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Abstract

Early childhood is a critical stage for the foundation and development of both the microbiome and 

host. Early-life antibiotic exposures, cesarean section, and formula feeding could disrupt 

microbiome establishment and adversely affect health later in life. We profiled microbial 

development during the first two years of life in a cohort of 43 US infants, and identify multiple 

disturbances associated with antibiotic exposures, cesarean section, and diet. Antibiotics delayed 

microbiome development and suppressed Clostridiales, including Lachnospiraceae. Cesarean 

section led to depleted Bacteroidetes populations, altering establishment of maternal bacteria. 

Formula-feeding was associated with age-dependent diversity deviations. These findings illustrate 

the complexity of early-life microbiome development, and microbiota disturbances with antibiotic 

use, cesarean section, and formula feeding that may contribute to obesity, asthma, and other 

disorders.

One Sentence Summary

Antibiotics, cesarean section, and infant formula alter patterns of microbial acquisition and 

succession during the first 2 years of childhood.

INTRODUCTION

The establishment of stable microbial communities within the gastrointestinal tract closely 

parallels host growth and immune development during early life (1). The intestinal 

microbiome helps regulate host metabolism (2) and immune function (3–4), and thus could 

play an important role in directing host development. Delayed or altered establishment of the 

intestinal microbiota in childhood, termed microbiota immaturity, has been associated with 

diarrhea and malnutrition in Bangladeshi children (5). The causes of these microbiota 

disturbances and their consequences in other populations have not been established, but they 

may be linked to host development.

Antibiotic use during childhood is prevalent in most parts of the world but the effects on 

microbiota maturation and human health are poorly characterized (6). The average US child 

receives about three antibiotic courses by the age of 2, and 10 courses by the age of 10 (7). 

Antibiotics directly perturb the intestinal microbiota, leading to altered compositional states 

in children and adults (6, 8), but the consequences of these changes on host physiology are 

not well-understood. Antibiotic exposure in children has been associated with increased risk 

of obesity (9), diabetes (10), inflammatory bowel disease (11), asthma (12), and allergies 

(13). We have shown previously that antibiotic exposure leads to increased adiposity in mice 

(14), that early-life exposures lead to prolonged effects on host metabolic characteristics (15, 

16), and that the disturbed intestinal microbiota mediate these host effects (16).

Other disturbances, including birth mode and infant diet (17), also impact the intestinal 

microbiota during early life and are associated with later-in-life adiposity and other clinical 

effects. Cesarean delivery has been associated with asthma (18), allergies (19), type 1 

diabetes (20), and obesity (21), possibly due to diminished exposure to maternal microbes 

during birth. Formula feeding similarly disrupts the intestinal microbiota (17) and may 

impair immune development (22) and normal metabolism (23).
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While the impacts of antibiotic exposures on intestinal dysbiosis in adults are well-

characterized, less attention has been given to their effects on microbiota development 

during early childhood (6). We hypothesized that antibiotics and other early disturbances 

may alter microbiome establishment during early life, potentially explaining associations 

with emerging health issues. We examined the intestinal microbiota to model its 

development over 2 years of life in a cohort of 43 healthy urban US infants. We then 

assessed the effects of birth mode, infant nutrition, and antibiotic exposures on intestinal 

microbiota development in this population. Antibiotic exposures, formula feeding, and 

cesarean section delayed and altered development of the gut microbial population, 

suggesting a possible link to the health risks associated with these procedures (18–21).

RESULTS

A total of 43 infants were enrolled for follow-up for up to the age of 2 years. Stool samples 

were collected from these infants and stool samples, vaginal swabs, and rectal swabs were 

collected from their mothers pre- and post-partum. Birth mode, feeding, and systemic 

antibiotic exposures in the infants are shown in Table 1. The succession of bacterial taxa 

during the first 2 years of life followed a predictable pattern (Fig. 1A), consistent with prior 

studies of the early-life microbiota (5, 24, 25). In the first month of life, stools were 

dominated by facultative aerobic Enterobacteriaceae before yielding to strict anaerobes — 

principally Bifidobacterium, Bacteroides, and Clostridium (Fig. 1A). These taxa were 

gradually displaced between months 6–24 by a diverse mixture of Clostridiales, roughly 

corresponding to the introduction and increased use of solid foods in these infants (Fig. 1G). 

However, even among infants who received no antibiotics in the first six months of life, 

those differing by birth mode and predominant diet showed substantial early differences 

(Fig. 1B–E; Table S6, Fig. S1). During this 2-year period, the microbiome was characterized 

by a period of community assembly, undergoing gradual succession of different taxa. While 

the microbiota begins to resemble an adult microbiota around 2 years of age (see below), it 

has not yet achieved an adult-like state, characterized by many different alternative states of 

semi-stable climax communities that exist in quasi-equilibrium (26). Hence, we focused on 

the trajectory of microbiota development in children in the context of early disturbances.

Antibiotic exposures alter bacterial diversity

To assess the effects of disturbances on bacterial diversity, we measured bacterial richness, 

phylogenetic diversity, and evenness in each sample (Fig. 2). Antibiotic use significantly 

diminished phylogenetic diversity and richness immediately following birth (P < 0.0001), 

but accelerated their rates of increase during the first year of life (Fig. 2A–C, Table S6). 

However, α-Diversity was not significantly suppressed in individual children immediately 

following antibiotic administration (P > 0.05) (Fig. S2). Thus, antibiotic exposure altered the 

trajectory of α-diversity changes during the first 2 years of life, but transient effects were 

inconsistent.

β-Diversity, measuring similarities between samples as a function of microbial composition, 

assesses how disruptions impact the composition and recovery of an entire microbial 

ecosystem. Infants who had not been exposed to antibiotics and those who had been exposed 
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at any prior time differed significantly (Permutational MANOVA P < 0.001, R2 < 0.01) 

(Table S7). This observation provides evidence that antibiotics altered the intestinal 

microbiota in infants, but the effects were smaller than delivery mode (R2 = 0.02) and 

profoundly smaller than age (R2 = 0.14) (Table S7). Antibiotic exposure was associated with 

deficits in Clostridiales and Ruminococcus from 3 to 9 months of life, but with no consistent 

changes in other taxa (Fig. 3). These subjects were differentially exposed by age and by 

antibiotic class; thus, variation in alterations in most taxa is not surprising. Drug type, 

timing, route, duration, underlying conditions, number of exposures, and differences 

between individual subjects all may be confounding factors.

Antibiotic exposures delay microbiota maturation

During the first 2–3 years of life, intestinal microbiota undergo a gradual succession, and 

while a large degree of inter-individual variation occurs, these age-dependent succession 

patterns share many features in different human populations (24). Microbiota maturation, 

then, is defined as the rate at which a child's microbiota develops, as measured by these age-

dependent successional stages; a “mature” microbiota contains certain taxa that are 

biomarkers for that child's age group, while an “immature” or delayed microbiota resembles 

that of a younger child. Delayed microbiota maturation, as defined in healthy children, 

mirrors physiological disturbances in the host (5), and occurs in mice exposed to antibiotics 

(15). Thus, we examined whether antibiotic exposures and other disturbances similarly 

altered microbiota maturation in children, comparing relative maturation rates in a reference 

group (vaginally delivered, breast-fed, no pre-, peri-, or post-natal antibiotics), and 

antibiotic-exposed subjects using a Random Forests (27) regression model to predict a 

child's age as a function of their microbial composition, as reported (5). A defined 

microbiota maturation of the reference samples could be predicted using 22 key OTUs that 

explained the greatest degree of variation (pseudo R2 = 82.1) in the model and are thus 

biomarkers for normal development in this cohort (Fig. 4). Children exposed to antibiotics 

showed delayed microbiota maturation compared to those not exposed to antibiotics (Fig. 

4A, Table S8). These effects were most pronounced during months 6–12, and thereafter no 

significant effect was observed. A delayed maturation pattern during early childhood was 

due to depletion of specific OTUs, including constituents of Enterobacteriaceae, 
Lachnospiraceae, and Erysipelotrichaceae (Fig. 4B). Within this cohort, intestinal bacterial 

communities followed a predictable pattern throughout the first two years (Fig. 1), but 

antimicrobials disturbed microbial succession at the OTU level, delaying microbial 

community development in the intestine relative to unexposed children (Fig. 4).

An important consequence of altered microbial patterns is changes to the functional gene 

repertoire present within the gut microbiome. We found substantial differences in the 

maturation of gene functions in the imputed metagenome (28) with relation to perturbations 

in exposures including antibiotics and predominant diet (Supplemental Materials, Fig. S3, 

S4, Table S9), but not delivery mode (Table S9).

Delivery Mode alters intestinal diversity

The first major microbial exposure for a vaginally born infant is in the birth canal, a 

potentially important event for establishing a healthy microbiome early in life. Cesarean 
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section bypasses this exposure, altering the initial pool of microbes to which the neonate is 

exposed (29). We sought to investigate the impact of delivery mode on microbiota 

maturation and diversity during the first two years of life.

Cesarean-delivered infants had significantly altered intestinal bacterial richness and 

phylogenetic diversity (ANOVA P < 0.05), compared to vaginally born infants, throughout 

the first 2 years of life, and significantly diminished growth of evenness during the first year 

(Fig. 2D–F) (Table S6). These effects were not due to differences in absolute bacterial 

abundance (Fig. S5).

We also expected β-diversity to be altered in cesarean-delivered infants, reflecting both 

differing microbial exposures during birth and the observed altered α-diversity. For the 

babies’ first bowel movement (Mean ± SD 20.2 ± 18.3 hours of life), fecal β-diversity values 

were generally low, and not significantly different, suggesting that infants were colonized by 

microbiotas of similar complexity. Thereafter, cesarean section significantly altered 

microbial β-diversity compared to vaginally born children (unweighted UniFrac 

permutational MANOVA P < 0.001, R = 0.02) (Table S7, Fig. 5A). The abundances of 

several bacterial taxa were altered in cesarean-born infants, underlying the differences in α- 

and β-diversity (30) compared to those vaginally born (Table S6, S7). Most prominently, 

Bacteroides abundance was substantially and significantly lower in cesarean-delivered 

infants (Fig. 5B, C, Fig. S6) regardless of predominant feeding mode. By 12 months, the 

balance of Bacteroides, Bifidobacterium, and Enterobacteriaceae that dominated the first 

year in all infants was replaced by a mixture of Firmicutes, primarily Clostridiales (Fig. 1). 

Various Clostridiales and Enterobacteriaceae were significantly more abundant (LEfSe P < 

0.05) in cesarean infants during the first year, filling the void left by Bacteroidales, but few 

taxa were significantly different during the second year of life (Fig. 5C). The increasing 

similarity between the intestinal microbial communities in children born vaginally or by 

Cesarean section after one year indicates that both undergo gradual maturation, eventually 

resembling the adult fecal microbiota (see below, Fig. 6). The taxa that dominated in the 

early months of life — whether or not disturbed by cesarean delivery or antibiotics — 

declined as later-life taxa replaced them.

We hypothesized that the disruption of cesarean section could also alter microbiota 

maturation patterns in infants, similar to antibiotic exposure (Fig. 4). Using the microbiota 

maturation model described above, we found that cesarean- and vaginal-birth infants 

demonstrated similar degrees of microbiota maturation during the first 6 months of life. 

Subsequently, microbiota maturation stagnated in cesarean-delivered infants, with relative 

maturity dropping compared to vaginally born infants for the remainder of the study period 

(Fig. S7).

Infant Diet

Infant nutrition, surveyed routinely for the duration of the study, documented the extent of 

breast- or formula-feeding, and the timing of solid foods introduction (Fig. 1F). We 

compared two major dietary groups that best described dietary variation in this cohort: 

infants who were dominantly (> 50% of feedings) breast-fed or dominantly formula-fed for 

the first 3 months of life. Phylogenetic diversity and bacterial richness growth rates were 
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significantly decreased in formula-fed children during 12–24 months of life (P < 0.05) (Fig. 

2G–I, Table S6). Formula feeding also altered beta diversity (Table S7, Fig. S8A) and 

decreased microbiota maturation during 12–24 months of life (Fig. S8B). During this period, 

Lactobacillus, Staphylococcus, Megasphaera, and Actinobacteria were more abundant in 

breast-dominant children, and various genera of Clostridiales and Proteobacteria in formula-

dominant children (Fig. S8C).

Maternal bacteria populate the infant gut during early life

The earliest source of microbial colonizers in the infant gut is the mother’s own microbiota, 

from passage through the birth canal to breastfeeding and skin contact. However, the extent 

to which a mother’s microbiota successfully establishes in her child, its dynamics over time, 

and the relative contributions of bacteria from different body sites have not been well-

described. We characterized the microbiota of rectal swabs, vaginal swabs, and stool 

samples from mothers before and after birth (See Supplemental results, Fig. S9) to explore 

the microbial relationships shared between mother-infant dyads, as well as unrelated 

individuals, in the context of birth mode.

Network analysis explores the relationships between samples and their constituent OTUs, 

revealing that the infant microbiota matured from a neonatal state, associated with maternal 

OTUs from both vagina and rectum, to a post-infancy state resembling maternal stools (Fig. 

6). In this analysis, sample nodes are connected by edges to all OTUs that they contain, 

indicating explicit connections between samples via shared OTUs. Edges are weighted based 

on OTU abundance, causing samples with similar OTU composition to cluster together 

along with their characteristic OTUs. These connections may be quantitatively measured 

directly as shared OTU counts between samples (Fig. 7, S10, see below) and indirectly as 

UniFrac distance (Fig. 6 panels B–D). Infant stool samples clustered together, associated 

strongly with several key Bacteroidales, Clostridiales, Enterobacteriales, and 

Bifidobacteriales OTUs (Fig. 6A). Infants cluster away from maternal stool samples, instead 

having more connections to maternal vaginal samples via robust links with several 

Lactobacillales and Bifidobacteriales OTUs (Fig. 6A). As the children aged beyond 12 

months, their fecal microbiota came to resemble maternal stool and rectal samples more 

closely (Fig. 6B), indicating that their microbiota matured to a maternal-like configuration 

associated with numerous Clostridiales and Bacteroidales (Fig. 6A, Fig. S10). Stool 

microbiotas from the same child (“self”) were more similar to each other than those from 

unrelated children (“non-self”) (unweighted UniFrac ANOVA P < 0.001), and children’s 

stool microbiotas were most similar to those of the same age, highlighting that the 

succession of the intestinal microbiota occurs gradually (Fig. 6C). Conversely, at all ages, 

the children’s fecal microbiota was less similar to the mothers’ vaginal microbiota than to 

the mothers’ rectal and stool microbiotas (Fig. 6B). The dissimilarity between a mother’s 

vaginal microbiotas and her child’s fecal microbiotas was significantly more pronounced in 

cesarean-born children than in vaginally born mother-child pairs, whether dyads or unrelated 

(unweighted UniFrac ANOVA P < 0.001) (Fig. 6C). Considering two important genera, 

Bacteriodes and Bifidobacterium, there was a consistent diminution in the total OTU 

diversity acquired in cesarean-born infants, as well as shared OTUs; dyads shared 

significantly more of these taxa than did unrelated pairs (Fig. S10).
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As microbial composition differs widely between adults and children, and between samples 

from different body sites, quantitation of shared OTUs is a metric to assess microbial 

transmission between these loci (Fig. 7). Samples with more shared OTUs are expected to 

have closer relationships, whether OTUs are transmitted directly between samples or both 

have a common external source. Maternal microbiota transmission implies that more 

maternal OTUs are expected in her child than in unrelated children, except when OTUs are 

highly dispersed among mothers. We examined the total number of OTUs in each sample, 

and the number shared between samples belonging to the same individual (“self”), other 

individuals (“non-self”), or between mother-infant dyads (Fig. 7). Results support 

expectations that OTUs are more shared between “self” samples and a mother’s rectal 

microbiota shares more OTUs with her own child’s stool than that of other children (Fig. 

7A). Although vaginal swabs follow this trend, effects are not significant when examining 

samples from all time points and birth modes.

Child stool OTU counts gradually increased with time (Fig. 7B), approaching OTU counts in 

mothers by age 3 years (compare panels A and B). Unrelated mothers and children shared 

far fewer stool OTUs throughout this time, but surprisingly still shared more OTUs on 

average than mother-infant dyads (Fig. 7B). The shared OTU count increased as children 

grew older — for both dyads and unrelated mother-infant pairs — further evidence that 

children’s microbiotas gradually mature into an adult-like state. By 3 years of life, α-

diversity (total OTU counts) approached adult levels (compare Fig. 7A and 7B), and β-

diversity became lower between children and adults (Fig. 6B), but OTUs shared with adults 

remained low, indicating that different strains colonized children and adults even when 

similar bacterial taxa were present.

A child’s stool shared more OTUs with their other stools that were collected <14 months 

apart, compared to non-self stool samples; as time between sampling increased, shared 

OTUs decreased until self and non-self stools had similar shared OTU counts (occurring for 

samples >14 months apart) (Fig. 7C), indicating the dynamism of the microbiota during the 

first 2 years of life. As expected, the number of OTUs shared between self-stool samples 

gradually decreased as the time between sampling increased, indicating gradual succession 

of OTUs. As children aged, they also shared more OTUs with maternal rectal swabs whether 

or not they were related (Fig. 7D). Dyads shared more OTUs across all times (Fig. 7A), but 

were not significant at individual time points (Fig. 7D). Mothers shared significantly more 

vaginal OTUs with their children if they had been vaginally delivered, compared to both 

cesarean-delivered and unrelated infants (Fig. 7E), an effect only significant after 1 year of 

life, peaking between 18 and 24 months of life. Vaginal OTUs, relevant during early infancy, 

were detected less frequently in fecal specimens in later childhood, leading to the decline in 

shared OTUs. As expected, peri-partum maternal stool, vaginal, and rectal samples also 

showed fewer shared OTUs with samples from the same mother as the interval between 

sampling increased (Fig. 7F–I). As sampling interval grew, maternal samples shared as many 

OTUs with samples from other mothers as they did with self. Stool samples were the 

exception, with more shared self-OTUs across sampling than from other mothers (Fig. 7G).
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DISCUSSION

The purpose of this study was to characterize early-life microbial development in the context 

of antibiotic use, cesarean section, and formula feeding. Each of these has been associated 

with conditions emerging later in life, including obesity (9), diabetes (10, 20), and allergies 

(13, 19). The cause for these relationships is unclear, but altered patterns of microbiota 

assembly during early life are plausible. We profiled microbiota development during the first 

two years of life, and document disturbances related to antibiotics, cesarean section, and 

diet.

Intestinal bacterial communities undergo a gradual succession during early life (Fig 1A), 

following a predictable, age-dependent pattern that is conserved between disparate human 

populations and stabilizes after age 3 years (5, 24, 25). These events may reflect a co-

evolutionary relationship in which normal maturation of the gut microbiome during a critical 

window contributes to host development; disturbances may interrupt this delicate 

choreography, with consequences for long-term host health (16).

We observe three distinct phases in the childhood microbiome during the first years of life. 

During the first month of life, Enterobacteriaceae dominated the microbiota (Fig. 1), 

suggesting that these facultative anaerobes can exploit the naive conditions of the neonatal 

intestine. The intermittent stages of development, from approximately 1 to 24 months of life, 

were more dynamic and appeared to be sensitive to disturbances from birth mode, 

predominant nutrition, and antibiotic use. We speculate that even transient effects during this 

sensitive, developmental window could lead to long-lasting effects — as we have shown 

with short-term antibiotic exposures in mice (15, 16). Finally, as children reached 2 years of 

age the microbiota gradually stabilized toward an adult-like configuration (Fig. 6), 

characterized both by higher diversity and greater resilience to change. This period 

paralleled dietary transition from liquid to solid foods (Fig. 1F), an important catalyst for 

microbiota maturation in childhood (17), and a source of introduced microbes. Alternative 

hypotheses for the higher diversity include the diminution of the constraint imposed by C-

section (Fig S9), and of breast-feeding with its strong selective effects (31). Higher 

immunologic tolerance during early life (32) may be ending, adding new constraints to 

acquiring non-founding microbes. These conserved transitions may be important, and 

suggest that disturbances during the first two years of life are likely to have strong effects on 

development of the microbiota and potentially for host health.

Microbial taxa and gene pathways that best define “microbial age” can be used as 

biomarkers to track the infant’s microbiota progress, paralleling how weight-for-height 

tracks a child’s development, and are similarly affected by disruptions to health (5, 15). The 

precise role that these bacteria play in development is unclear — we have yet to determine 

whether any maturity biomarkers are actually linked to host processes — but from a 

theoretical standpoint, this method allows identification of organisms that may play roles at 

key junctures during an infant’s development, and the results are striking. By suppressing 

early-life biomarkers including Lachnospiraceae, Enterobacteriaceae, Erysipelotrichaceae, 

and numerous predicted gene pathways, antibiotic exposures effectively stall the 
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development of the intestinal microbiome, causing the intestinal communities in these 

infants to appear less developed (younger) than unexposed counterparts (Fig. 4).

Lachnospiraceae spp. and other Clostridiales were particularly sensitive, and were 

significantly depleted in antibiotic-treated infants often throughout early life (Fig. 3), in 

agreement with prior studies of adult human and mouse microbiotas (8, 33). 

Lachnospiraceae live almost exclusively in the mammalian gastrointestinal tract, often 

producing butyrate and other short-chain fatty acids (SCFA) (34) that regulate host 

immunity via epithelial cell signaling, colonic T regulatory cells (35), and macrophages 

(36). Butyrate synthesis could explain how Lachnospiraceae induce T regulatory cells, 

suppressing colitis and allergic diarrhea in mice (37), and are consistent with protective 

associations against type 1 diabetes development in infants (38). Butyrate, serving as an 

energy source for host epithelial cells, also regulates the cell growth- and differentiation-

related AP-1 signaling pathway (39), potentially explaining links between butyrate 

producers (including Lachnospiraceae spp.) and body weight (40). Lachnospiraceae OTUs 

also were implicated as markers of intestinal microbiota maturation in Bangladeshi infants 

(5), suggesting that their blooms may be an important event in the developing infant gut 

across continents.

α-diversity, an important ecosystem characteristic, was disturbed by delivery mode, 

antibiotic use, and by diet (Fig. 2). During early life, overall diversity rapidly increases in the 

developing infant gut (24, 25) (Fig. 2) as children acquire bacterial strains encompassing 

greater phylogenetic diversity from diet, human contact, and environment. Since this process 

is occurring during a sensitive period when acquired intestinal bacteria train the nascent 

immune system (32), increasing diversity may be relevant to normal development (1). 

Disturbance from antibiotic use, formula feeding, or cesarean section, as well as the 

potential for cumulative damage from multiple disturbances, might affect intestinal 

homeostasis and long-term health. Decreased intestinal α-diversity during infancy precedes 

type 1 diabetes onset (38) and allergic manifestations (41), and has been reported in obese 

adults (40).

Whether or not intestinal α-diversity influences disease development or is only a marker, 

functional diversity differences could contribute (26). The substantial functional redundancy 

in the healthy human microbiome (26, 42) may provide insurance that the gut ecosystem can 

recover from temporary disturbances, maintaining productivity by minimizing risk of 

functional loss. In this model, a healthy microbiota with sufficiently high diversity can 

withstand normal environmental fluctuations, e.g., due to diet change or illness, and 

maintain key functions. However, disturbances during development may reduce diversity 

below thresholds sufficient to maintain an essential functional repertoire. Such lack of 

resilience may delay ecosystem recovery or lead to a new stable state (26); either event may 

promote later disease development. One challenge to the translation of this theory will be 

identifying microbial ecosystem functions important for critical developmental steps; as 

targets for future investigation, we identify several gene pathways impacted by early 

disturbances. (See Supplemental Results)
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Another notable effect of cesarean section was a dramatic, persistent decrease in Bacteroides 
populations. Although several studies have noted decreased phylum Bacteroidetes in 

cesarean-delivered infants (43, 44), we now show that this effect persists throughout the first 

year of life and is associated with an altered metagenomic landscape in the gut. Since 

Bacteroides spp. regulate intestinal immunity (45), this long-lasting, large-scale disturbance 

could partially explain cesarean section-associated health consequences, including asthma, 

obesity, and allergies (18, 21). The deficiency of Bacteroides following cesarean section, 

with commensurate expansion of other taxa, may disrupt tolerogenic feedback loops (26), 

potentially contributing to development of inflammation and obesity. Disturbances to 

microbial metabolism and cell motility pathways in cesarean-born children suggest 

mechanisms by which microbial perturbation could influence hosts; targets for future 

investigation include the altered production of SCFA or other immunomodulatory 

metabolites (35).

The strong evidence for maternal transmission of early-life taxa in general, and specific 

dominant taxa in particular, provides support for the importance of the composition of the 

maternal microbiota for healthy development. Widespread practices that affect this reservoir 

include antibiotic therapies and prophylaxes, but also cleansings that were aimed for 

neonates in developing countries but have recently spread to more developed populations 

(46).

Some limitations are inherent to our study. Our sample size lacks sufficient power to account 

for complex interactions between many potential microbial disturbances during early life. 

Larger and longer studies may assess whether early-life microbiota disruptions are indeed 

cumulative, counteractive, or independent. Longer studies can determine how community 

assembly during childhood transitions to climax (e.g., adult) communities, characterized by 

diverse alternative stable states (47). Dissimilar trajectories of microbiota maturation during 

childhood may lead to different stable states in adulthood, without necessarily affecting the 

host. Microbial disruptions primarily delayed microbiota maturity during the first year, 

indicating transient effects rather than permanent alterations. Transient antibiotic 

disturbances during early life durably alter host development in mice (14–16), but our results 

do not necessarily imply that this effect extends to humans. An alternative possibility is that 

disruptions to microbiota composition and maturation are nullified if they are replaced by 

other functionally similar taxa. The disparate microbiota states observed in adults possess 

functional overlap despite compositional similarity, suggesting that community function may 

more relevant for predicting host interactions (26, 47). Our results suggest that community 

function and functional maturation are altered by antibiotics, cesarean section, and formula 

feeding (using PICRUSt-predicted metagenomes), but metagenomic and transcriptomic 

studies will be needed to assess whether early-life disruptions influence community function 

and behavior.

Our results identify multiple disturbances to microbial development during early life. These 

alterations were not linked to health outcomes, which we did not survey, but are potential 

targets for ongoing inquiry. The microbial populations and dynamics deserve further 

scrutiny for their role in host-microbial communication, host development, and health. 

Mounting evidence associates antibiotic use, cesarean section, and formula feeding with 
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metabolic and immunologic disorders later in life, possibly as a consequence of disturbed 

microbiome development. Although these interventions often strongly benefit recipients, the 

hidden costs imply the need for careful consideration in children with less severe illnesses. 

Our findings warrant studies to establish whether and how early life microbial disturbances 

associated with antibiotic use, cesarean section, and formula feeding influence health 

outcomes; recent studies of Canadian children provide evidence that such early-life 

disturbances are important for asthma risk (12)

MATERIALS AND METHODS

An Institutional Review Board-approved study was conducted in healthy, pregnant NYC 

mothers in 2011–2014. Maternal vaginal, rectal, and fecal specimens, and fecal specimens 

from their infants were obtained from birth to the age of three years, chiefly in the first two 

years of life, and analyzed by microbiome sequencing. Information about home 

environment, delivery mode, infant diet, and antibiotic exposures was obtained for each 

mother-baby dyad. Complete details are provided in the Supplementary Materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Microbial and dietary succession viewed over the first two years of life
Mean relative abundance of fecal bacteria at the genus level at each month of life, for taxa 

with ≥1% mean relative abundance across all samples. Panel A. All subjects, first 2 years. 

Panels B–E: The first 6 months of life for the 32 subjects who were not antibiotic-exposed, 

organized by delivery mode [Vaginal (V), or Cesarean (C)], and predominant feeding mode 

[Breast (B), Formula (F). Group n’s are: V-B (15), C-B (7), V-F (3), C-F (7). Panel F: 
Dietary trends in all infants across the study period.
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Fig. 2. α-Diversity over the first two years of life in relation to early-life exposures
Left column, Mean Phylogenetic Diversity (PD) ± SEM; second column, Mean observed 

OTUs ± SEM; third column, Mean Shannon Equitability (evenness) ± SEM. α-Diversity 

levels are shown for antibiotic use (Panels A-C), delivery mode (D-F), and diet (G-I). 

Asterisks and brackets indicate significant (LME P < 0.05) group differences at baseline or 

rate-of-change differences across age ranges.
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Fig. 3. Antibiotic exposure alters bacterial abundance
Antibiotic exposure significantly altered abundance of diverse bacterial taxa over the first 

two years of life. Based on LefSe analysis, red-shaded taxa (rows) were significantly (P < 

0.05) more abundant in antibiotic-exposed infants at the given time points (columns); blue 

shading indicates more abundant in unexposed infants.
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Fig. 4. Antibiotic exposure delays microbiota maturation during early life
A, Microbiota-by-age Z-scores (MAZ) at each month of life between antibiotic-exposed and 

unexposed infants (infants never exposed to systemic pharmacologic antibiotic doses prior to 

the sampling time). MAZ scores indicate the number of standard deviations from the mean 

predicted age of age-matched control samples, as a function of microbiota maturation. Grey 

margins represent 95% confidence limits. Asterisks and brackets indicate significant (LME 

P < 0.05) group differences at baseline or rate-of-change differences across age ranges. The 

“unexposed” group contains both training set samples (from children who were never 

exposed to pre-, peri-, or post-natal systemic antibiotics; were vaginally delivered; and 

dominantly breast-fed), and all other samples from children who had not been previously 

exposed to systemic post-natal antibiotics. B, OTU abundance heat maps illustrate the 

relative abundance (RA) Z-scores of 22 maturity-marker OTUs in the antibiotic-exposed and 

unexposed groups throughout life. These OTUs were selected as those that best predict age 

of life in the control group, and hence can be used as markers of normal maturity. 

Substantial departures from the normal maturation profile alter predicted age of other 

samples. The color scale represents relative abundance (RA) Z-scores for each OTU, (i.e., 

the number of standard deviations from the mean RA of that OTU) across all samples at that 

age.
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Fig. 5. Delivery mode alters microbial diversity and composition
A, Unweighted UniFrac principal coordinates analysis of the infant microbiome in relation 

to delivery mode over the first two years of life. Permutational MANOVA P < 0.05 (Table 

S7). B, Bacteroidetes relative abundance (Mean ± SEM) over time in relation to delivery 

mode. C, Cesarean section significantly alters abundance of diverse bacterial taxa over time. 

Red-shaded taxa (rows) were significantly more abundant (LEfSe P < 0.05) in cesarean-

delivered infants at the given time points (columns); blue shading indicates more abundant in 

vaginally delivered infants
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Fig. 6. Bipartite network comparing the relationships among all samples (squares) and OTUs 
(circles)
A, The distance between sample nodes and OTU nodes is a function of shared microbial 

composition. Samples with a large degree of OTU overlap (weighted by the number of 

observations of that OTU) form clusters. Edges connect a sample to each OTU detected in 

that sample, revealing shared OTUs between samples. Sample nodes and edges are colored 

by sample type; the border of sample nodes is a function of the age of the child, including 

pre-partum (negative) values for maternal samples (key at top-left). OTU nodes are colored 

by taxonomic family affiliation; the size of each OTU node is a function of that OTU's 

overall abundance, registered as OTU count in all samples (key at middle-left). See Fig 7 for 
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specific analyses. B, Unweighted UniFrac distance between maternal vaginal, rectal, and 

stool microbiota and child stool microbiota as a function of child age. Shorter distance 

indicates greater similarity between microbial communities. C, Unweighted UniFrac 

distance between stool microbiota from the same child (self) and other children (non-self) as 

a function of the difference in age between sampling (Δ months). D, Unweighted UniFrac 

distance between maternal vaginal microbiota and stool microbiota of vaginally born dyads, 

unrelated children, or cesarean-delivered dyads as a function of child age. For panels B-D, 

lines indicate rolling-average mean values, grey shading = 95% CI. Grey shading = 95% CI. 

ANOVA P values are shown.
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Fig. 7. Shared OTUs reveal microbial relatedness among mothers and children
(A) Shared OTU counts (median ± quartiles) between individual stool samples (top), rectal 

swabs and stool samples (middle), and vaginal swabs and stool samples (bottom), 

represented in Fig. 6. Distributions represent the total number of OTUs within a single 

sample (blue) or shared OTUs between samples from the same individual (self, yellow), 

another individual (nonself, white/black), or a mother-infant dyad (red). Lowercase letters 

indicate significantly different shared OTU count distributions [one-way ANOVA, P < 

0.0001, followed by false discovery rate (FDR)–corrected Fisher’s protected least significant 

difference (PLSD) test]. Key indicates coloring for box plots in (A) or line plots in (B) to (I). 

(B to I) Shared OTU counts over time between mothers and unrelated children, mother-

infant dyads, and total OTUs in child stool samples. (C) Samples from the same child or 

unrelated children at different times (Δ months). (D) Mothers’ rectal swabs and stool 

samples from their own children (dyad) or unrelated children. (E) Mothers’ vaginal swabs 

and stool samples from unrelated children or dyads of children delivered vaginally or by 

cesarean section. (F) Vaginal and rectal swabs from the same mother or other mothers. (G) 

Stool samples from the same mother or other mothers. (H) Rectal swabs from the same 

mother or other mothers. (I) Vaginal swabs from the same mother or other mothers. (B), (D), 

and (E) compare mothers versus children, and x axes indicate the child’s age (months). For 
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(C) and (F) to (I), x axes indicate the differences in child age (Δ months) between the times 

when these samples were obtained. Lines indicate rolling average mean values, and gray 

shading is equal to 95% CI. *P < 0.0001, ANOVA, followed by FDR-corrected Fisher’s 

PLSD test.
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Table 1

Characteristics of the 43 children in the study, by systemic antibiotic exposure, delivery mode, and diet

Vaginal Delivery (N=24) Cesarean Section (N=19)

Antibiotics + Antibiotics − Antibiotics + Antibiotics −

Breast milk-dominant 10 (23%)* 10 (23%) 8 (19%) 3 (7%)

Formula-dominant 2 (5%) 2 (5%) 5 (12%) 3 (7%)

*
Values indicate number of children (% of total) categorized by delivery mode, whether they were exposed to antibiotics at any time during the 

study, and their predominant diet during the first 3 months of life.
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