Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Dec 15;88(24):11071–11075. doi: 10.1073/pnas.88.24.11071

Bag model for DNA migration during pulsed-field electrophoresis.

G Chu 1
PMCID: PMC53075  PMID: 1763022

Abstract

A model for pulsed-field electrophoresis was developed by picturing large DNA as a deformable "bag" that (i) moves with limiting mobility in a continuous electric field, (ii) adopts an orientation aligned with the field direction, and (iii) reorients after a change in field direction in a size-dependent manner. The model correctly predicted the resolution of large DNA in a pulsed field including the surprising phenomena of mobility inversion, lateral band spreading, and improved resolution for obtuse angles. A simple parametrization agreed with observations of two completely different aspects of DNA behavior: bulk mobility as measured during gel electrophoresis and molecular reorientation as measured by linear dichroism. The model also provides quantitative guidelines for setting experimental parameters in pulsed-field electrophoresis experiments.

Full text

PDF
11071

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman B., Jonsson M., Nordén B., Lalande M. Orientational dynamics of T2 DNA during agarose gel electrophoresis: influence of gel concentration and electric field strength. Biopolymers. 1989 Sep;28(9):1541–1571. doi: 10.1002/bip.360280906. [DOI] [PubMed] [Google Scholar]
  2. Birren B. W., Lai E., Clark S. M., Hood L., Simon M. I. Optimized conditions for pulsed field gel electrophoretic separations of DNA. Nucleic Acids Res. 1988 Aug 11;16(15):7563–7582. doi: 10.1093/nar/16.15.7563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carle G. F., Frank M., Olson M. V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. doi: 10.1126/science.3952500. [DOI] [PubMed] [Google Scholar]
  4. Carle G. F., Olson M. V. Orthogonal-field-alternation gel electrophoresis. Methods Enzymol. 1987;155:468–482. doi: 10.1016/0076-6879(87)55031-5. [DOI] [PubMed] [Google Scholar]
  5. Chu G., Gunderson K. Separation of large DNA by a variable-angle contour-clamped homogeneous electric field apparatus. Anal Biochem. 1991 May 1;194(2):439–446. doi: 10.1016/0003-2697(91)90254-q. [DOI] [PubMed] [Google Scholar]
  6. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  7. Deutsch J. M. Theoretical studies of DNA during gel electrophoresis. Science. 1988 May 13;240(4854):922–924. doi: 10.1126/science.3363374. [DOI] [PubMed] [Google Scholar]
  8. Fangman W. L. Separation of very large DNA molecules by gel electrophoresis. Nucleic Acids Res. 1978 Mar;5(3):653–665. doi: 10.1093/nar/5.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gunderson K., Chu G. Pulsed-field electrophoresis of megabase-sized DNA. Mol Cell Biol. 1991 Jun;11(6):3348–3354. doi: 10.1128/mcb.11.6.3348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gurrieri S., Rizzarelli E., Beach D., Bustamante C. Imaging of kinked configurations of DNA molecules undergoing orthogonal field alternating gel electrophoresis by fluorescence microscopy. Biochemistry. 1990 Apr 3;29(13):3396–3401. doi: 10.1021/bi00465a036. [DOI] [PubMed] [Google Scholar]
  11. Holzwarth G., McKee C. B., Steiger S., Crater G. Transient orientation of linear DNA molecules during pulsed-field gel electrophoresis. Nucleic Acids Res. 1987 Dec 10;15(23):10031–10044. doi: 10.1093/nar/15.23.10031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jonsson M., Akerman B., Nordén B. Orientation of DNA during gel electrophoresis studied with linear dichroism spectroscopy. Biopolymers. 1988 Mar;27(3):381–414. doi: 10.1002/bip.360270304. [DOI] [PubMed] [Google Scholar]
  13. Lerman L. S., Frisch H. L. Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers. 1982 May;21(5):995–997. doi: 10.1002/bip.360210511. [DOI] [PubMed] [Google Scholar]
  14. Lumpkin O. J., Déjardin P., Zimm B. H. Theory of gel electrophoresis of DNA. Biopolymers. 1985 Aug;24(8):1573–1593. doi: 10.1002/bip.360240812. [DOI] [PubMed] [Google Scholar]
  15. Noolandi J., Slater G. W., Lim H. A., Viovy J. L. Generalized tube model of biased reptation for gel electrophoresis of DNA. Science. 1989 Mar 17;243(4897):1456–1458. doi: 10.1126/science.2928779. [DOI] [PubMed] [Google Scholar]
  16. Olvera de la Cruz M, Gersappe D, Shaffer EO. Dynamics of DNA during pulsed-field gel electrophoresis. Phys Rev Lett. 1990 May 7;64(19):2324–2327. doi: 10.1103/PhysRevLett.64.2324. [DOI] [PubMed] [Google Scholar]
  17. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  18. Schwartz D. C., Koval M. Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature. 1989 Apr 6;338(6215):520–522. doi: 10.1038/338520a0. [DOI] [PubMed] [Google Scholar]
  19. Slater G. W., Noolandi J. Effect of nonparallel alternating fields on the mobility of DNA in the biased reptation model of gel electrophoresis. Electrophoresis. 1989 May-Jun;10(5-6):413–428. doi: 10.1002/elps.1150100520. [DOI] [PubMed] [Google Scholar]
  20. Smith S. B., Aldridge P. K., Callis J. B. Observation of individual DNA molecules undergoing gel electrophoresis. Science. 1989 Jan 13;243(4888):203–206. doi: 10.1126/science.2911733. [DOI] [PubMed] [Google Scholar]
  21. Southern E. M., Anand R., Brown W. R., Fletcher D. S. A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Res. 1987 Aug 11;15(15):5925–5943. doi: 10.1093/nar/15.15.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Viovy J. L. Reptation-breathing theory of pulsed electrophoresis: dynamic regimes, antiresonance and symmetry breakdown effects. Electrophoresis. 1989 May-Jun;10(5-6):429–441. doi: 10.1002/elps.1150100521. [DOI] [PubMed] [Google Scholar]
  23. Vollrath D., Davis R. W. Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. Nucleic Acids Res. 1987 Oct 12;15(19):7865–7876. doi: 10.1093/nar/15.19.7865. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES