Skip to main content
. 2017 Feb 13;17:13. doi: 10.1186/s12880-017-0181-0

Table 3.

Classifier accuracies (ranks) for each class, the Friedman statistic (T1) and average classifier rank, for the experiments with the 4 datasets

Dataset Classifier Negative Neutral Positive (partial) Positive (complete) Average rank
Original T1=1.956 kNN 0 (4.5) 0.167 (5.5) 0.741 (4) 0.893 (4)
LVQNN 0 (4.5) 1.0 (1) 1.0 (1) 0.929 (2)
MLPI 1.0 (1) 0.667 (2) 0.778 (3) 0.893 (4)
MLPII 0.5 (2) 0.5 (3) 0.889 (2) 0.893 (4)
RBFNN 0 (4.5) 0.167 (5.5) 0.444 (6) 0.964 (1)
PNN 0 (4.5) 0.333 (4) 0.704 (5) 0.750 (6)
SMOTE T1=12 kNN 0.125 (6) 0.417 (6) 0.630 (4.5) 0.893 (4) 5.125
LVQNN 1.0 (1.5) 1.0 (1) 1.0 (1) 1.0 (1) 1.125
MLPI 0.5 (3) 0.5 (5) 0.778 (3) 0.930 (2.5) 3.375
MLPII 1.0 (1.5) 0.917 (2) 0.852 (2) 0.930 (2.5) 2
RBFNN 0.25 (5) 0.667 (4) 0.444 (6) 0.393 (6) 5.25
PNN 0.375 (4) 0.889 (3) 0.630 (4.5) 0.679 (5) 4.125
PCA T1=4.241 kNN 0 (4.5) 0.167 (5.5) 0.741 (5) 0.893 (3.5) 4.625
LVQNN 0 (4.5) 1.0 (1) 1.0 (1) 0.929 (1.5) 2
MLPI 0.5 (1.5) 0.5 (2.5) 0.778 (3.5) 0.929 (1.5) 2.25
MLPII 0.5 (1.5) 0.5 (2.5) 0.889 (2) 0.893 (3.5) 2.375
RBFNN 0 (4.5) 0.333 (4) 0.667 (6) 0.464 (6) 5.125
PNN 0 (4.5) 0.167(5.5) 0.778 (3.5) 0.821 (5) 4.625
SMOTE+PCA T1=4.602 KNN 0.5 (3.5) 0.67 (4) 0.630 (5) 0.893 (4) 4.125
LVQNN 1.0 (1) 1.0 (1) 0.963 (1) 1.0 (1) 1.0
MLP 0.125 (6) 0.833 (2.5) 0.704 (4) 0.964 (2.5) 3.75
MLPII 0.5 (3.5) 0.833 (2.5) 0.815 (2) 0.964 (2.5) 2.625
RBFNN 0.375 (5) 0.417 (6) 0.741 (3) 0.714 (5) 4.75
PNN 0.625 (2) 0.583 (5) 0.556 (6) 0.679 (6) 4.75