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Abstract

In image steganography, determining the optimum location for embedding the secret mes-

sage precisely with minimum distortion of the host medium remains a challenging issue.

Yet, an effective approach for the selection of the best embedding location with least defor-

mation is far from being achieved. To attain this goal, we propose a novel approach for

image steganography with high-performance, where extreme learning machine (ELM) algo-

rithm is modified to create a supervised mathematical model. This ELM is first trained on a

part of an image or any host medium before being tested in the regression mode. This

allowed us to choose the optimal location for embedding the message with best values of

the predicted evaluation metrics. Contrast, homogeneity, and other texture features are

used for training on a new metric. Furthermore, the developed ELM is exploited for counter

over-fitting while training. The performance of the proposed steganography approach is

evaluated by computing the correlation, structural similarity (SSIM) index, fusion matrices,

and mean square error (MSE). The modified ELM is found to outperform the existing

approaches in terms of imperceptibility. Excellent features of the experimental results dem-

onstrate that the proposed steganographic approach is greatly proficient for preserving the

visual information of an image. An improvement in the imperceptibility as much as 28% is

achieved compared to the existing state of the art methods.

Introduction

Over the decades, the ever-escalating advancements of communication technology allowed the

free transferring and sharing of confidential information over the complex internet network.

This free sharing of sensitive information in the form of data files, and video/audio recordings
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posed severe security threats. The preservation of users’ privacy is repeatedly threatened by the

highly sophisticated and deceptive phishing attacks. Thus, absolute protection of sensitive data

communication from unauthorized accesses or attacks is demanded.

Presently, the secured communication is achieved via mathematical models assisted crypto-

graphic and steganographic techniques. Ironically, cryptography being the encryption of a

plain-text for generating the cipher-text does not obscure the data existence. It rather makes

the data incomprehensible to protect the secret message from attacks or unauthorized access.

For absolutely secured information communication, the limitations of cryptography are sur-

mounted by introducing a new technique called steganography. However, most of the conven-

tional steganographic techniques suffer from high computational loads when selecting the best

location for concealing the message in the host medium with minimal deformation. This

shortcoming can be overcome by introducing the neural network (NN) based steganographic

technique, where the NN uses a distributed representation to store the learning knowledge.

Thus, accessing the concealed data without knowing the topology of the NN appears practi-

cally infeasible [1]. Although some researchers prefer models with interpretability power such

as explicit mathematical or statistical models or even heuristically encoded models such as

fuzzy models, it has been proved that black box type of models when learning is feasible have

more capability of capturing complicated knowledge and proving functionality in real world

type of systems [2][3][4]. Such black box models have dramatically proved high efficiency in

the state of the art of speech recognition, visual object recognition and many other fields [5].

Using information-hiding protocols, the steganographic technique embeds the message

into a cover medium to keep the hidden data from being detected. This cover medium may be

an image, video, or audio file. Among various steganographic techniques image steganography

(concealing data into an image) is most popular and widely used because it allows an easy

exchange of vast amount of images via the internet [6]. On top, the image steganography assis-

ted hidden data cannot be recognized through the visual inspection [7]. Lately, in the image

steganography domain the heuristic searching optimization became attractive [5]. Despite

much research achieving an efficient steganographic algorithm for finding the best embedding

location with reduced computational time expenses remains challenging.

Depending on embedded locations, the image steganographic algorithms are categorized

into spatial[8][9] and frequency domain embedding. The later one is also called transform-

domain embedding [10]–[13]. In the spatial domain, the least significant bit (LSB) based stega-

nography [8][9] is the most extensively used method [14], where the carrier or cover image

LSB is applied to conceal the secret message. Conversely, in the least significant bit replacement

(LSBR) based steganography, the hidden secret message can be uncovered by the existing stega-

nalysis methods [15][16]. Thus, it is weak against visual and statistical attacks. The least signifi-

cant bit matching (LSBM) method also called ± embedding method provides better security

than LSBR. However, it is incompatible for most of the model-preserving steganographic tech-

niques [17]. Despite their high capacity the spatial-domain techniques are not robust against

image-processing operations, noise attacks, lossy compression, and filtering. Furthermore, they

offset the statistical properties of the image due to the sole usage of the BMP format.

As aforementioned, in frequency-domain steganography the secret data are concealed in

the significant parts of the cover image. This domain is comprised of several transforms such

as discrete cosine transforms (DCT), discrete wavelet transforms (DWT), and discrete Fourier

transforms (DFT). These transforms are used as media for hiding a message into an image

[18]. Although both DWT and DCT have relatively smaller capacities but the former one is

superior in terms of robustness against image-processing operations, statistical and noise

attacks as well as distortion [19]. Thus, the steganographic techniques in the frequency-

domain possess better immunity to attacks than the one spatial-domain. The limitations
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involving the spatial-domain techniques are overcome using frequency-domain. Numerous

researches are performed with DWT [10], [12]. The presence of rounding error in the inverse

DFT make it disadvantageous for steganographic applications [20]. Table 1 presents a brief

summary of embedding the secret information in spatial or frequency domain.

Some researchers have combined the spatial and frequency domains. The [21][22] intro-

duced a framework for optimizing the adaptive distortion function to achieve minimal statisti-

cal detectability. The [23] improved the detection percentage and classified the images as stego

or clean. Furthermore, spatial or frequency domain techniques are integrated with other tech-

niques including artificial NN (ANN), genetic algorithm (GA), or both to attain enhanced ste-

ganographic performances. Spatial-domain based GAs are used [1], [24] to minimize the

distortion and. GA and ANN are used [25] to accelerate the training speed. Frequency-domain

ANN is used [26] to augment the embedding capacity. Spatial domain based ANN is utilized

[27] to realize good approximation capacity, faster convergence, and a more stable perfor-

mance surface. This type of ANN is also used [28] to increase the approximation capacity and

minimize distortion.

The ANN is also used with steganography for message embedding [25], where the secret

message is assumed to represent an image. This allowed the steganographer to change the mes-

sage data freely provided the visual information is preserved. However, this assumption is not

applied to the text messages. Meanwhile, ANN is also used for digital watermarking to authen-

ticate the image [29], in which concealing a secret message is not required [30]. ANN is

employed for the capacity maximization [28], steganographic content detection [31–33], iden-

tification of the embedded data in an image when applied to steganalysis or as a classifier and

determination of the lower and upper bounds of embedding capacity [34]. Likewise, GAs are

used in steganography for diverse purposes. GA is used to model the steganography problem

[24] for search and optimization. Besides, for optimization with minimum distortion the GAs

are utilized, where a stego image closer to the cover image is obtained [1], [35]. The [11] pres-

ents DCT with Markov as a detection and classifier for images. Table 2 summarizes different

embedding techniques with combined spatial and frequency domains.

Lately, the learning ability of NNs is exploited to expand the optimization potential of con-

ventional data-hiding techniques. In steganography, ANN is used either for the classification

of the stego image or for the detection of the embedded data in an image. We intend to reduce

the distortion in a stego image as much as possible by appropriately selecting the location in

the image for messages embedment. Theoretically, an ELM demonstrates a good

Table 1. The embedding domain for the existing state of the art methods.

Author(s) Domain and

Technique

Pros Cons

Banerjee, Bhattacharyya,

and Sanyal 2013

Spatial–LSB Capable of extracting the secret message without the

cover image

Capacity issue has not addressed

Pevny, Filler, and Bas 2010 Spatial–LSB Allows the embedder to conceal seven times longer

message with same security

Applied theoretically and did not test by real

data such as text or images

Wu, Hsien C. et al. 2009 Spatial–LSB High payload in cover image Unsatisfied image quality

Luo, Huang, and Huang 2010 Spatial-LSB The visual quality and security have been improved

significantly compared to conventional LSB

Did not tested against image processing or

statistical analysis

Islam and Gupta 2014 Spatial–LSBM Better security than LSBR Conflicting for most of the model-preserving

steganographic techniques

Abdelwahab and Hassaan

2008

Frequency–DWT Does not require the original cover image to extract the

embedded secret image.

Did not tested for text into image.

Prabakaran and Bhavani

2012

Frequency-DWT Hiding a large-size secret image into a small-size

cover image.

The quality of stego-image is not satisfied.

doi:10.1371/journal.pone.0170329.t001
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generalization performance and universal approximation at extremely fast learning speeds. It

can be used for either classification or regression purposes [36]. Inspired by such notable

advantages, we propose an ELM-based supervised mathematical model called Optimal

Embedding Location Finder (OELF) for image steganography. In addition, a novel fusion met-

ric (fusion1) is introduced for the training in the regression mode to realize the best perfor-

mance metric for steganography. Another novel fusion metric (fusion2) is developed for

evaluating the results. To the best of our knowledge, for the first time we use the machine

learning to determine the best location with least sensitive area for embedding.

This paper is organized as follows. Section 2 depicts the proposed OELF model. Section 3

highlights the detail mathematical background of steganography. Section 4 describes the pro-

posed methodology. Section 5 explains the experimental results with various attributes. Section

6 concludes the paper with further outlook.

Optimal Embedding Location Finder (OELF) model

Most traditional steganographic methods embed the message into an image by ignoring the

significance of the image’s spatial features. Nevertheless, the identification of best embedding

location is critically decided by the message homogeneity and other texture features [37] of the

blocks. A location having least image distortion is considered to be the optimum one. To

Table 2. The combined spatial and frequency domains with different embedding techniques for the existing state of the art methods.

Author(s) Domain and

Technique

Pros Cons

Tomás Filler and Fridrich

2011

Frequency-DCT

and Spatial

Strong against many types of steganalysis High complexity

Tom Filler, Judas, and

Fridrich 2011

Frequency-DCT

and spatial

The methods are not limited to binary embedding and

allow the embedder to choose the amplitude of

embedding changes dynamically based on the cover-

image content.

Focus on payload aspects rather than

embedding

Pathak and Selvakumar,

2014

Frequency-DCT

and Spatial

It is used as a classifier and embedding. This method omitted some features of

images.

Iranpour and Rahmati 2014 Spatial and GA Enhancing the security by minimize the distortion. Omitted the optimum number of blocks as

well as their sizes.

El-Emam and AL-Zubidy

2013

Frequency GA

and ANN

Allowed the steganographer to change the message

data freely provided the visual information is

preserved.

Omits the text steganography.

Tsai et al. 2009 Frequency and

ANN

Augment the embedding capacity and supports true-

color secret image with size constraint on shares.

Hiding small image into large image.

Husien and Badi 2014 Spatial and ANN Good approximation capacity, faster convergence,

and more stable performance surface.

Did not present numerical comparisons with

other works.

Ghaleb Al-jbara, Mat Kiah,

and Jalab 2012

Spatial-LSB and

ANN

Increases the approximation capacity. PSNR and MSE are not satisfied and did not

tested against image processing.

El-Alfy 2013 Spatial domain-

PVD and ANN

99% rates of detection have been achieved. Applied only in transformed domain.

Pratt, Konda, and Chu 2008 Spatial-LSB, and

ANN

It is especially challenging when the embedding rate is

low, such as below 10 percent of all embedded data.

It is used as a steganalysis and not as

embedding. Some error rates have been

addressed in extracting the embedded data.

Nazeri and Kanan 2014 Spatial domain

and GA

It is modeling the steganography problem as a search

and optimization problem.

Did not tested against image processing or

any statistical analysis attack.

Roy and Laha 2015 Spatial- LSB and

GA

High security and robustness. The image quality (PSNR) is not satisfied.

Cho, Seongho, Byung-Ho

Cha, Martin Gawecki, and C.-

C. Jay Kuo 2013

Frequency–DCT

and Markov

Tested in terms of spatial and frequency domains Using as a classifier not as embedding

doi:10.1371/journal.pone.0170329.t002
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protect the embedding process from a steganalysis, any form of distortion in the image must

be minimized after the payload is inserted. Furthermore, the cover image and stego image

must be approximately identical both visually and statistically. The selected area and the

embedding method are the primary factors that affect the distortion. Based on OELF model an

ELM is proposed for finding the best embedding location. It is worth noting that ELM is bene-

ficial due to its universal approximation capacity which allows rapid training with good over-

fitting avoidance than other classical NN based approaches [36]. Thus, a modified ELM is used

to train a single-hidden-layer NN with a varying number of neurons. Appendix A provides a

short depiction of ELM.

Background of steganography modeling

As mentioned earlier, OELF locates the most suitable window for embedding the secret mes-

sage into the image without affecting its visual features. Initially, the image is partitioned into

(8 × 8) block pixels and one bit of the message is inserted into each block. Depending on the

message size, the image is then partitioned into overlapping square windows to embed the

message. The features of contrast (C), energy (Enr), homogeneity (H), entropy (Ent), correla-

tion (Corr), standard deviation (Std), and the mean (M) of each square window are calculated

using:

C ¼
X

i;j
ji � jj2 pði; jÞ ð1Þ

Enr ¼
X

i;j
pði; jÞ2 ð2Þ

H ¼
X

i;j

1

1 � ði � jÞ2
pði; jÞ ð3Þ

Ent ¼ �
X

i;j
pði; jÞlogðði; jÞ ð4Þ

Corr ¼
covðCover image; Stego image Þ
kCover imagek kStego imagek

ð5Þ

where i and j are the horizontal and vertical pixel coordinates, respectively, and p is the pixel

value.

covðx; yÞ ¼
1

N

XN

i¼1
ðxi � EðxÞÞðyi � EðyÞÞ ð6Þ

where N is the number of the window pixels.

Std ¼ sxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðx; yÞ

p
ð7Þ

M ¼ EðxÞ ¼
1

N

XN

i¼1
xi;EðyÞ ¼

1

N

XN

i¼1
yi ð8Þ

After calculating the window features and embedding the message in the corresponding

window, the resultant imperceptibility is represented using one of three metrics including cor-

relation, MSE, and SSIM. The expression for MSE and SSIM yields:

MSE ¼
1

N �M

XN� 1

i¼0

XM� 1

j¼0
½Cover imageði; jÞ � Stego imageði; jÞ�2 ð9Þ
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where N andM are the length and width of the image, respectively.

SSIM ¼
ð2mxmy þ C1Þð s2

xy þ C2Þ

ðm2
x þ m2

y þ C1Þðs
2
x þ s2

y þ C2Þ
ð10Þ

where μx and μy are the local mean, σx and σy are the standard deviation, σxy is the cross-covari-

ance, C1 and C2 are constants.

Methodology

The following subsections describe the detailed methodology including the input (host or

cover image), the message to be embedded in the image, the output (stego image) and the eval-

uation metrics of imperceptibility.

Input and output determination

Two images such as Lena and Sails from the standard database are used to analyze the trends

between the imperceptibility and the texture features of the image. Imperceptibility is mea-

sured in terms of correlation, MSE, and SSIM between two corresponding square windows for

the host and stego images with respect to the extracted features. Figs 1–6 show the trends of

the imperceptibility of the Lena and Sails images after the message is embedded into a square

window regarding the corresponding texture features in this window. It is evident that all the

features (contrast, energy, homogeneity, entropy, correlation, entropy, and Std) are strongly

Fig 1. Relationship of the correlation metric to the texture features (a) contrast, (b) energy, (c) homogeneity, (d) entropy, (e) correlation, (f) mean,

and (g) standard deviation for Lena image.

doi:10.1371/journal.pone.0170329.g001
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correlated. The occurrence of less variability in the imperceptibility correlation with respect to

the set of features implies their equivalent usage in the machine learning model.

Table 3 summarizes the trends of imperceptibility to texture feature.

A detail analysis of such trends between the imperceptibility and the texture features of the

image allowed us to determine the possible causality among them. Thus, the machine learning

is designed with an optimized embedder or steganographer.

Model design

The following steps are adopted to develop the proposed model:

1. Partitioning of the (N ×M) host image into (K × L) pixel non-overlapping sub-blocks,

where (K = L = 8).

2. Determination of the number of blocks needed to embed the message according to the mes-

sage bits’ sizem.

3. Determination of the minimum square window size (SWS) from the image that contains

the required blocks. The SWS is calculated using:

SWS ¼ 8d
ffiffiffiffi
m
p
e � 8d

ffiffiffiffi
m
p
e Pixels ð11Þ

Fig 2. Relationship of the MSE metric to the texture features (a) contrast, (b) energy, (c) homogeneity, (d) entropy, (e) correlation, (f) mean, and (g)

standard deviation for Lena image.

doi:10.1371/journal.pone.0170329.g002
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Fig 3. Relationship of the SSIM metric to the texture features (a) contrast, (b) energy, (c) homogeneity, (d) entropy, (e) correlation, (f) mean, and

(g) standard deviation for Lena image.

doi:10.1371/journal.pone.0170329.g003

Fig 4. Relationship of the correlation metric to the texture features (a) contrast, (b): energy, (c) homogeneity, (d) entropy, (e) correlation, (f) mean,

and (g) standard deviation for Sails image.

doi:10.1371/journal.pone.0170329.g004
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4. Creation of raw data set of the square windows with a scanning resolution of 4 pixels NOS.

The size of the data set is:

NOS ¼
N � SWS

4

� �

þ 1

� �

�
M � SWS

4

� �

þ 1

� �

ð12Þ

where N andM are the length and width of the image, respectively, and SWS is the square win-

dow size.

Data set preparation

Fig 7 illustrates the schematic framework for the creation of the learning data set and the fea-

ture domain prior to the ELM training and testing. The texture feature extraction, metric cal-

culation and embedding are performed for building the learning data set. It is customary to

explain briefly the embedding and the feature extraction procedure.

Wavelet transform based embedding. As aforementioned, the message must be embed-

ded into its corresponding square window for each square window in the data set. The learn-

ing data are extracted from the raw data set using the embedding process and the calculation

of the resultant visual imperceptibility metrics. To achieve this goal, the following steps are

executed:

Fig 5. Relationship of the MSE metric to the texture features (a) contrast, (b) energy, (c) homogeneity, (d) entropy, (e) correlation, (f) mean, and (g)

standard deviation for Sails image.

doi:10.1371/journal.pone.0170329.g005
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1. For message bit one, the value is quantized to the nearest even number with the index (8, 8)

in the corresponding block. Otherwise, it is quantized to the nearest odd number.

2. The wavelet transform for each sub-block is computed by inverting the wavelet.

3. The wavelet is transformed to its corresponding spatial domain.

4. The embedding process is repeated until the final bit of the message is embedded.

Table 3. Trends of the imperceptibility to the texture feature for the Lena and Sails images.

Features Measures

Correlation MSE SSIM

Contrast Positive No trend Negative

Energy Positive No trend Negative

Homogeneity Positive No trend Negative

Correlation Positive No trend Negative

Mean Positive No trend Negative

Standard deviation Positive No trend Negative

Entropy Positive No trend Negative

doi:10.1371/journal.pone.0170329.t003

Fig 6. Relationship of the SSIM metric to the texture features (a) contrast, (b) energy, (c) homogeneity, (d) entropy, (e) correlation, (f) mean, and

(g) standard deviation for Sails image.

doi:10.1371/journal.pone.0170329.g006
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Fig 7. Construction of data set and feature domain.

doi:10.1371/journal.pone.0170329.g007
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5. For each square window, the corresponding visual metrics are calculated. These metrics

include correlation, MSE, SSIM, and fusion1. The expression for fusion1 yields:

fusion1 ¼ correlation � SSIM ð13Þ

Texture feature extraction. The texture features are extracted using the following steps:

1. The co-occurrence matrix is built for each square window whose sub-blocks are used for

embedding the message bits.

2. The feature function (contrast, energy, homogeneity, entropy, correlation, and standard

deviation) of the co-occurrence matrix is computed for each square window. The expres-

sion for features yields

features ¼ ðC; Enr; H; Ent; Corr; M; StdÞ ð14Þ

Extreme Learning Machine (ELM)

ELM training. The prepared data is represented the matrix form

X ¼ ðf1j; f2j; . . . ; f7j; yijÞ; with j ¼ 1; . . . ; n

where n is the number of square windows, f1j, f2j,. . ., f7j are the extracted features, yij is the cor-

responding output metrics, and i = 1, 2, 3, 4 correspond to the Corr, MSE, SSIM, and fusion1,

respectively.

A neural network of ñ hidden neurons is built and trained on a part of X to predict yi. Fur-

thermore, the training and the testing phases are validated using the RMSE before applying the

ELM-based model. Now we turn our attention in determining the optimal training percentage

and the optimum number of neuron.

RMSE for training and testing. The OELF being a supervised model the authentication

of the training and testing phases are necessary. They play a decisive role in the proposed

model. In the present case, OELF is trained to predict the visual imperceptibility metrics (Corr

and SSIM) and the fusion1 metric. The RSMEs of the proposed OELF model for the training

and testing phase are computed to evaluate its predictability performance. Table 4 summarizes

the RSME values of the square window for each of the similarity metrics. The computed

RSMEs for all the metrics in both the training phase and testing phase with different images

are discerned to be approximately zero, indicating the suitability of the proposed model.

Developed ELM training. A number of issues need to be addressed when using ELM.

First, an appropriate training–testing ratio has to be determined accurately to avoid over-fit-

ting for using a high training percentage and under-fitting for using a low training percentage.

Second, the ELM does not provide the user with the exact number of neurons to be selected

for building the network structure. Moreover, the performance of the model depends on the

accurate determination neurons number, where a large (small) number of neurons lead to

over (under) fitting [38] [2].

The used data set is partitioned into 50% training and 50% testing. Next, the number of

neurons is increased from 50 to 200 at a step of 5. In each case, the data set is partitioned into

80% for training and 20% for validation. Validation is performed on a part of the training data

set because in the normal functioning mode of the system the testing data set is unavailable.

The number of neurons in the hidden layer corresponding to the best validation accuracy is

then selected. Once the optimal number of neurons is selected, the search for the best train-

ing–testing ratio is performed by assigning a fixed testing data set size. Allocation of fixed

Extreme learning machine based optimal embedding location finder for image steganography
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percentage of the data for testing is required to avoid the bias in the RSME with increasing test-

ing data set. Afterward, the percentage of the training data is increased from 10% to 60% for

validating each case using the validation part composed of 20% of the training data set. From

the total data set, 50% is found to be best for training. Table 5 summarizes the training data set

(%) dependent accuracy levels for the Lena, Sails and Baboon images. Figs 8–11 displays the

training data set percentages dependent variation in the Corr, MSE, SSIM, and fusion1 values

between the host and stego images (Lena, Sails, and Baboon).

Table 5. Accuracy levels of the different training data set percentages for the Lena, Sails and Baboon images.

Images Training (%) Sample No. Corr MSE SSIM fusion1

Lena 10 504 0.000000034633 0.00019974 0.0000096058 0.0000096302

20 1008 0.000000031163 0.00019103 0.0000066814 0.0000066951

30 1512 0.000000032858 0.00019834 0.0000069203 0.0000069401

40 2016 0.000000030532 0.00019407 0.0000066675 0.0000066905

50 2520 0.000000028931 0.00019340 0.0000064897 0.0000065042

60 3025 0.000000032376 0.00019964 0.0000064997 0.0000065511

Sails 10 504 0.000000061209 0.00020495 0.0000107230 0.0000094358

20 1008 0.000000060383 0.00019897 0.0000073274 0.0000071024

30 1512 0.000000058905 0.00019439 0.0000074816 0.0000074046

40 2016 0.000000055183 0.00017993 0.0000062795 0.0000062419

50 2520 0.000000054812 0.00018018 0.0000067782 0.0000068851

60 3025 0.000000056117 0.00018278 0.0000064654 0.0000065537

Baboon 10 504 0.000000064792 0.00020644 0.0000026758 0.0000021155

20 1008 0.000000061951 0.00020515 0.0000019249 0.0000019248

30 1512 0.000000061739 0.00020448 0.0000018580 0.0000019298

40 2016 0.000000060180 0.00020039 0.0000020036 0.0000020270

50 2520 0.000000059464 0.00019712 0.0000018142 0.0000018343

60 3025 0.000000059567 0.00019783 0.0000019505 0.0000019876

doi:10.1371/journal.pone.0170329.t005

Table 4. RMSEs for the training phase and testing phase for different images.

Images Measure RMSE (Training phase) RMSE (Testing phase)

Lena Corr 0.0000002592 0.0000002604

MSE 0.000183980 0.0001953800

SSIM 0.0000060068 0.0000063730

Fusion1 0.0000059813 0.0000063790

Sails Corr 0.0000013995 0.0000014011

MSE 0.000179340 0.0001922900

SSIM 0.0000097757 0.0000088329

Fusion1 0.0010000000 0.0011000000

Baboon Corr 0.0000010623 0.0000010641

MSE 0.000193010 0.0002089800

SSIM 0.0000041315 0.0000042289

Fusion1 0.0000022554 0.0000023760

4.2.01 Corr 0.0000000833 0.0000000874

MSE 0.000193390 0.0002117400

SSIM 0.0000891080 0.0000968680

Fusion1 0.0000891170 0.0000968790

doi:10.1371/journal.pone.0170329.t004
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Fig 8. Training data set percentage dependent variation of Corr for the Lena, Sails, and Baboon

images.

doi:10.1371/journal.pone.0170329.g008

Fig 9. Training data set percentage dependent variation of MSE for the Lena, Sails, and Baboon

images.

doi:10.1371/journal.pone.0170329.g009
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Fig 10. Training data set percentage dependent variation of SSIM for the Lena, Sails, and Baboon

images.

doi:10.1371/journal.pone.0170329.g010

Fig 11. Training data set percentage dependent variation of fusion1 for the Lena, Sails, and Baboon

images.

doi:10.1371/journal.pone.0170329.g011
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Design and optimization of ELM

Fig 12 depicts schematically the framework of the proposed OELF model, which is achieved

using the following steps:

1. The data set is partitioned into 50% for training as well as validation and 50% for testing.

2. The ELM regression model is designed based on the training data set (Appendix A) which

is partitioned into 80% for training and 20% for validation.

3. The ELM regression model is further used to predict the best square window in terms of

the fusion2 metric.

Fig 12. General framework of the proposed OELF model.

doi:10.1371/journal.pone.0170329.g012
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4. The embedding process is performed to insert the secret message into the identified opti-

mum square window for generating the stego image.

Using the ELM training the message is embedded into each square window and all visual

imperceptibility metrics are determined via fusion2 metric given by:

fusion2 ¼
Corr � SSIM

MSE
ð15Þ

Experiments and results

Experiments are conducted on Intel1Core™ i7-2670QM CPU @ 2.20 GHz 6 GB RAM com-

puter with 64-bit operating system. The proposed OELF model is evaluated using 24 gray scale

images of size (512 × 512) pixels. Total 5041 square windows are obtained, in which square

windows of (232 × 232) are used. The message of size 100 bytes is utilized for embedment. Fig

13 illustrates the tested images before (left panel of each image) and after (right panel of each

image) embedding.

Table 6 enlists the RMSEs of the ELM prediction for the visual imperceptibility metrics of

the host and stego images for 50% training data set.

The experimental results obtained using the proposed OELF model are compared

(Table 7 and Fig 14) with the art-of-the existing methods [24], [39] in terms of the fusion2
metric. OELF approach is found to outperform the other methods [24], [39] in terms of

imperceptivity and fusion2measure which are nearly 28% and 114%, respectively. Thus,

OELF is demonstrated to be a useful steganography technique for embedding text in images

Fig 13. Achieved host (left) and stego (right) images.

doi:10.1371/journal.pone.0170329.g013

Extreme learning machine based optimal embedding location finder for image steganography

PLOS ONE | DOI:10.1371/journal.pone.0170329 February 14, 2017 17 / 23



with minimum level of distortion. Furthermore, it requires only a small training part of the

host image features.

Conclusion

Based on ELM, we proposed a novel OELF model to achieve high-performance image stegano-

graphy. In this approach, a modified ELM algorithm is used to establish the supervised mathe-

matical model for determining the optimum embedding image location with minimal

distortion. The ELM is trained on an image part (or any host medium) and tested in the

regression mode to select the best location for embedding the message. This allowed in achiev-

ing the best values of the predicted evaluation metrics. The training is performed based on a

set of the extracted texture, statistical features, and their corresponding visual imperceptibility

metrics using a part of the image. The trained model is further used for the performance opti-

mization. The proposed model is demonstrated to outperform the existing state-of-the-art

models. The excellent features of the results suggest that the present model may constitute a

basis for the development of secured image steganography algorithm. It is worth to look at the

robustness of the proposed method against various statistical attacks by incorporating a wider

range of features. Also, it is good to further develop the model to have more degree of freedom

in terms of the region finding by defining the region analytically instead of explicit geometrical

definition (block region). Other worthy development is to create an index for ranking the solu-

tion based on Pareto efficiency.

Table 6. RMSE values obtained using the ELM model for various images.

Image Corr MSE SSIM fusion2

Lena 0.000000028931 0.00019340 0.0000064897 6.2242

Sails 0.000000054812 0.00018018 0.0000067782 5.9077

Baboon 0.000000059464 0.00019712 0.0000018142 6.3427

4.2.01 0.000000072910 0.00021492 0.0000897420 6.7471

Barbara 0.000000046185 0.00020671 0.0000038981 6.5776

Boat 0.000000046384 0.00018874 0.0000014097 6.1217

Boy 0.000000036993 0.00018259 0.0002314300 5.8925

Bridge 0.000000037995 0.00018965 0.0000006518 6.0393

Cameraman 0.000000034447 0.00019519 0.0000087432 6.3871

Car 0.000000050114 0.00019526 0.0003784400 6.1066

Couple 0.000000074732 0.00017851 0.0000070962 5.7333

Elaine 0.000000048013 0.00018282 0.0000011586 5.9634

Fruits 0.000000091042 0.00018445 0.0000388410 5.9403

Fry mire 0.000000029372 0.00020057 0.0010000000 6.0890

Gold hill 0.000000068636 0.00020280 0.0000048690 6.4077

Lake 0.000000028259 0.00019234 0.0000295420 6.0766

Serrano 0.000000027705 0.00021271 0.0012000000 6.1314

Sport team 0.000000018767 0.00019272 0.0018000000 5.9935

Tulips 0.000000041771 0.00020646 0.0000247010 6.7391

Watch 0.000000170190 0.00021892 0.0012000000 6.0348

Zelda 0.000000076098 0.00019957 0.0000061628 6.4019

Pepper 0.000000042533 0.00019457 0.0000098827 6.2634

F16 0.000000050038 0.00019940 0.0001149300 6.3402

Tiffany 0.000000138370 0.00018762 0.0001004100 5.9857

doi:10.1371/journal.pone.0170329.t006
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Appendix A

For ELM training, the used data is combined with n arbitrary distinct square windows (xj, tj)

with j = 1,. . .n, xj = (xj1, xij,. . ., xjn) denotes the input vector and tj denotes the target. It is possi-

ble to model the standard Single Hidden Layer Feed Forward Network (SLFN) with an activa-

tion function g(x) and ñ hidden layer neurons via:

X~N

i¼1
bigðwixj þ biÞ ¼ ti ðA:1Þ

where j = 1,. . .n, wi = (ai1, ai2,. . ., ain)T, bi is the threshold (biases) of the ith hidden node, and

βi is the weight connecting the ith hidden node and the output.

The above equation is compact form yields:

Иb ¼ T ðA:2Þ

where И = И(a1, a2,. . ., añ, x1, x2,. . ., xN, b1, b2,. . .bñ)

И ¼

gða1x1 þ b1Þ � � � gða~nx1 þ b~nÞ

..

. . .
. ..

.

gða1xn þ b1Þ � � � gða~nxn þ b~nÞ

2

6
6
4

3

7
7
5 ðA:3Þ

Table 7. Comparison of the OELF model results with other existing models.

Proposed OELF model Kanan and Nazeri [24] Miao Qi et al. [39]

Image MSE Corr. SSIM Fusion2 MSE Corr. SSIM Fusion2 MSE Corr. SSIM Fusion2

Lena 0.001133 0.999999 0.999989 881.8879 0.001384 0.999999 0.999996 722.1569 0.012939 0.999998 0.999910 77.2759

Sails 0.001130 0.999999 0.999996 884.8709 0.001388 0.999999 0.999994 720.1871 0.012329 0.999995 0.999957 81.1051

Baboon 0.001126 0.999999 0.999997 887.8688 0.001372 0.999999 0.999998 728.1764 0.012512 0.999996 0.999994 79.9213

4.2.01 0.001199 0.999999 0.999948 833.4831 0.001266 0.999999 0.999981 789.5758 0.013305 0.999997 0.999937 75.1510

Barbara 0.001205 0.999999 0.999994 829.5649 0.001380 0.999999 0.999995 724.1509 0.011779 0.999997 0.999972 84.8887

Boat 0.001109 0.999999 0.999996 901.4161 0.001407 0.999999 0.999995 710.4141 0.012878 0.999997 0.999929 77.6436

Boy 0.001181 0.999999 0.999971 846.2843 0.001277 0.999999 0.999992 782.5134 0.012756 0.999998 0.999992 78.3917

Bridge 0.001064 0.999999 0.999998 939.5825 0.001399 0.999999 0.999994 714.2845 0.011908 0.999998 0.999988 84.0194

Camera-man 0.001099 0.999999 0.999995 909.6258 0.001361 0.999999 0.999994 734.2930 0.013244 0.999998 0.999928 75.4968

Car 0.001080 0.999999 0.999961 925.5033 0.001194 0.999999 0.999982 837.5063 0.010925 0.999997 0.999973 91.5281

Couple 0.001117 0.999999 0.999995 894.6849 0.001380 0.999999 0.999995 724.1515 0.012207 0.999996 0.999996 81.9194

Elaine 0.001239 0.999999 0.999995 806.5932 0.001377 0.999999 0.999995 726.1570 0.012451 0.999997 0.999947 80.3092

Fruits 0.001182 0.999999 0.999966 845.5976 0.001380 0.999999 0.999987 724.1452 0.014648 0.999997 0.999955 68.2634

Fry-mire 0.001273 0.999999 0.999600 784.9895 0.001296 0.999999 0.999995 771.0079 0.010742 0.999999 0.999995 93.0905

Gold- hill 0.001148 0.999999 0.999995 870.9060 0.001419 0.999999 0.999992 704.6828 0.012390 0.999997 0.999937 80.7041

Lake 0.001176 0.999999 0.999990 860.3891 0.001411 0.999999 0.999990 708.4908 0.012878 0.999998 0.999990 77.6484

Serrano 0.001162 0.999999 0.999817 860.3891 0.001296 0.999999 0.999993 771.0064 0.012512 0.999998 0.999994 79.9214

Sport -team 0.001155 0.999999 0.999542 864.7656 0.001304 0.999999 0.999993 766.4982 0.012023 0.999998 0.999976 83.1654

Tulips 0.001062 0.999999 0.999992 941.2638 0.001384 0.999999 0.999991 722.1538 0.011413 0.999998 0.999968 87.6121

Watch 0.001139 0.999999 0.999730 877.2379 0.001135 0.999999 0.999987 888.6120 0.012390 0.999996 0.999991 80.7084

Zelda 0.001165 0.999999 0.999986 858.0696 0.001388 0.999999 0.999983 720.1634 0.012268 0.999996 0.999910 81.5048

Pepper 0.001156 0.999999 0.999985 864.4361 0.001396 0.999999 0.999990 716.2335 0.012390 0.999997 0.999981 80.7077

F16 0.001115 0.999999 0.999976 896.1971 0.001380 0.999999 0.999990 724.1478 0.011291 0.999997 0.999960 88.5585

Tiffany 0.001131 0.999999 0.999960 884.0927 0.001396 0.999999 0.999985 716.2293 0.134440 0.999996 0.999991 74.3775

doi:10.1371/journal.pone.0170329.t007
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with

b ¼

b1

..

.

b~n

0

B
B
B
B
@

1

C
C
C
C
A

T ¼

t1

..

.

tn

0

B
B
B
B
@

1

C
C
C
C
A

ðA:4Þ

where И is called the hidden layer output matrix of the neural network and T is the target

vector.

One can prove that if the activation function is differentiable then the required number of

the hidden layer neurons is lower than the data size or ñ< n. The training of the neural net-

work is achieved via the following steps:

1. Assigning random weights (wi) and biases (bi).

2. Calculating the hidden layer output matrix.

3. Computing the output weights (β) via:

b ¼ ИTT ðA:5Þ

where ИT is the Moore-Penrose generalized inverse of hidden layer output matrix.

Supporting information

S1 File. Original data for Figs 1–6,8–11 and 14.

(XLSX)

Fig 14. Performance of the proposed imperceptibility metric (fusion2).

doi:10.1371/journal.pone.0170329.g014
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