Research Paper

Effects of renal denervation on vascular
remodelling in patients with heart failure
and preserved ejection fraction:

A randomised control trial

Journal of the Royal Society of
Medicine Cardiovascular Disease

6: 1-9

© The Author(s) 2017

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/2048004017690988
journals.sagepub.com/home/cvd

®SAGE

Hitesh C Patel', Carl Hayward', Jennifer Keeganz,
Peter D Gatehouse?, Ronak Rajani®, Rajdeep S Khattar?,
Raad H Mohiaddin', Stuart D Rosen'®, Alexander R LyonI

and Carlo di Mario'

Abstract

Objective: To assess the effect of renal denervation (RDT) on micro- and macro-vascular function in patients with heart

failure with preserved ejection fraction (HFpEF).

Design: A prospective, randomised, open-controlled trial with blinded end-point analysis.

Setting: A single-centre London teaching hospital.

Participants: Twenty-five patients with HFpEF who were recruited into the RDT-PEF trial.

Main outcome measures: Macro-vascular: 24-h ambulatory pulse pressure, aorta distensibilty (from cardiac magnetic
resonance imaging (CMR), aorta pulse wave velocity (CMR), augmentation index (peripheral tonometry) and renal artery
blood flow indices (renal MR). Micro-vascular: endothelial function (peripheral tonometry) and urine microalbuminuria.
Results: At baseline, |5 patients were normotensive, 9 were hypertensive and | was hypotensive. RDT did not lower
any of the blood pressure indices. Though there was evidence of abnormal vascular function at rest, RDT did not affect

these at 3 or 12 months follow-up.

Conclusions: RDT did not improve markers of macro- and micro-vascular function.
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Introduction

Heart failure with preserved ejection fraction (HFpEF)
is a prevalent phenotype of heart failure for which no
treatment has, as yet, been shown to improve progno-
sis.! Its underlying pathophysiology is multifactorial.
Abnormal micro- and macro-vascular function have
been observed in HFpEF and their presence is asso-
ciated with increased cardiovascular events” as well as
exercise intolerance.*”

The sympathetic nervous system (SNS) is a modu-
lator of arterial function.* Renal denervation (RDT)
is a novel technique that has been shown to reduce
central sympathetic outflow and hence may promote
vascular remodelling.” The Renal DenervaTion in
heart failure with Preserved Ejection Fraction

(RDT-PEF) was conducted to investigate the effect
of RDT upon symptoms, exercise function, left ven-
tricular filling and cardiac remodelling in patients
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with  HFpEF.® A vascular function substudy
involving the same participants of the parent trial
was prospectively designed to test the hypothesis
that the vasculature might be a therapeutic target in
HFpEF.

Methods
Trial design

The RDT-PEF trial was an investigator initiated,
randomised, controlled, open-label trial with blinded
endpoint analysis.® The primary endpoints of this
study were symptomatic improvement (Minnesota
Living with Heart Failure Questionnaire-MLWHFQ),
exercise performance (peak oxygen uptake on
exercise-peak VO?2), B-type natriuretic peptide levels
(BNP), left ventricular filling pressures assessed by E/
e’ on echocardiogram, indexed left atrial volume
(LAVi) on cardiac magnetic resonance (CMR) and
indexed left ventricular mass index (LVMi). The ration-
ale, design and results of the RDT-PEF trial have been
published.®

This vascular substudy was prospectively designed
and received approval from the National Research
Ethics Service (12/LO/1941). All patients gave
informed consent to participate in the study.

Patients

Eligible patients were 18-85 years of age and were New
York Heart Association class II/III. The recruited
patients fulfilled the European Society of Cardiology
Heart Failure' diagnostic guidelines for HFpEF and
had either left ventricular hypertrophy or left atrial
dilatation and either a raised natriuretic peptide level
or tissue Doppler echocardiographic evidence of raised
filling pressures.® Detailed criteria have been pub-
lished.® Importantly, patients with atrial fibrillation
were not excluded.

Study protocol

At the initial visit, all patients underwent 24-h ambu-
latory blood pressure monitoring (24-h ABPM), CMR
to derive aortic distensibility and pulse wave velocity,
digital tonometry to assess endothelial function and
augmentation index (AI), renal magnetic resonance
(MR) to calculate renal artery flow, resistive index
and pulsatility index and finally a urine assay for albu-
minuria. The protocol was then repeated after 3 and
12 months (renal MR was repeated at 12 months
only) following either renal denervation or on-going
medical therapy. Assessments were performed blinded
to allocation.

Renal denervation

Access to the renal artery was obtained via the femoral
artery using an 80cm 6 Fr guide catheter (RDC or
IMA curve). The Symplicity™ single-electrode cath-
eter was then advanced and positioned in the most
distal aspect of the renal artery proximal to bifurca-
tions, good vessel wall contact was obtained by deflect-
ing the electrode tip and confirmed by an impedance of
250-300 €2 on the power generator. We then applied a
minimum of four ablations to each main renal artery in
a circumferential distribution as has been described
elsewhere.® ®

24-h Ambulatory blood pressure monitor

A Spacelabs 90207 ambulatory blood pressure monitor
was attached using an appropriately sized cuff to the
non-dominant arm of the patient. It was attached for a
period of 24 h and was analysed using automated and
proprietary software. Twenty-four hour, day time
(0800-2200) and night time (2200-0800) averages of
blood pressure were obtained.

Aortic distensibility

This was derived from a MR axial dataset of the aorta
at the level of the bifurcation of the main pulmonary
artery. The maximum and minimal cross sectional areas
of the ascending and descending aorta were calculated
using Art-FUN (Laboratoire d’Imagerie Biomédicale,
UPMC-CNRS-INSERM, France), an automated edge-
detection software for assessment of arterial function.’
Aortic strain was defined as: (max cross-sectional aorta
area — min cross-sectional aorta area)/min cross-sec-
tion aortic area.'” Aortic distensibility (10> mmHg ")
was defined as: aortic strain/brachial artery pulse

pI‘CSSuI‘C.lO

Pulse wave velocity

Velocity encoded phase contrast sequences were
acquired from a MR axial dataset of the aorta at the
level of the bifurcation of the main pulmonary artery
perpendicularly transecting both the ascending and des-
cending aorta. A non-breath-hold sequence was used
and 128 phases were captured during the cardiac
cycle. The transit time of the propagation of the vel-
ocity waveform was calculated between the ascending
and descending aorta using the Art-FUN software with
the least squares minimisation approach using all data
points on the systolic upslope of the aorta flows after
peak flow normalisation.”!'® The aortic path length was
calculated from the double-oblique view of the thoracic
aorta. Pulse wave velocity (m/s) was derived as aortic
path length divided by the transit time.
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Endothelial function

This was assessed using the EndoPAT™ 2000 device
(Itamar Medical, Israel). It recorded the arterial wave-
form at the fingertip (one probe on each arm). A rapid
cuff inflator (E20, Hokanson, USA) was placed on upper
right arm of each patient and set to inflate to a pressure
of 200mmHg or 50 mmHg above the patient’s systolic
pressure (whichever was greater). A 6-min rest period
was recorded, followed by 5min when the cuff was
inflated to occlude the right brachial artery, and finally
Smin of recovery with the cuff deflated (hyperaemic
period). The proprictary software calculated the reactive
hyperaemia index (RHI) and AI based upon these read-
ings. Al was calculated as the difference between the
second and first systolic peak of a pressure waveform
expressed as a percentage of the pulse pressure.

Renal blood flow

Images were acquired using the Siemens Skyra
(3.0 Tesla) MR scanner. Renal artery blood flow was
assessed by applying a bespoke breath-hold spiral
phase contrast sequence on a through-plane image of
the proximal renal artery.'' In patients with sinus
rhythm retrospective cardiac gating was used to acquire
data throughout the entire cardiac cycle while for
patients with atrial fibrillation, prospective cardiac
gating was used with imaging over approximately 2/3
of the cardiac cycle. Scan parameters were replicated
for follow-up scans on an individual patient basis."'
Resistive index was calculated as (peak systolic velocity
— minimum systolic velocity)/peak systolic velocity.'
Pulsatility index was calculated as (peak systolic vel-
ocity — minimum systolic velocity)/mean velocity."'!
For the majority of these variables, normal cut-off
values have not been derived. Abnormal vascular func-
tion is associated with an increased pulse pressure, pulse
wave velocity, Al resistive index, pulsatility index, albu-
minuria and a decreased aortic distensibility and RHI.

Statistics

Data were assessed for normality both subjectively
using histograms and statistically using the Shapiro—
Wilk test. Parametric data are presented as
mean =+ standard deviation; between group
comparisons were performed using the independent
samples t-test and within group comparisons using
the paired t-test. Non-parametric data are presented
as median with interquartile range; between group com-
parisons were performed using the Mann—Whitney U
test and within group comparisons using the paired
Wilcoxon-signed rank. Correlation between the vascu-
lar parameters, the primary endpoints® and the safety
endpoint of estimated glomerular filtration rate

(eGFR)® was assessed using Spearman’s rho. P <0.05
was used as the threshold for statistical significance and
a P <0.01 was used for the multiple correlation assess-
ments. A prospective power calculation was not per-
formed as this was a sub-study.

Result
Recruited patients

A total of 25 patients were randomised (17 received
RDT and 8 were control) between July 2013 and
December 2014 before the trial was stopped because
of difficulty in recruitment despite nationwide screen-

ing.%!? Baseline characteristics are shown in Table 1.

Ambulatory blood pressure monitoring

At baseline, nine patients (two were in control arm)
were hypertensive and had an ambulatory systolic
blood pressure (SBP) reading>130mmHg and one
patient had an average SBP <100mmHg (in RDT
arm). There were no between group differences in
ambulatory blood pressure changes at 3 and 12
months after RDT (Table 2). There was no significant
correlation between baseline 24-h average SBP and
change at 3 (r=-0.46, P=0.361) or 12 months
(r=-0.05, P=0.923) in the seven patients who had
baseline averages > 130 mmHg and were allocated to
denervation.

Aorta function and endothelial function

Table 3 details the findings. At baseline 15 patients (12
RDT, 3 control) had a LnRHI <0.51 and 10 patients (8
RDT, 2 control) had an ACR > 30mg/g. RDT did not
improve any of the measured markers of vascular func-
tion at 3 or 12 months follow-up.

Renal blood flow

At baseline, the average blood flow per kidney was
0.22+0.061/min, pulsatility index was 1.89 (1.43,
2.99) and resistive index was 0.87+£0.09. At 12
months, RDT did not result in a change in renal
blood flow, resistive index or pulsatility index as
assessed by MR (Table 4).

Effects of age on vascular function

There was a trend for age to be associated with baseline
ascending aorta strain (rho=—0.46, P=0.02) and dis-
tensibility (rho =—0.42, P=0.04) as well as descending
aorta strain (rho=-0.45, P=0.03). No correlations
were seen with any of the other parameters.
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Table 1. Baseline characteristics of the RDT-PEF population.

P (RDT vs.
Total (n=25) RDT (n=17) Control (n=8) Control)
Demographics
Age 743+ 6.1 74.1 - 6.8 74.6 +4.8 0.852
Male 15 (60%) Il (64.7%) 4 (50.0%) 0.667
BMI (kg/m?) 30.6+55 30.5+4.6 308+74 0911
Past medical history
Hypertension 18 (72%) 14 (82.4%) 4 (50%) 0.156
Diabetes 10 (40%) 8 (47.1%) 2 (25%) 0.402
CVA | (4%) I (5.9%) 0 (0.0%) 1.000
CHD 6 (24%) 5 (29.4%) I (12.5%) 0.624
AF 15 (60%) 10 (58.8%) 5 (62.5%) 1.000
Medications
ACEi/ARB 23 (92%) 16 (94.1%) 7 (87.5%) 1.000
Beta-blockers 18 (72%) 12 (70.6%) 6 (75%) 1.000
CC-blockers 8 (32%) 7 (41.2%) I (12.5%) 0.205
Loop diuretics 21 (84%) 16 (94.1%) 5 (62.5%) 0.081
Spironolactone 6 (24%) 6 (35.3%) 0 (0.0%) 0.129

Data are presented as mean =+ standard deviation or count (%).
BMI: body mass index; CVA: cerebrovascular accident; CHD: coronary heart disease; AF: atrial fibrillation; NYHA: New York Heart Association; A:
ambulatory; SBP: systolic blood pressure; ACEi: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; CC: calcium channel.

Table 2. Change of average systolic (SBP) and diastolic (DBP) blood pressure in mmHg within the RDT-PEF trial at 3 and 12 months

follow-up.
Baseline Change at 3 months Change at 12 months
Control RDT Control Control
Variables RDT (n=17) (n=38) P (n=16) (n=8) P RDT (n=17) (n=7) P
Ambulatory blood pressure monitoring (mmHg)
24h
SBP 1268+ 15.9 121.1 £75 0349 —I1.1x£132 +09£112 0727 —-24+£97 +1.3+94 0.410
DBP 71.5+9.1 70.0+6.2 0672 —20+79 —14+6.2 0847 —29+58 —1.7+£74 0.684
PP 552+ 143 5IL1+£76 0457 +1.1£63 +2.0+59 0.746 +12+68 +7.1£137 0.166
Day (0800-2200)
SBP 128.1 £15.9 123.0+79 0400 —1.0+127 +1.6+114 0628 —27+104 +2.1£11.0 0318
DBP 729+ 104 72.3+57 0863 —2.1+76 —1.4+7.0 0817 —3.7+67* —1.9+75 0.558
PP 552+ 144 508+82 0424 +1.0+6.6 +33+54 0413 +0.8=£7.1 +3.7+64 0.360
Night (2200-0800)
SBP 121.2+18.1 113.7+67 0.164 +20+£167 —59+82 0256 —0.3+£120 —1.6+£95 0.800
DBP 67.9+8.0 63.6+68 0225 —0.7+£99 —3.0+6.9 0580 —0.1+6.6 —27+9.1 0.438
PP 53.6+ 145 503+73 0480 +25£80 —29+3.6 0111 —-05+69 +0.7£3.5 0.669
*P < 0.05 for within group change.
Correlations between baseline vascular function and
primary endpoints and eGFR Discussion

At Dbaseline, patients with higher pulse pressures
reported worse symptoms on questionnaire assessment
and lower peak oxygen uptake on exercise (Table 5).

The main finding of this body of work is that RDT did
not improve vascular function in patients with HFpEF.
It is therefore important to review: (a) the evidence
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Table 4. Renal magnetic resonance derived markers of blood flow.

Baseline Change at 12 months

Renal blood flow

parameters RDT Control RDT Control P

Right renal artery
Flow (L/min) 0.21 +0.06 0.26 +0.06 0.181 +0.08 +0.23 —0.04+0.07 0.240
Pulsatility index 2.84 (1.34-4.05) 1.49 (1.33-2.22) 0.180 —0.5 (—1.85, 0.42) +0.20 (—0.12, 0.90) 0.125
Resistive index 0.90+0.12 0.78+£0.07 0.038 —0.05+0.16 +0.06 £0.14 0.160
n 12 6 12 6

Left renal artery
Flow (L/min) 0.24 +0.09 0.16 +0.09 0.121 +0.02+£0.12 +0.06 £0.13 0.524
Pulsatility index 2.15 (1.53-3.75) 1.60 (1.57-2.09) 0.221 +0.20 (—0.97, 0.64) —0.13 (—0.33, 0.64) 0.743
Resistive index 0.90+0.10 0.84+0.06 0.198 +0.07£0.17 +0.03£0.15 0.679
n I 5 I 5

Table 5. Spearman’s correlation between baseline vascular function and baseline primary efficacy endpoints and estimated glom-

erular filtration rate (eGFR).

MLWHFQ Peak VO2 BNP E/e’ LAVi LVMi eGFR

rho P rho P rho P rho P rho P rho P rho P
24-h SBP 0.33 0.1 =027 0.19 0.23 0.27 0.23 026 0.17 041 0.04 0.85 —0.03 0.89
24-h DBP —0.14 051 035 0.09 —0.04 084 —-0.17 042 032 0.12 —-0.09 068 0.1l 0.60
24-h PP 0.50 0.0l —-0.52 0.008 0.21 031 —-042 0.04 0.15 0.48 0.10 0.65 —0.12 0.58
AA distensibility —0.33 0.1  0.05 0.82 0.16 0.44 0.5 048 —-0.03 089 -008 071 03l 0.13
DA distensibility —0.12 057 —0.06 0.77 0.43 0.03 -0.11 059 -025 023 -0.07 0.73 0.03 0.88
PWV 0.04 0.87 0.0l 0.98 —-0.23 029 -0.09 0.67 0.17 044 —-041 005 -038 0.07
Al (75 bpm) 0.22 029 —-026 0.21 —0.10 064 0.14 0.52 -0.0I 097 -002 093 0.18 0.38
Ln RHI —0.08 0.77 0.20 0.33 —0.27 0.19 042 0.04 0.00 0.99 0.02 095 0.6 0.46
UACR 0.38 0.1l —-023 0.36 —0.06 0.80 0.12 0.63 0.13 0.61 0.21 0.38 —-0.23 0.34
Mean RBF —0.28 027 0.25 0.31 0.06 082 -027 028 -0.10 071 —-0.55 0.02 0.12 0.65
Mean Pl 0.30 023 —-020 042 0.12 0.63 0.03 089 —-0.26 029 045 0.06 0.08 0.75
Mean RI 0.32 020 -035 0.16 0.36 0.15 0.02 0.95 0.0l 0.97 0.23 0.36 —0.04 0.88

The numbers in bold are the values that reached statistical significance.
AA: ascending aorta; DA: descending aorta; Al: augmentation index; LnRHI: natural log of reactive hyperaemic index; UACR: urine albumin:creatinine;

RBF: renal blood flow; PI: pulsatility index; RI: resistive index.

even though there was a signal for improvement in
exercise performance and E/e’ at 3 months (albeit not
sustained to 12 months follow-up) in those patients
randomised to RDT this was not associated with an
improvement in vascular function. A common theme
in the discussions following all of these trials is that
patients with HFpEF are heterogencous and that
future trials should target therapies according to the
underlying dominant pathophysiology, e.g. a trial of a
new therapy that improves vascular function should
recruit HFpEF patients who all have proven abnormal
vascular responsiveness, which historically has not been
done.

An important observation is that all these trials have
used different modalities (invasive pressure catheters,
echocardiography, MR, tonometry, oscillometric
cuffs) as well as different parameters (carotid femoral
PWYV, carotid-radial PWYV, brachial-ankle, PWYV,
ascending-thoracic aorta PWYV, aorta distensibility,
Al, reactive hyperaemic index, albuminuria) to measure
arterial stiffness and function. The difficulty with this is
that each combination has varying repeatability and
furthermore provides a different insight into the
macro- and micro-vasculature function that is not com-
parable. The American Heart Association have recently
published a guidance document on how to assess
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arterial stiffness in research and discuss the lack of a
widely adopted and rigorous method of vascular func-
tion investigation.?” They promote the carotid-femoral
PWYV technique for non-invasive assessment of arterial
stiffness. Though this is valuable guidance, it is sobering
to note that using data from the RDT-PEF cohort,
approximately 536 patients would need to be recruited
for an intervention to detect a 15% change in PWV
(80% power, P=0.05, standard deviation=6.2m/s),
which for many research units seeking to investigate a
HFpEF population might be prohibitive.

It is possible that arterial stiffness is not an ideal
endpoint to use in an HFpEF clinical trial. The major-
ity of the evidence showing that an intervention can
improve arterial stiffness has been in the context of
hypertension trials; it is unknown whether the aorta
can be ‘unstiffened’ independent of a blood pressure
reduction.”” Also, patients recruited into HFpEF
trials tend to be older than those in hypertension
trials and consequently reversal of aorta stiffening
with an intervention may take longer to manifest
(requiring prolonged trial follow-up) or may be impos-
sible reflecting an irreversible stage of the disease
process.

We have demonstrated that RDT did not have an
effect on blood pressure up to 12 months of follow-up,
which is an important safety finding as the majority of
patients with heart failure are not hypertensive. This
has previously only been demonstrated in an uncon-
trolled study of seven patients with heart failure and
reduced ejection fraction at 6 months follow-up.”®

Finally, improvement in renal blood flow is one of
the purported mechanisms of action of RDT. In nine
pigs, Tsioufis and colleagues showed that RDT both
acutely and chronically after a month increased renal
blood flow and reduced resistive index, assessed by an
invasive Doppler wire. We were not able to reproduce
this finding in 25 humans using spiral renal MR.
Similarly in resistant hypertension, improvements in
renal perfusion and oxygenation as assessed by MR
have not been demonstrated following RDT,’ though
one group showed a decrease in resistive index (derived
from ultrasound).” These neutral findings might just
reflect the fact that the kidneys are well auto-regulated
via multiple regulatory mechanisms, which are not all
dependent on the SNS. In our population, the high
burden of atrial fibrillation may have further compli-
cated imaging and flow assessments.

The main limitation of study is its small size.
However, this is the first report of RDT in an
HFpEF population and hence the data presented
should be used as valuable pilot data to inform
sample size calculation for future work in this
field. Several controversies remain that need to be
addressed before the future role if any of RDT can be

ascertained: first, with the technology (multi-electrode
vs. single-electrode systems) and how best to apply it
(number and location of ablations in the renal artery).
When this study was conceived, the Symplicity'™
single-electrode device was the only system with support-
ing efficacy and safety data, which is why it was used.
Over the subsequent years, it has become apparent that
multi-electrode systems are more likely to achieve a com-
prehensive denervation.® Furthermore, it is likely that the
initial technique, which limited four to six ablations in the
proximal renal artery prior to any bifurcations may have
been too conservative with current data supporting more
ablations that also extend to distal branch vessels.”
Consequently, it remains unknown what the efficacy or
safety of contemporary RDT on patients with heart
failure are.*® Finally, until an approach to accurately
quantify the effects of RDT on renal sympathetic nerves
is developed, it will remain difficult for future phase 11
studies to show a ‘dose—response’ effect, which will limit
the credibility of any findings.®

Conclusion

Renal denervation did not reduce blood pressure in a
population of HFpEF, the majority of whom were
normotensive; this is an important safety consideration.
The intervention did not improve markers of vascular
dysfunction, though with the limited numbers, in this
study, it was underpowered to do so. It remains
unknown whether pulse wave velocity is a modifiable
risk marker in HFpEF.
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