interval, the internal stresses
give rise to material deformations following the theory of elas-
ticity; i.e., σik = 2Guik , where G is the elastic shear modulus,
and uik is the strain relative to the initial glassy configura-
tion. On the other hand, when stresses are applied sufficiently
slowly compared with the relaxation time, the glass behaves like
an ordinary fluid. On these longer timescales the stress tensor
depends on the local velocity of material deformation following
the usual expression for viscous stresses in fluids; i.e., σik = 2ηu̇ik ,
where η is the viscosity that depends linearly on the relaxation
time, i.e., η ∼ Gτ . At intermediate times, the local dynam-
ics are reasonably well described by a local Maxwell model for
viscoelasticity (31),

∂σik

∂t
= 2Gu̇ik − µσik , [2]

where uik is the strain tensor, uik ≡ 1
2

(
∂ui
∂xk

+ ∂uk
∂xi

)
, and µ a space

and time varying quantity itself is the local mobility that is the
inverse of the structural relaxation time, µ≈ 1/τα of a small
region. In RFOT theory the well-known global nonexponential
dynamics of glasses arise through the fluctuations of local mobil-
ity that dynamically depend on space and time.

Owing to the aperiodic structure of glasses, we must complete
the description of the stress evolution by introducing stochastic
sources for the stress fluctuations as is familiar in the continuum
theory due to Landau (32):

∂σik

∂t
= 2Gu̇ik − µσik + δhik . [3]

The generation noise term δhik satisfies the local fluctuation–dis-
sipation relation 〈δhik (x , t)δhik (x ′, t ′)〉= 2µ〈σik (x ,t)σik (x ′,t ′)〉,
where the correlations between the components of the ran-
dom stress tensor depend on ζ and η, which are the sec-
ond viscosity and the dynamic viscosity, respectively, and can
be written as 〈σik (r1, t1)σlm(r2, t2)〉= 2T

[
η (δilδkm + δimδkl) +(

ζ − 2
3
η
)
δikδlm

]
δ(r1 − r2)δ(t1 − t2). Here we treat the glass

as incompressible, so the fluctuations of the shear stress gen-
eration noise term can be reduced to being described by
〈δhik (x , t)δhik (x ′, t ′)〉= 4ηµT (1 + δik ) δ(x − x ′)δ(t − t ′). In
general both normal and shear stresses must be considered,
depending on the Poisson ratio. We neglect also direct heating
by shear, assuming a relatively high thermal conduction. Further-
more, in heating and cooling protocols we presently ignore the
thermal expansion of the glass, which can introduce additional
strains.

The local mobility field is defined as the longtime rate at which
particles in a glass reconfigure. This field is formulated in real
space through the low-frequency Fourier transform of the mem-
ory kernel of the mode-coupling theory (MCT). As discussed
earlier by Bhattacharyya, Bagchi, and Wolynes (BBW) (15, 33),
activated processes provide an extra decay channel for structural
correlations beyond conventional mode-coupling theory, which
ultimately restores the ergodicity of the glass. In the BBW treat-
ment the total mobility field has two distinct contributions, one
coming directly from the activated dynamics and another part
coming from idealized mode coupling (18):

µ(r , t) = µhop(r , t) + µmct(r , t). [4]

The completely microscopic theory of the mode-coupling
memory kernel leads to a rather complicated mathematical form
involving coupling to density fluctuation modes with other wave
vectors. For inhomogeneous systems the relevant correlations
must be rewritten in terms of multipoint spectral quantities.
Expanding the resulting extended MCT with activated processes
in a Taylor series in spatial and temporal derivatives of the
mobility field leads to continuum equations that again must be
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Fig. 1. Schematic diagram represents the boundary conditions of a 2D sys-
tem of a deformed glass. A sample is compressed on the left boundary with
constant rate, whereas the boundary on the top is the free surface boundary.

supplemented with local random forces to restore the local
fluctuation–dissipation theorem, giving the equation

∂µmct

∂t
=

∂

∂xi

(
2µ2ξ2

µ̄mct

∂µmct

∂xi

)
− 2µ2

µ̄mct
(µmct − µ̄mct) + δg +

∂δj

∂xi
, [5]

where ξ is a length scale corresponding to the range of the four-
point correlation function (34). In this equation µ̄mct = µ̄−µhop ,
where µ̄ is the uniform solution of the BBW equations for a uni-
form system. Here we approximate µhop by using the ultralocal
theoretical analysis of aging glasses by Lubchenko and Wolynes.
This theory contains a local fictive temperature Tf , which, when
combined with the ambient temperature T , determines the local
energy density (1). In the absence of stress, well below Td the
rates of the reconfiguration events depend both on the local fic-
tive temperature Tf and on the ambient temperature T assumed
uniform,

µ̄ = µ0 exp

− γ2

4kBT∆cpTg

(
T−TK
TK

− ln T
Tf

)
 , [6]

where γ(T ) = 3
√

3π
2

kBT ln
[

(a/dL)2

πe

]
, dL is the Lindemann

length, and a is the interparticle spacing. Adding stress changes
this relation because under a uniform stress σ, the energy per
unit volume of a rearranging region is immediately raised by
an amount of σ2/2G , where G is the elastic shear modulus.
An additional factor κ is needed to account for additional
strain energy relieved by harmonically distorting the surrounding
region of a region once that region becomes stress-free (35). As
discussed by Wisitsorasak and Wolynes (20), this factor is analo-
gous to the energy cost of distorting an inclusion in a solid body
as calculated by Mackenzie (35). The κ is given in terms of Pois-
son’s ratio ν as κ = 3− 6/(7− 5ν). For a typical Poisson’s ratio
for metallic glasses κ is approximately equal to 1.8. This relief
of strain energy lowers the activation free-energy barrier. If the
applied stress is large enough, the free-energy barrier will vanish,
leading to the limiting strength of the glass typically near half the
Frenkel limit (20).

Simply adding the relieved strain energy to the reconfigura-
tional driving force allows one to write the barrier for the flow
of a glass under stress in terms of the same function that gives
the activation free energy for an equilibrium liquid in terms of its
configurational entropy ∆F ‡= ∆F ‡(Tsc+∆Φ+κσ2Vbead/2G),
where ∆Φ is the excess energy of the glassy states frozen
in at the fictive temperature, ∆Φ = ∆cp(Tg)Tg ln(Tf /T ). The

crossover to barrierless reconfiguration finally occurs once the
stress is large enough so that condition sc(Tc) = s

perc
c − ∆Φ

T
−

κ σ2

2GT
Vbead is satisfied. In this relation s

perc
c is the critical con-

figurational entropy where percolation-like clusters can form
spontaneously. This condition from RFOT theory looks much
like the J-point scenario where barrierless reconfiguration can
be approached by tuning either the temperature T or the stress
σ (36). As this critical value is approached from below, the
RFOT predicts that the shapes of cooperatively rearranging
regions in glassy liquids change from being relatively compact
regions to fractal ones (37). Following Stevenson et al.’s (37)
theory for the beta relaxation without stress, the weight for
such rearrangements is exponentially suppressed when δsc ≡ sc−(
s

perc
c − ∆Φ

T
− κ σ

2

2G
VbeadN

)
is positive, but barrierless reconfig-

uration dominates at higher stress. Thus, to capture the transi-
tion to barrierless reconfiguration, we can then write the local
mobility as in ref. 18,

µ̄ = µ0 exp

 −Θ(δsc) · γ2[
4kBT∆cpTg

(
T−TK
TK

− ln T
Tf

)
+ κ σ

2

2G

]
 , [7]

where Θ(δsc) is the Heaviside step function that is defined
as a piecewise constant function: Θ(δsc) = 1 for δsc > 0,
Θ(δsc) = 1/2 for δsc = 0, and Θ(δsc) = 0 for δsc < 0. We see that
in RFOT theory all of the quantities determining the local mobil-
ity are given explicitly in terms of quantities available from inde-
pendent experiments and are not treated as ad hoc adjustable
parameters.

The fictive temperature determines the local energy density of a
region (1). Following the arguments of Lubchenko and Wolynes,
the fictive temperature relaxes following an ultralocal relation
with the local decay rate also given by the mobility µ(r , t):

∂Tf

∂t
= −µ (Tf − T ) + δη. [8]

Again a random term is needed to ensure the fluctuation–
dissipation relations are locally obeyed. These fluctuations in

Fig. 2. The predicted stress–strain curves for a 2D sample of a Vitreloy 1
metallic glass at different strain rates. The ambient temperature of the glass
is set to T = 643 K, while the sample is being compressed. The stress ini-
tially linearly increases as the strain increases. The curves then transit to the
steady-state regime. Once the applied strain rate is higher than a threshold,
a stress overshoot appears. The blue symbols are experimental data taken
from ref. 38 for a 3D sample of Vitreloy 1. The red symbols show the simu-
lation results.
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Fig. 3. Predictions of the various deformation fields in the Vitreloy 1 model under the applied strain rate of 0.01 s−1 at various stages of deformation.
The ambient temperature T = 643 K. Each plot shows the equivalent stress overlaid with the strain field. The color bar on the right of each plot shows the
magnitude of the stress in units of MPa. (A) The strain ε = 0.01, (B) ε = 0.03, (C) ε = 0.1, and (D) ε = 0.2.

the local fictive temperature arise from the happenstance nature
of the activated events that generate and transport the mobil-
ity field. The fluctuating barriers ultimately cause the non-
exponential time correlations found in glasses. We treat the
random force terms in the equation as coarse-grained white
noises with strengths and correlation lengths that also reflect
the length scales of the activated events. The noise intensities
are found by requiring the linearized equations to satisfy locally
fluctuation–dissipation relations. The local fictive temperature
fluctuation δη is thus 〈δη(x , t)δη(x ′, t ′)〉= 2µT 2 kB

∆cpN‡
δ(x −

x ′)δ(t − t ′), where N ‡ is the number of molecular units
in a cooperatively rearranging region. The fluctuations in
mobility generation δg and in the transport of mobility δj
lead to fluctuations in free-energy barrier heights that cause
the stretched exponential relaxation with a bare stretching

parameter β0 = 1/
√

1 + (δF ‡/kBT )2. Linearizing the mobility
equation while treating µ̄ as constant, the local fluctuation–
dissipation relation yields a mobility-generating noise with cor-
relations 〈δg(x , t)δg(x ′, t ′)〉= 2µ̄µ2

(
1/β2

0 − 1
)

(Tg/T )2δ(x −
x ′)δ(t − t ′) and a random mobility flux with correlations
〈δj (x , t)δj (x ′, t ′)〉= 2µ̄ξ2µ2

(
1/β2

0 − 1
)

(Tg/T )2δ(x −x ′)δ(t−
t ′) (10).

Fig. 4. A 2D simulation snapshot of the Vitreloy 1 specimen under a strain rate of 0.01 s−1. The ambient temperature is equal to T = 643 K. The data are
shown when the strain is equal to 0.2. The color contour in A shows the logarithm of the mobility field and that in B represents the fictive temperature
field. Both plots are superimposed with the strain field.

Results and Discussion
In this work, we carried out for illustration numerical calcula-
tions of the mechanical responses of a sample mimicking the bulk
metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) under
uniaxial compression with controlled strain rates (Fig. 1). These
calculations are analogous to experiments carried out by Lu et al.
(38). Full 3D calculation would be very computer-time demand-
ing. Due to the symmetry of the macroscopic problem, we study
instead a model in two dimensions of such a sample with uniax-
ial compression along the x direction. This essentially describes a
thin-layer slab, but where surface mobility changes are neglected
(39). We solve the system of Eqs. 1, 3–5, and 8 numerically by
a finite-difference method that takes account of the stiffness of
the equations, thereby neglecting sound waves (40, 41). To treat
the stochastic terms in the numerical calculations, we used the
Euler–Maruyama method in which random numbers are nor-
mally distributed (41). Consequently the mobility may rarely
become negative locally. To avoid such unrealistic situations, the
negative values of the mobility when they occur are set to zero.
The computational domain used in this study is an 80 × 30 rect-
angular grid with a grid size of 1 nm. To mimic the uniaxial com-
pression experiment the left boundary B1 and the top surface
are taken to undergo uniaxial compression along the x direc-
tion and to be free, respectively. At the same time the boundary
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conditions on the bottom B4 and the right surface B3 correspond
to the symmetry conditions.

To account for the fluctuations we note that we are essentially
studying a thin slab roughly of width ξ in the third dimension.
Vitreloy 1 is a bulk glass-forming metallic alloy that exhibits high
resistance to deformation in comparison with its crystalline coun-
terpart (42). We chose to investigate this system because all of
its relevant material properties are well documented in the lit-
erature (42–46). The Kauzmann (TK ), glass transition (Tg), and
crystallization temperatures (Tx ) are 553 K, 623 K, and 710 K,
respectively, and the elastic modulus is 34.10 GPa (38, 42). In the
laboratory the samples of the glass were tested at various temper-
atures (T ) above and below the nominal glass transition: 603 K,
613 K, 623 K (the glass transition temperature of Vitreloy 1),
633 K, and 643 K. In the laboratory the samples also were com-
pressed at various strain rates (ε̇) ranging from 1 × 10−4 s−1 to
1×10−2 s−1 and the stress and strain were measured. The prepa-
ration procedure used by us follows the experimental setups as
described in ref. 38.

Fig. 2 shows the predicted stress and strain histories for the 2D
Vitreloy 1 glass slab at different applied strain rates. The experi-
mental results from ref. 38 for the same system in 3D are shown
as blue symbols for comparison. As seen from the graph, both in
our numerical calculations and in the laboratory the stress ini-
tially linearly increases as the strain increases. The linear behav-
ior of the glass in this regime indicates the glass acts simply as
an elastic solid. Increasing stress allows the glass to relax at a
faster rate, leading to the apparently non-Newtonian fluid behav-
ior in the late regime of the stress–strain curve where the stresses
reach a plateau regime. Before transiting to the plateau regime
an overshoot of the stress occurs at a high strain rate whose mag-
nitude strongly depends on the strain rate. For strain rates below
1× 10−3 s−1, no stress overshoot is observed.

It is worth mentioning that, in studies of some metallic
glasses such as Zr58.5Cu15.6Ni12.8 Al10.3Nb2.8 metallic glass
compressed at a high strain rate of 0.2 s−1, the stress–strain curve
exhibits a more intricate nonlinear oscillation in which the stress
overshoot is followed by undershoot (22, 46). In our 2D calcula-
tion we have never seen this behavior. This issue may require full
3D simulation of a larger system.

Apart from these global measurements the numerical calcu-
lations resolve how the flows develop in space and time. Fig. 3
shows various stages of the Vitreloy 1 flow after the sample was
compressed with a strain rate of 0.01 s−1. The colored contour
plots show the level of the equivalent stress (47), which is defined

as σeq ≡ 1√
2

√
(σxx − σyy)2 + σ2

yy + σxx + 6σ2
xy . Each subplot is

also superimposed with a vector field showing the normal strain
axes. Fig. 3 A–D is shown when the strains (ε) equal 0.01, 0.03,
0.1, and 0.2, respectively. The initial stage of the compression is

shown in Fig. 3A. The stress increases quickly and reaches a max-
imum value when the strain is approximately equal to 0.03. Shear
bands start developing at this stage.

Snapshots of the mobility field and the fictive temperature pat-
tern are presented in Fig. 4 A and B for the case when the strain
is equal to 0.2. Both plots also show the strain fields. The corre-
sponding stress pattern at the same time is shown in Fig. 3D. The
regions that develop shear bands also have higher mobility and
higher fictive temperature than their neighboring regions. Exper-
imental observations of similar results have been found in many
other metallic glasses (3, 48).

The plots in Figs. 3 and 4 emphasize the interplay among the
stress, strain, mobility, and fictive temperature fields in which
these fluctuations lead to a very heterogeneous flow of the sam-
ple. The heterogeneity of the glass reflects the fact that the rates
of reconfiguration events vary throughout the sample. These
fluctuation are not completely independent from their neighbors,
but become correlated over short length scales that then grow as
the flow proceeds much like a rejuvenation front (16). This corre-
lation allows the glass to differentially deform different regions
to develop shear banding patterns like those in the laboratory
(3, 4, 49, 50). We have marked the shear bands observed in our
simulation in Fig. 3D with dashed lines. Note that neither band
is perpendicular to the sides of the domain. The tilted angle of
the band is 45◦ with respect to the horizontal axis and the width
of the bands is ∼10 nm.

We also studied the temperature dependence of shear defor-
mation and show the results for this in Effect of Temperature
on Stress-Strain Behavior, Effect of Strain Rate and Temperature
on Apparent Viscosity, and Figs. S1–S3. At fixed strain rates, the
ambient temperature strongly influences the magnitude of the
overshoot stress and the steady-state stress values.

Summary
In the present work we have shown how RFOT theory nat-
urally leads to shear bands in a 2D flow situation mimicking
experiments on real metallic glasses. Extensions of the calcu-
lations to 3D are conceptually straightforward but computa-
tionally demanding. The shear bands correspond to regions of
transiently high mobility that will also allow local crystallization
and cavitation to occur in them, ultimately leading to material
failure.
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