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Abstract

Background—Accurate representations of cellular organization for multiple eukaryotic cell 

types are required for creating predictive models of dynamic cellular function. To this end, we 

have previously developed the CellOrganizer platform, an open source system for generative 

modeling of cellular components from microscopy images. CellOrganizer models capture the 

inherent heterogeneity in the spatial distribution, size, and quantity of different components among 

a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic 

images that reflect the underlying cell population. A current focus of the project is to model the 

complex, interdependent nature of organelle localization.

Results—We built upon previous work on developing multiple non-parametric models of 

organelles or structures that show punctate patterns. The previous models described the 

relationships between the subcellular localization of puncta and the positions of cell and nuclear 

membranes and microtubules. We extend these models to consider the relationship to the 

endoplasmic reticulum, and to consider the relationship between the positions of different puncta 

of the same type. Our results do not suggest that the punctate patterns we examined are dependent 

on ER position or inter- and intra-class proximity. With these results, we built classifiers to update 

previous assignments of proteins to one of 11 patterns in three distinct cell lines.

Conclusion—Our generative models demonstrate the ability to construct statistically accurate 

representations of puncta localization from simple cellular markers in distinct cell types, capturing 
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the complex phenomena of cellular structure interaction with little human input. This protocol 

represents a novel approach to vesicular protein annotation, a field that is often neglected in high-

throughput microscopy. These results suggest that spatial point process models provide useful 

insight with respect to the spatial dependence between cellular structures.

Keywords

spatial point processes; subcellular location; pattern recognition; generative models; systems 
biology

Introduction

A major challenge in systems biology is to create accurate predictive models of intracellular 

processes and their relation to cellular behavior (1–3). While many such models have been 

created for both prokaryotic and eukaryotic cells, often little or no consideration is given to 

the spatial organization of subcellular structures. However, systems such as MCell (4), 

VirtualCell (5), Simmune (6) and SmolDyn (7) can perform spatially-realistic cell 

simulations if information about spatial organization is available. Providing such 

information in a structured manner is one of the main goals of the open source 

CellOrganizer system (http://CellOrganizer.org), which can currently learn models of cell 

shape, nuclear shape, chromatin texture, vesicular size, shape and location, and microtubule 

distribution (8–13). CellOrganizer provides a generative framework for modeling aspects of 

cell organization that goes beyond descriptive approaches described previously (14). It 

enables the capture of spatial information about organelles including localization, 

associations and interactions.

Inter-model dependence is an important aspect of these generative models. For example, cell 

shape can be modeled as statistically dependent on a nuclear shape model, and object-based 

vesicular models can subsequently depend on both nuclear and cell shape. An initial 

approach for modeling vesicular distributions (9,13) considered spatial location to be 

dependent only on cell and nuclear shape. However, it is well known that vesicle localization 

in the cell can be actively maintained, implying a relationship between vesicle position and 

cytoskeletal components, microtubules in particular (15); vesicular-cytoskeletal interactions 

have been previously simulated (16). Recently, out initial organelle model was improved by 

introducing a dependency of the position of the organelle on the distance to the nearest 

microtubule in the cell. Using immunofluorescence images from the Human Protein Atlas 

(17), the ability to distinguish eleven punctate patterns using these models was demonstrated 

(18). During the course of that study, it was observed that many of the proteins annotated as 

‘vesicular’ in the HPA were not in vesicles at all but rather part of cytoplasmic complexes 

with similar appearance. We therefore use the more general term ‘puncta’ to refer to both 

vesicles and apparent punctate structures. Here we investigate whether the location pattern 

of puncta also depends significantly on the position of the endoplasmic reticulum, and, most 

importantly, explore whether positions of puncta of the same type are dependent upon each 

other. With this question in mind; we model puncta position as a spatial point process within 

the cytoplasm. A relative coordinate system, based on the nuclear and cell boundaries, the 
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microtubule structure, and the endoplasmic reticulum, is introduced to allow for comparison 

across multiple cell types.

Spatial point processes (19–21) are useful and powerful mathematical models for analyzing 

the spatial structure of both regular and irregular point patterns. A spatial point pattern is a 

group of observed locations of events in a multidimensional space. Such patterns have found 

use in a wide variety of scientific fields: ecology, geography, spatial epidemiology, and, to a 

limited extent, biology. There is a hierarchy of models for how points, or objects, are 

spatially distributed. These range from models of complete independence between points, 

Poisson point processes, to models of pairwise and higher order interdependence, including 

clustering and repulsive phenomena, such as Markov and Cox processes.

Materials and Methods

Dataset

The dataset consisted of confocal images of A-431, U-2OS and U-251MG cell lines from 

the HPA that were previously selected (18). The Human Protein Atlas (HPA, http://

proteinatlas.org) is a project to explore the human proteome and contains high-resolution 

images of subcellular location patterns for numerous proteins in the above cell lines. These 

images were collected as 8-bit TIFF images and acquired using standard stains for nucleus, 

endoplasmic reticulum, microtubule cytoskeleton and one other specific protein. The size of 

the images was 1728×1728 pixels; each pixel corresponds to 0.08 microns in the sample 

plane. Eleven proteins tagged in all cell lines were chosen as ‘founder proteins’, 

representative of eleven specific types of punctate patterns.

Homogeneous Poisson processes

Assume that for a random variable X(n) = (X1, ⋯, Xn) with a realization of punctate pattern 

x(n) = (x1, ⋯, xn) over a cell cytoplasm w, xi is the coordinates of the ith punctum location 

and n is the number of puncta.

The simplest case for the positions of puncta is that they are completely random. This 

hypothesis follows a homogeneous Poisson process (20),

(1)

where Z is a normalizing constant and b is a constant that represents the unnormalized 

density of each punctum. Assume that the number of puncta is known in each cell and that 

the normalizing constant is

(2)

where w is the cytoplasm of a cell.
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Correspondingly, the homogeneous Poisson becomes

(3)

In this simple case, it is not necessary to estimate b since it cancels out.

To test this hypothesis, a Monte Carlo test (22) was performed with test statistic

(4)

where K(r) is a Ripley’s K-function. The expected number of puncta within radius r of an 

observed puncta is KPoi(r) = πr2 under the hypothesis of complete spatial randomness.

We calculated  as values of the test statistic TK for m−1 random samples from 

the Poisson distribution and  as the value of the test statistic TK for an observed protein 

pattern, where m was set to the number of cells in the images of that protein multiplied by 

100. A consistent Monte Carlo p-value was then calculated as

(5)

Inhomogeneous Poisson processes

For spatially-dependent processes, we constructed six factors (f1 through f6) that our founder 

patterns might depend upon, as described in Results. We use the definition of the density of 

an inhomogeneous Poisson point process (20)

(6)

where bθ is a trend term that introduces dependence of the positions of puncta on other 

components in a cell and θ is a parameter vector of coefficients (that capture the dependence 

on each component) that can be estimated by maximizing log pseudolikelihood; Zθ is a 

normalizing constant. The bθ terms are log-linear combinations of some number of factors, 

such as log(bθ) = θ1f1 + θ2f2. Different combinations of factors correspond to different 

models and therefore have different predictions of puncta distribution. We therefore sought 

to use five-fold cross-validated likelihood to choose the model that most accurately captures 

the relationships between puncta and other organelles. However, there is a normalizing 

constant in equation 6 that we can ignore when comparing models of the same structure but 

is required for comparing models with different factors.
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Given the number of puncta in a single cell, the normalizing constant is a high-dimensional 

integral,

(7)

We performed Monte Carlo integration to estimate this constant. Under the assumption that 

puncta locations are independent of each other, the high-dimensional integration above was 

simplified as

(8)

Furthermore, ∫wbθ(Xu)dXu was approximated by Monte Carlo integration,

(9)

where  distributed uniformly over cytoplasm w.

The above integral is equal to the expected value of bθ(Xu) with respect to random variable 

Xu distributed according to p(Xu). We estimate the expected value by sampling according to 

p and calculating the average of bθ. To guarantee the accuracy of the approximation, the 

number of samples was chosen to be 5000 under the condition that it is nearly equal to the 

effective size,

(10)

where ρk is an autocorrelation function of lag k.

Then the likelihood of x(n) was calculated as

We then estimated the performance of different models by five-fold cross-validated 

likelihood. Assume proteins are indexed by i with segmented c(i) cells, randomly split into 5 

roughly equal-sized groups. Let  be an index that indicates 

the partition to which cell is allocated by the randomization (e.g.,  means that the 1st 

Li et al. Page 5

Cytometry A. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell of protein i is assigned to the second fold. The cross-validation estimate of prediction 

error is

(11)

where α indexes models of combinations of factors and nl is the number of puncta in lth cell; 

 is the log likelihood fit of model α in lth cell with  group of cells removed; 

θ̂(i)are the parameters trained by other four groups of the data. By maximizing RCV(α) on α, 

we chose the model indexed by α̂.

Markov spatial point processes

Assume that there are dependences between the positions of puncta of the same type. 

Markov (Gibbs) processes (20) exhibit aggregation (or inhibition) due to interaction between 

points, explicating the spatial distribution of puncta by

(12)

The interaction terms hθ introduce pairwise interaction between puncta.

We tried different models to characterize interactions between puncta, Strauss hard 

processes (23,24) and Fiksel processes (25), as defined in equations 13 and 14. In these 

models, free parameters δ, r, κ are required to define the allowed interaction range of each 

punctum.

The Strauss hard point process is

(13)

S(X(n)) is the number of unordered pairs of point than lie closer than radius r. Each pair of 

puncta closer than r units contributes γ to the density.

The Fiksel point process is
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(14)

This interaction model states that no pair of points is permitted to come closer than the hard 

core distance δ and that they do not interact (that is, influence each other) if the distance 

between them is more than radius r.

Similarly to Poisson models, the normalizing constant in equation 13 and 14 is first 

estimated in the following steps. The conditional density in these cases can be written as

(15)

Where Zθ is a normalizing constant, Bθ(X(n)) denotes the trend terms and Hθ(X(n)) 

represents the interaction terms. Given the number of puncta n, the constant is expressed as

(16)

A Monte Carlo integration was used to estimate it. A short derivation gives

(17)

Where the puncta generating distribution is,

(18)

According to equation 17, the normalizing constant can be estimated by calculating the 

expected value of Ep(X(n))(Hθ(X(n))) and the simpler integration of ∫wbθ(Xu)dXu, 

respectively. We estimated the expected value by generating a number of random samples 

according to p(X(n)) in equation 18, calculating Hθ for each sample and averaging these 

values. The number of generated samples was chosen (see equation 10) in order to guarantee 
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that the average converges to the expected value. The simpler integration was estimated by 

Monte Carlo integration (see equation 9).

Software availability

The source code will be available in the next release of CellOrganizer (http://

CellOrganizer.org). In addition, a Reproducible Research Archive containing all source code 

and processed results is available at http://murphylab.web.cmu.edu/software.

Results

Preprocessing

As in our prior work (18), we analyzed images of proteins from HPA that were annotated as 

“vesicles”. Each image includes four fluorescence channels: a particular punctate protein 

along with nuclear, microtubule and endoplasmic reticulum (ER) markers (see Figure 1a). 

We then processed these images to identify the positions of the components for each 

channel. The nucleus was segmented using CellOrganizer as described previously (13). To 

estimate the position of the plasma membrane, we blurred the microtubule channel and 

applied a threshold (under the assumption that regions within the cell would have at least 

some staining or autofluorescence in this channel). For microtubule locations, we chose 

pixels with locally maximal intensity to represent locations on filaments. A discretization of 

the ER was obtained through the same procedure. To locate puncta for each protein, we used 

Gaussian object unmixing to resolve the image into separate Gaussian objects and took their 

centers as the positions of puncta, as described previously (13,18). After these steps, maps of 

the nuclear boundary, cell boundary, discretized microtubules, ER landmarks, and detected 

puncta locations were available for each cell in the dataset (see Figure 1b). Pixel positions 

were normalized to the range [0,1] using the minimum and maximum pixel number in X and 

Y.

Assessing the non-randomness of puncta distributions

We first asked whether the puncta distribution in each cell was completely uniform over the 

cytoplasm (denoted w). In this case, the positions of puncta would be realizations of a 

homogeneous Poisson process (see Methods), which satisfies the property that the density is 

constant across every sub region of w.

To test this hypothesis for each of the founder proteins (Table 1) we used a Monte Carlo-

based location test (22) as described in the Methods. The observed protein patterns for each 

cell and each founder were compared against samples generated from the homogenous 

Poisson model, retaining observed cell boundaries. Estimate of the p-value was computed. 

We adjusted each p-value using family-wise Bonferroni correction by multiplying p-values 

by the number of tests (the number of cells in this case), considering that the statistical tests 

were performed simultaneously and independently across all cells. As shown in Table 2, the 

hypothesis that the puncta are uniformly distributed in the cytoplasm was rejected at level 

α=0.01 for essentially all cells for all patterns. Thus, the patterns must depend upon one or 

more aspects of cell structure.
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Modeling puncta dependences on other structures

We next considered factors on which puncta localization might depend, cellular landmarks 

that could potentially contribute to the observed heterogeneity. To this end, six intuitive 

factors (Figure 2) were constructed, reflecting potential dependence of patterns upon cellular 

membranes, microtubule networks, and the ER. Given that the puncta are expected to be 

located in the cytoplasm, our most basic factors were grounded in the positions of the 

nuclear and cell boundary. Factors 1 and 2 consisted of the distance from puncta to the 

nuclear and cell boundary. To capture the relationship between vesicles (and other puncta) 

and the microtubule network, we designed a third and fourth factor. The third factor was the 

kernel probability density of microtubules, for which we used Scott’s rule of thumb for 

estimating the smoothing bandwidth (26). As the fourth factor, we calculated the distance 

from each point to the nearest discretized microtubule. These four factors are the same as 

considered in our previous work (18). To extend the model, we defined fifth and sixth factors 

to quantify the spatial arrangement of puncta relative to ER. These were done using the same 

approach as the third and fourth factors but using the ER distribution instead of microtubules 

(Figure 2).

We then projected the coordinates of each punctum into a space spanned by the factors 

described above, a coordinate system that we believed was comparable across widely 

varying cell morphologies and interior organelle arrangements. Ideally, puncta localization 

would exhibit some simple structure in this new coordinate system. Since puncta do not 

localize in exactly the same position in every cell, the simplest nontrivial structure is that of 

a line. In this case, overall puncta localization could be explained in terms of a log linear 

weighted sum over some or all of the factors (referred to as trend terms). We used 

generalized linear models to capture these relationships; these models have interpretations as 

inhomogeneous spatial point processes (20) (see Methods). Different combinations of 

factors in trend terms produced models with qualitatively different predictions of the spatial 

distribution of puncta localization; examples are shown in Figure 3. From a visual 

perspective, the example pattern produced from a model including microtubule distribution 

was more similar to the measured pattern than that produced by either a random model or a 

model depending only on nuclear pattern.

To identify the best model quantitatively over all cells, we used five-fold cross-validation to 

estimate the likelihood (27) of models using different combinations of the factors 

(Supplementary Table 1). We found that the best models were composed of factors 1, 3, 4 or 

factors 1–4, since both have very similar likelihoods. Analysis of the effect over all eleven 

patterns of leaving out factors of each organelle compared to the model with all factors 

reveals that the microtubule factors are the most important followed by the nuclear factor 

and the cell factor (Supplementary Table 2). Leaving out the cell factor causes the smallest 

decrease in likelihood, suggesting that it duplicates information in the other factors (this is 

verified by observing that adding the cell factor to a model with only the nuclear factor 

improves it slightly while adding it to a model with only the microtubule factors actually 

worsens it). Given that cell membrane location is estimated from the microtubule 

distribution, this result seems reasonable. Leaving out the ER factors (from the full model) 

causes a substantial positive effect, presumably because relying on those factors causes 

Li et al. Page 9

Cytometry A. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overfitting (i.e., failure to generalize to the held out images). Interestingly, adding the ER 

factors improves a model with only the nuclear factor or both the nuclear and cell factors, 

suggesting that the ER pattern does provide useful information when microtubule 

information is not available (however, again, the ER actors lead to overfitting when added to 

a model with just the microtubule factors). In summary, we found strong dependence of the 

patterns of all eleven puncta on nuclear and microtubule position (which includes their 

dependence on cell shape).

Analysis of dependence between puncta positions

We further considered the possibility that the positions of puncta are also dependent upon 

each other, that is, that the position of a punctum of one class is affected by the positions of 

other puncta of that same class. Markov spatial point processes allow inhomogeneous 

process models to be extended to capture interactions between puncta (see Methods). These 

models are typically composed of two parts, trend terms and interaction terms. The trend 

terms, bθ(·), are same as those of the Poisson model, log-linear combinations of our factors. 

So, the total contributions from trend terms are , where n is the number of puncta 

in a cell. Interaction terms, hθ(·), are added in attempt to model between-punctum 

relationships. An interaction term hθ(xi, xj) is defined to be the interaction between puncta xi 

and xj in the cell; the total contributions of interactions terms to puncta distribution are thus 

Πi<jhθ(xi, xj). If hθ(xi, xj) = 1, Markov process models reduce to inhomogeneous Poisson 

models.

Although so far we have concerned ourselves with modeling the position of the center of 

each punctum, puncta are not points and occupy volume. Strauss hard-core process models 

(23,24) represent a modification of point processes that allow them to consider both the 

volume of objects and a maximum possible radius for interaction between them. To 

incorporate this, we assume that puncta have a typical size such that their centers are always 

farther away from each other than a certain distance δ, and therefore, for any pair of puncta 

xi and xj in a single cell, we modify the interaction terms so that is satisfies hθ(xi, xj) = 0 if ||

xi − xj|| < δ. To estimate δ we calculated the minimum distance between pairwise puncta 

across all cells. We also consider a further modification that pairwise puncta closer than a 

radius r interact with a constant strength, that is, hθ(xi, xj) = γ if ||xi − xj|| ≤ r. It is not 

obvious how to estimate a meaningful fixed value for the interaction radius r in a data-driven 

manner. Instead, we first ascertained a reasonable interval [rmin, rmax],

where  and , xi, xj are adjacent puncta in the lth cell; 

m is the number of training cells. Different r values in this interval were sampled and the 

best value chosen by optimizing pseudolikelihood as described below. We summarize the 

Strauss hard process model as
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A further modification, referred to as a Fiksel process (25), involves assuming a more 

complicated interaction structure such that the strength of interaction is not fixed but varies 

with between-punctum distance. We thus have

where a is a parameter indicating the strength of interaction and κ is rate parameter 

controlling the decaying of the interaction with increasing distance. We picked κ = 1 here 

since there was no marked distinction when trying different values of κ.

In these models, parameters are of two kinds: free parameters and regular parameters. Given 

values of free parameters including δ, r and κ, the regular parameters, θ,γ,a, were optimized 

by maximizing log pseudolikelihood (27); doing this for different values of r allowed the 

choice of the best r. Different groups of values of free parameters in Strauss hard and Fiksel 

Markov processes are indicative of different interactions between puncta. However, the free 

parameters can only be determined by heuristic methods, and we picked realistic values for 

them in a data-driven manner as described above. We then maximized log pseudolikelihood 

to optimize the regular parameters. As seen in Table 3, for each pattern the likelihoods for 

the different Markov models were similar to those of the Poisson model. We therefore did 

not find support for the idea that the localization of a punctum is dependent upon the 

positions of other puncta for any of the eleven patterns.

Measure of localization dissimilarity between patterns

Having demonstrated that the inhomogeneous Poisson model yields an appropriate 

description of the spatial distribution of these punctate proteins, we compared the spatial 

distributions of different proteins using the Poisson models for the set of factors that gave 

the best pseudolikelihood. For this, we used the total variation of protein distribution across 

all cells. The estimate of total variation was implemented by five-fold cross validation.

For each cell line, segmented c(i) cells of protein i were randomly split into 5 roughly equal-

sized groups.  is an index that indicates the partition to which 

cell is allocated by the randomization. For the lth cell, punctate objects were sampled as 

within cytoplasm , where θ̂(i) was trained by the cells with the  fold cells removed. 

Given proteins i and j, we measured the total variation between them as

Li et al. Page 11

Cytometry A. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(20)

where M is the number of samples of Monte Carlo simulation.

We did this calculation for all pairs of the eleven founders for each cell line to determine 

which protein models were distinguishable (results for U-2OS are shown in Table 4). The 

results showed that founders FLOT1 and TMEM192 in cell line U-2OS are somewhat 

similar but that other pairs of founders are quite dissimilar. The results for cell lines A-431 

and U-251MG (See Supplementary Tables 3 and 4) were similar.

Classifying proteins into eleven patterns

These results suggest it would be possible to form a basis for assigning detailed subcellular 

locations to punctate proteins for which limited information is available. We created 

discriminative features for each protein by combining numerical descriptors of punctate 

protein patterns (puncta size, distribution, number of puncta and average intensity of puncta) 

with a measure of the degree of dissimilarity between the given protein and each of the 

eleven founder proteins. Thus, the subcellular localization of each non-founder protein was 

represented by a numerical feature vector with fifteen elements (four for puncta properties 

and eleven for similarities to founders). Using the feature vectors of the founder proteins, we 

then applied the nearest neighbor algorithm to classify non-founder protein patterns into 

eleven classes. To visualize the classification results, each protein was placed in 2-

dimensional space by nonmetric multidimensional scaling (see Figure 4 and Supplementary 

Figure 1, 2).

We then compared these results to previous classification results (18). Such comparison 

enabled us to identify proteins that were assigned to the same pattern by both classifiers. 

This provided more convincing evidence that the assigned subcellular location of these 

proteins is correct (See Table 5 and Supplementary Tables 5 and 6).

Discussion

CellOrganizer provides a systematic framework for modeling dependent localization of 

cellular proteins, a critical relationship in understanding dynamic, functional relationships. 

Here, we extend CellOrganizer to capture and non-parametrically model potential 

relationships among individual constituents in a cell using available cellular markers. We use 

spatial point processes to characterizing the subcellular localization of a punctate object 

relative to the positions of the nucleus, cell membrane, microtubule network, ER and other 

puncta in an individual cell.
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We found evidence that punctum distributions are dependent on the nuclear and cell 

membranes and microtubules. While our models did not suggest inter-puncta dependence, 

we lacked the statistical power to reject this possibility given our sample size. However, a 

similar lack of spatial dependence was observed for constitutive exocytosis events (28).

Another goal was to recognize punctate protein patterns among previously uncharacterized 

proteins. To this end, we started by ensuring that the founder proteins could be distinguished 

by measuring the dissimilarity between them. The results indicated that the founder protein 

patterns are almost completely distinguishable in each cell line such that it is feasible for us 

to make use of dependence dissimilarity as discriminative features for classification of 

uncharacterized proteins. We compared our predictions with those previously made and 

identified proteins highly likely to be localized in one of the eleven founder patterns.

The methods described here are complementary to image analysis methods for dissecting 

subcellular compartmentalization and trafficking, such as tracking and morphological 

analysis of endocytic pathways (29). The fusion of various organelle detection methods with 

frameworks for constructing generative models of inter-organelle dependence such as those 

described here is expected to be highly useful for learning the relationships among different 

cellular components in a wide range of applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of initial image processing. Founders in cell type U-2OS (from left to right): 

COPE, SEC23B, FLOT1, CLTA, EEA1, RAB7A, TMEM192, CAT, APC, TFRC, and 

VPS35. (a) Representative original images depicting stains for nucleus (blue), microtubules 

(red), ER (yellow) and the specific protein (green). (b) Processed images showing nuclear 

and cell boundaries (blue), discretized microtubules (red), discretized ER landmarks 

(yellow) and detected puncta locations (green).
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Figure 2. 
Illustrations of extracted factors. Examples of maps of factors used to model puncta 

distributions. The factors are calculated from images of probes for DNA, microtubules and 

endoplasmic reticulum after processing as describes in the Methods. The values of each 

factor at each position in a typical cell are shown.
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Figure 3. 
Comparison of observed puncta localization and synthetic puncta patterns from different 

models. (a) An observed pattern for FLOT1. (b) Example of randomly placed puncta within 

the same cell and nuclear boundaries (null distribution). (c) Example synthesized pattern of 

puncta from a model depending on nuclear and cell shapes only (an inhomogeneous model 

with a combination of factors 1 and 2. (d) Example synthesized pattern of puncta from a 

model depending on microtubule distribution (an inhomogeneous model with a combination 

of factors 3 and 4).
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Figure 4. 
Classification of proteins in U-2OS into eleven punctate subpatterns. Different colors 

correspond to COPI, COPII, Caveolae, Coated Pits, Early Endosome, Late Endosome, 

Lysosomes, Peroxisome, RNP bodies, Recycling Endosome and Retromer, respectively. A 

dissimilarity matrix among 59 proteins was calculated by metric multidimensional scaling.
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Table 1

Proteins and antibodies used to model eleven distinguishable punctate subpatterns. These are the founder 

proteins used previously (18).

Gene name Gene Description Proposed annotation

COPE Coatomer protein complex, subunit epsilon COPI

SEC23B Sec23 homolog B (S. cerevisiae) COPII

FLOT1 Flotillin 1 Caveolae

CLTA Clathrin, light chain A Coated Pits

EEA1 Early endosome antigen 1 Early Endosome

RAB7A RAB7A, member RAS oncogene family Late Endosome

TMEM192 Transmembrane protein 192 Lysosomes

CAT Catalase Peroxisome

APC Adenomatous polyposis coli RNP bodies

TFRC Transferrin receptor Recycling Endosome

VPS35 Vacuolar protein sorting 35 homolog (S. cerevisiae) Retromer
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Table 2

Test for non-uniform distribution of puncta in the cytoplasm.

Gene name Number of cells Number of cells with p<0.01 Largest p-value

COPE 25 25 0.0004

SEC23B 19 19 0.00052

FLOT1 17 17 0.00058

CLTA 51 51 0.00019

EEA1 44 44 0.00022

RAB7A 15 15 0.00066

TMEM192 19 19 0.00052

CAT 74 74 0.00013

APC 10 10 0.001

TFRC 44 44 0.00022

VPS35 18 18 0.00055
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Table 5

Proteins in U-2OS assigned to eleven subpatterns. For each protein, we calculated the distance from it to 

founders of subpatterns and classified it to the subpattern that has the shortest distance.

Structure Proteins classified with this approach Previously classified

1 COPI SMIM19, ERLIN1

2 COPII ZNF155, SYK, PTPRZ1, ATP7A, CTSH, 
COL11A1, MMAA

ZNF155, SYK, PTPRZ1, ATP7A

3 Caveolae VIM IFI6, ACAA1, SERPINA4, ASB6

4 Coated pits NAP1L5

5 Early Endosomes RAB5C, NAP1L5 RAB5C, COL11A1, MMAA

6 Late Endosomes KIAA0430, PANK2, MAP3K15, B4GALT1, 
OSBP2, SPARC, HAP1, OPTN, RPL23, DTX3L, 
CD300LG, NYAP1, ASB6

KIAA0430, PANK2, MAP3K15, B4GALT1, OSBP2, 
SPARC, HAP1, OPTN, RPL23, PHB, DIABLO, CASP8, 
1_Mar, CTSH, FNDC9, SEC31A, GLUL, MRPL9, 
ARFGAP2, HSPA9, KDM5A, ALDH18A1, RALGAPA1, 
COMT, TAOK3, HJURP, TREM2, VIM, PSMB4, 
ERLIN1, TOMM70A

7 Lysosomes PDZK1IP1, ACAA1, SERPINA4, ACADM, 
ALDH18A1, PSMB4

PDZK1IP1, ZBTB38, CACFD1, NYAP1

8 Peroxisomes

9 RNP bodies PHB, DIABLO, HSPA9, COMT FBXO15, PDE5A, CD300LG, ACADM, KLHDC8B, 
APOO, TOP1MT, SAMD9, IRF3

10 Recycling Endosomes CASP8, 1_Mar, ZBTB38, FNDC9, IFI6, SEC31A, 
GLUL, MRPL9, FBXO15, ARFGAP2, PDE5A, 
KDM5A, KLHDC8B, APOO, TOP1MT, SAMD9, 
RALGAPA1, CACFD1, IRF3, TAOK3, HJURP, 
ARID4A, TREM2, TOMM70A

DTX3L, SMIM19

11 Retromer 1–9, ARID4A
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Table 6

Proteins in U-2OS assigned to the same patterns. We picked the proteins assigned into the same classes based 

on the classification results displayed in Table 5.

Structure Number of proteins of same class Specific proteins in the same patterns

1 COPI 0

2 COPII 4 ZNF155, SYK, PTPRZ1, ATP7A

3 Caveolae 0

4 Coated pits 0

5 Early Endosomes 1 RAB5C

6 Late Endosomes 9 KIAA0430, PANK2, MAP3K15, B4GALT1, OSBP2, SPARC, HAP1, 
OPTN, RPL23

7 Lysosomes 1 PDZK1IP1

8 Peroxisomes 0

9 RNP bodies 0

10 Recycling Endosomes 0
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