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ABSTRACT Diatoms are eukaryotic microalgae that are responsible for up to 40% of
the ocean’s primary productivity. How diatoms respond to environmental perturba-
tions such as elevated carbon concentrations in the atmosphere is currently poorly
understood. We developed a transcriptional regulatory network based on various
transcriptome sequencing expression libraries for different environmental responses
to gain insight into the marine diatom’s metabolic and regulatory interactions and
provide a comprehensive framework of responses to increasing atmospheric carbon
levels. This transcriptional regulatory network was integrated with a recently pub-
lished genome-scale metabolic model of Phaeodactylum tricornutum to explore the
connectivity of the regulatory network and shared metabolites. The integrated regu-
latory and metabolic model revealed highly connected modules within carbon and
nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed
by using the recent genome-scale metabolic model with cross comparison to experi-
mental manipulations of carbon dioxide.

IMPORTANCE Using a systems biology approach, we studied the response of the
marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concen-
trations on an ocean-wide scale. By integrating an available genome-scale metabolic
model and a newly developed transcriptional regulatory network inferred from tran-
scriptome sequencing expression data, we demonstrate that carbon metabolism and
nitrogen metabolism are strongly connected and the genes involved are coregulated
in this model diatom. These tight regulatory constraints could play a major role dur-
ing the adaptation of P. tricornutum to increasing carbon levels. The transcriptional
regulatory network developed can be further used to study the effects of different
environmental perturbations on P. tricornutum’s metabolism.

KEYWORDS Phaeodactylum tricornutum, coregulated genes, genome-scale metabolic
network reconstruction, integrated network modeling, regulatory network inference

The carbon dioxide (CO2) concentration in the atmosphere is expected to double by
the end of the century because of fossil fuel burning and land use changes resulting

in an increase in dissolved carbon levels and acidification of the oceans (1).
Diatoms are photosynthetic eukaryotic microalgae that are ubiquitous in marine

and freshwater habitats (2). It is estimated that diatoms are responsible for up to 40%
of all photosynthetic carbon fixation in the sea and thus are crucial for the global
carbon cycle (3, 4). Understanding these unicellular organisms in detail to predict their
response to environmental changes such as rising CO2 levels is therefore of high
importance when evaluating the future global carbon budget.
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Here, we investigated the metabolic response of Phaeodactylum tricornutum, a
model diatom, to increasing CO2 concentrations on an ocean-wide scale. Diatoms
satisfy their carbon requirements by utilizing both CO2 and bicarbonate (HCO3), the
former through concentration-forced diffusion into the cytoplasm and the latter
through active ion transporters (5). Rising atmospheric CO2 levels will have two effects
on the surface ocean, a slightly decreased pH and a higher total dissolved inorganic
carbon (DIC) level. DIC is a combination of CO2, HCO3, and carbonate. The relative
amounts of the three DIC species are set by the pH. At modern seawater pHs, the most
dominant form of DIC is HCO3. Under bloom conditions, the pH increases, resulting in
a rising carbonate content but also a lower total DIC content. Under ocean acidification
conditions, there is a higher total DIC level but also the percentage of CO2 increases,
essentially resulting in ocean carbonation. Overall, future atmospheric increases can be
expected to facilitate higher CO2 diffusive uptake through decreased pH and active
HCO3 uptake through increased total DIC.

So far, it is not understood how diatoms’ metabolism will respond to increasing
atmospheric CO2 levels. Here, we exploited a genome-scale metabolic network recently
developed for the model diatom P. tricornutum to understand its metabolic response to
rising CO2 concentrations (6). Genome-scale metabolic network reconstructions are
based on the organism’s annotated genome and comprise information about the
metabolic reactions and the gene products by which they are catalyzed. These models
allow detailed analysis of the organism’s physiology, facilitate metabolic engineering
efforts, and enable predictions of physiological changes in response to environmental
perturbations (7, 8).

Within this study, the genome-scale metabolic network for P. tricornutum was used
to determine which metabolic subsystems are affected by increased CO2 levels. For our
simulations, we assumed a global ocean where carbon is becoming more bioavailable
while nitrate delivery to the surface of the ocean will be relatively invariant. To resemble
modern seawater, carbon can be taken up in the form of HCO3, the most dominant
form of DIC at the current seawater pH. Increased atmospheric CO2 concentrations
were simulated by mimicking the effects of ocean acidification and increasing the
boundaries of HCO3 uptake in the model while not allowing nitrate uptake rates to rise
concordantly. We combined these results with a differential gene expression analysis
and a transcriptional regulatory network (TRN) inferred from transcriptome sequencing
(RNA-Seq) data in order to gain a comprehensive understanding of the interconnection
between metabolic and regulatory mechanisms that could drive the adaptation to
increased CO2 concentrations.

RESULTS AND DISCUSSION
Integrated regulatory and metabolic model reveals highly connected modules

in carbon and nitrogen metabolism. Our previous efforts include a genome-scale
metabolic network reconstruction for P. tricornutum that allows detailed insights into its
physiology and provides a framework to analyze and predict genotype-phenotype
relationships (6). In contrast, TRNs point out connections among the environment,
genotype, and expression state and facilitate prediction of the global transcriptional
responses to environmental and genetic perturbations (9). To gain more complete
insights into the interactions between metabolic and regulatory mechanisms, a TRN for
P. tricornutum was inferred. For an overview of the interaction between the regulatory
network and the genome-scale metabolic network, see Fig. S1 in the supplemental
material.

In a first step, sets of genes that are putatively coregulated in subsets of environ-
mental conditions were identified on the basis of a large set of RNA-Seq data for diverse
environmental conditions, such as distinct CO2 or iron levels (Table 1); genomic
information; and protein-protein interaction data (see Materials and Methods). Subse-
quently, we inferred regulatory influences of transcription factors (TFs) on the coregu-
lated genes. The resulting TRN can be used to analyze how TFs induce genome-wide
transcriptional responses, i.e., activation or repression of transcription, to environmental
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perturbations. Genes that are coregulated throughout different physiological condi-
tions are likely involved in the same biological processes. In order to identify potential
biological processes that are carried out by the coregulated gene sets, a gene ontology
(GO) enrichment analysis was performed.

By using the approach described, 1,214 metabolic genes and TFs were grouped into
121 biclusters with a mean of 20 genes per cluster (see Table S1). For 118 of the clusters,
possible regulators could be predicted. On average, these 118 clusters are regulated by
10 TFs, whereas 69 clusters are regulated by more than 10 TFs. The maximal number
of TFs predicted to regulate one cluster is 22.

On the basis of the TRN (see Table S1), genes taking part in carbon and nitrogen
metabolism are very often regulated by the same TFs in P. tricornutum. To investigate
this strong correlation between carbon metabolism and nitrogen metabolism more
precisely, we performed a GO enrichment analysis and associated each significant GO
term with carbon or nitrogen metabolism. By using the subsystems given in the model,
genes associated with reactions involved in amino acid metabolism, nitrogen metab-
olism, nucleotide metabolism, or the urea cycle were categorized into nitrogen me-
tabolism. Genes associated with reactions involved in aldehyde degradation, ascorbate
metabolism, butanoate metabolism, the Calvin-Benson cycle, carbon fixation, galactose
metabolism, nucleotide sugar metabolism, oxidative phosphorylation, photosynthesis,
pentose interconversions, the pentose phosphate pathway, or pyruvate metabolism
were categorized as carbon metabolism. Genes associated with reactions involved in
the tricarboxylic acid cycle were classified as both carbon metabolism and nitrogen
metabolism. On the basis of this mapping, 48 clusters were enriched or purified in
genes involved in carbon metabolism and 40 clusters contain enriched or purified
genes taking part in nitrogen metabolism. Twenty-two clusters are enriched in genes
involved in both carbon metabolism and nitrogen metabolism. Of the 18 clusters
containing nitrogen but not carbon metabolism genes, 9 are not enriched in genes
belonging to any other subsystem, 1 is also enriched in genes involved in transport, 1
is also enriched in genes belonging to glycan metabolism, 3 are also enriched for genes
involved in cofactor metabolism, and 4 also contain enriched or purified genes involved
in lipid metabolism.

While a review of all 22 clusters enriched in genes involved in both carbon
metabolism and nitrogen metabolism is not in the scope of this publication, several

TABLE 1 Overview of RNA-Seq libraries used to infer the global regulatory network of P. tricornutum

ID Experimental conditions
No. of
samples Accession no.

GABA/DD Exponential growth, diatoms treated with two concentrations of either
2-trans-4-trans-decadienal or �-aminobutyric acid and sampled
over time

44 SAMN05925108 –SAMN05925151

CO2 Duplicate cultures at 1,000 and 150 ppm CO2 4 Table S5
CO2 dark/light Triplicate cultures at 50, 400, and 5,000 ppm CO2 under dark and light

conditions
18 SAMN05176215–SAMN05176250

N short term N-starved cells given different N sources and monitored in the very
short term

30 SAMN04488978 –SAMN04489007

Pulse-chase Duplicate culture grown on urea or nitrate and harvested in
exponential growth phase

4 SAMN05925158 –SAMN05925161

N sources Cultures grown on 880 �M NO3, 75 �M NO3, 880 �M NH4, 75 �M
NH4, 880 �M urea, and 37.5 �M urea; high-nitrogen cultures
harvested during exponential growth; low-nitrogen cultures
harvested at onset of stationary phase

6 SAMN05925152–SAMN05925157

B12 Cultures grown with or without vitamin B12 at a high or low Fe
concentration

8 SRX142057, SRX142058, SRX142055,
SRX142059, SRX142060, SRX142061,
SRX142086, SRX142087

Fe diel Cultures grown at 15.0, 30.0, or 300.0 nM total Fe and sampled over a
diel cycle

49 SAMN04461541–SAMN04461589

GSA/MSX/Rapa Experiment examining response to glufosinate, sirolimus, or
L-methionine-DL-sulfoximine

16 SAMN05925188 –SAMN05925203
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were examined for previously unmentioned transcriptional and regulatory links. Cluster
15 is enriched in genes involved in pyruvate metabolism, including a putative mito-
chondrial transporter for pyruvate, nitrogen metabolism, and amino acid metabolism.
This cluster contains the mitochondrion-localized urease, which is involved in both
anabolic nitrogen metabolism and catabolic nitrogen metabolism (10), and a glutamine
dehydrogenase. Other components include the beta-oxidation of fatty acids, phos-
phoenolpyruvate carboxylase (PEPC, a protein associated with a putative biochemical
carbon-concentrating mechanism), and lactate dehydrogenase. Almost all of the pre-
dicted proteins in this cluster are involved in carbon and nitrogen metabolism of
central and simple metabolites but are remarkably localized in multiple compartments.
In hypothetical models of the diatom biochemical carbon-concentrating mechanism,
PEPC performs the carboxylation reaction either in the mitochondria or in the periplas-
tidic space while PEPC kinase (PEPCK) is required in the mitochondria (11). PEPCK is
found in cluster 69, which is also enriched in glycolysis/gluconeogenesis, the pentose
phosphate pathway, amino acid metabolism (including a glutamine dehydrogenase
separate from that found in cluster 15), and peroxisomal beta-oxidation of lipids. All
told, clusters 15 and 69, encoding 17 and 16 predicted proteins, respectively, code for
a substantial portion of the reactions in central metabolism and share multiple metab-
olites, including ammonia, glutamine, glutamate, pyruvate, phosphoenolpyruvate, ox-
aloacetate, glycolate, and CO2. However, they exhibit different expression patterns
indicated by their clustering into different modules. Not surprisingly, the two clusters
share two predicted regulatory proteins, J49099 and J47726, that provide a tangible
link between transcriptional regulation and metabolite exchange between different
pathways and subcellular compartments. Metabolite exchange between subcellular
compartments has been shown to be important to diatom metabolism (12), though the
exact currencies and coordination are not known. Sharing of regulatory proteins by
clusters of genes that code for proteins from multiple compartments that participate in
central carbon and nitrogen metabolism provides a possible genetic mechanism for
subcellular compartment metabolite exchange.

By performing a connectivity analysis based on the clustering result obtained from
cMonkey2 (13, 14) and the P. tricornutum genome-scale model (6) (see Materials and
Methods), we could indeed show that many of the clusters share metabolites (see
Table S4). We filtered for all carbon- and/or nitrogen-enriched clusters and visualized
the connectivity of this subset of 66 clusters with the transcriptional clusters repre-
sented as nodes and the shared metabolites represented as edges (Fig. 1). The product
network consists of three separate modules, one with only two nodes, one with 20, and
one with 44. A nearly identical topology was obtained for the substrates, though the
large module was broken into two modules. The subnetwork with 20 nodes includes 4
nodes with moderate to high betweenness centrality, namely, 43, 33, 30, and 25. Cluster
43 contains both photosystems and ribulose bisphosphate carboxylase/oxygenase,
highlighting the nonsurprising centrality of photosynthesis to both metabolism and the
regulation of gene expression. Cluster 25 contains basic reactions in purine, pyrimidine,
and branched-chain amino acid metabolism. Cluster 30 contains chlorophyll biosyn-
thesis and photosynthetic electron transporter, while cluster 33 contains a mixture of
TAG biosynthesis, amino acid metabolism, and oxidative phosphorylation. More sur-
prising is the module consisting of just two nodes, 9 and 10. However, these nodes
contain a host of reactions that influence not only carbon and nitrogen metabolism but
also phosphate metabolism and transport and CO2 sensing and uptake. These two
nodes also bridge nearly every cellular compartment, including the cytoplasm, mito-
chondria, peroxisome, and chloroplast. Finally, these two nodes do share a predicted
regulator, Phatr3_44139, with a divergent regulation.

Elevated carbon conditions affect P. tricornutum’s metabolism. The genome-
scale model of P. tricornutum (6) was used to evaluate the TRN. In a first step, we
investigated the effect of rising atmospheric carbon levels on the diatom’s metabolism.
By sampling the solution space of the metabolic model (see Materials and Methods), we
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identified 175 out of 3,904 reactions showing different flux distributions at low and
high HCO3 levels. Every flux distribution describes a different state of the genome-scale
model representing a different metabolic phenotype (see reference 15 for more details
on the simulation and analysis of metabolic networks). The 175 identified reactions
belong to 28 out of the 90 subsystems that are accounted for in the metabolic network.
Of these 175 reactions, 38 were not gene associated and therefore not taken into
account in further analyses. The 137 remaining reactions with different flux patterns at
low (1.57 mM) and doubled (3.14 mM) HCO3 levels are associated with 141 genes in the
metabolic network, and most of their fluxes are elevated at high HCO3 concentrations
(three reactions, namely, ITCY_c, CMP_c, and ITPA_c, belonging to nucleotide metab-
olism are downregulated at high HCO3 concentrations). Note that we used the biomass
objective function (BOF) and the constraints previously determined experimentally (6).
The metabolic response to increasing HCO3 levels qualitatively predicts P. tricornutum’s
response to rising atmospheric CO2 levels but does not reflect quantitative changes
(15). The subsystems were further categorized into groups, e.g., carbon or lipid metab-
olism. As shown in Fig. 2, the 137 reactions belong to eight different groups (amino acid
metabolism, carbon metabolism, cofactor metabolism, energy metabolism, lipid me-
tabolism, nucleotide metabolism, pigments, and transport).

To simulate the effect of rising HCO3 levels on P. tricornutum’s metabolism, the same
constraints on nutrient uptake (except for HCO3), product secretion, and biomass
composition were used under low- and high-carbon conditions. The biomass function
accounts for all known biomass components, i.e., DNA, RNA, protein, pigments, carbo-

FIG 1 Visualization of the metabolic network connecting transcriptional clusters in P. tricornutum. Nodes are transcriptional clusters, while edges show strong
connectivity in terms of products in the genome-scale metabolic model (6).
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hydrates, membrane lipids, and the storage lipids triacylglycerols (TAGs), as well as
energetic requirements and their fractional contributions to the overall cellular bio-
mass. As depicted in Fig. 2, these are exactly the subsystems showing reactions with
higher fluxes at elevated HCO3 levels. Thus, the reaction fluxes are increased to meet
the larger demand of biomass components accounting for P. tricornutum’s increased
growth at increased HCO3 levels.

Differential expression analysis was performed to validate and complement the
genome-scale model solution space sampling results. In total, 187 differentially ex-
pressed genes were identified by comparing gene expression at high and normal CO2

concentrations. Half of the genes (93 genes) were downregulated at high CO2 concen-
trations, whereas the other half (94 genes) were upregulated. By using the P. tricornu-
tum genome-scale model, the genes were mapped to 1,323 metabolic reactions
belonging to 63 model subsystems, which were further categorized into nine groups
(amino acid metabolism, carbon metabolism, cofactor metabolism, energy metabolism,
glycan metabolism, lipid metabolism, nucleotide metabolism, pigments, and transport)
(Fig. 3). Note that the genome-scale model includes a very detailed lipid metabolism in
which each elongation and degradation step is modeled separately, although many of
these steps are catalyzed by the same gene. This fact explains the high number of
reactions mapped to the 187 differentially expressed genes. These 187 genes include
35 genes mapped to 1,147 reactions involved in lipid metabolism.

Compared to the genome-scale model solution space sampling results, where
increased reaction fluxes were identified at higher carbon levels (except for three
reactions, see Fig. 2), gene expression analysis identified specific reactions that were up-
and downregulated. Additionally, RNA-Seq differential expression analysis identified
reactions involved in glycan metabolism as being downregulated at high CO2 concen-
trations, whereas this group does not show up in the sampling results. Although
N-glycan biosynthesis is included in the genome-scale model, glycans are not ac-
counted for in the biomass reaction. Instead, a demand reaction was included in the
model [DM_m2masn_c, demand for (GlcNAc)2(Man)3(Asn)1, KEGG glycan ID G10652]

FIG 2 Percentages of reactions showing different fluxes at doubled HCO3 levels per group as identified
by the solution space sampling of the genome-scale metabolic model of P. tricornutum. Pigment
metabolism contains most of the reactions with different fluxes under the two conditions, i.e., 43% of the
reactions in this group were upregulated at high HCO3 concentrations, followed by nucleotide metab-
olism (19% in total; 17% upregulated and 2% downregulated) and amino acid metabolism (10%). Three
reactions, namely, ITCY_c, CMP_c, and ITPA_c, belonging to nucleotide metabolism were downregulated
at high HCO3 concentrations.
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to account for the missing knowledge of the fraction of glycans present in the biomass.
This demand reaction was blocked prior to the solution space sampling and thus
cannot be accounted for in the sampling result.

The sampling and differential expression analysis results also differ in the percent-
age of differentially expressed reactions per group. For example, about 10% of all
reactions in pigment metabolism are differentially expressed according to RNA-Seq
data, whereas the sampling results indicate that more than 40% of the reactions show
different flux patterns. Although the same groups (except for glycan metabolism) are
identified by the sampling and differential expression analysis, the reactions within
these groups are different between the two analyses, as shown in Fig. 4.

The discrepancy in the metabolic response to rising CO2 levels, as observed between
the metabolic model predictions and the differential expression analysis, might be
explained by the different types of data exploited for the two analyses. The differential
expression analysis is based on RNA-Seq data, whereas the metabolic model predic-
tions are based on simulated reaction fluxes and thus protein activities. The differential
expression analysis takes into account regulation by TFs but not posttranscriptional and
-translational modifications, as well as allosteric regulation on the enzyme level. In
contrast, the metabolic model does not include any regulatory effects and the pre-
dicted flux distributions are based on the mature enzyme activities, i.e., after modifi-
cations. However, random sampling of the metabolic model’s solution space identifies
all possible flux distributions and, combined with further physiological data such as
transcriptomics, more complete insights into the organism’s metabolism can be gained.

Genome-scale model predicts effects of increasing carbon levels on nitrogen
metabolism. The tight connection between carbon metabolism and nitrogen metab-
olism observed in the TRN is also represented in the genome-scale metabolic model of
P. tricornutum (6). We investigated P. tricornutum’s behavior at different HCO3 levels
simulating three different scenarios (Fig. 5). Scenario 1 implements a stepwise increase
in the available HCO3 from 1 to 10 mM while nitrate uptake is constant. In scenario 2,
HCO3 uptake increases stepwise and the nitrate supply is allowed to increase when the
HCO3 level exceeds 5 mM. Scenario 3 includes demand reactions to mimic carbon and

FIG 3 Percentages of reactions differentially expressed at high versus low CO2 concentrations per group.
Energy metabolism contains most of the differentially expressed reactions; i.e., 40.9% of the reactions in
this group were upregulated and 6.8% were downregulated at high CO2 concentrations, followed by
lipid and cofactor metabolism.
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energy storage in the form of chrysolaminarin and TAG. The available HCO3 level
increases stepwise, and nitrate uptake is kept constant.

According to the predictions of scenario 1 with stepwise increasing HCO3 uptake
and a constant nitrate (NO3) supply, NO3 becomes limiting and is not stored internally
with increasing HCO3 concentrations, as shown in Fig. 5A. Instead, under these condi-
tions, the available NO3 is used for biomass production to enable maximal carbon
fixation into biomass. Consequently, biomass production stagnates because of limiting
NO3 availability. Since HCO3 further increases and the cell is forced to take it up,
3-(dimethylsulfonio)propanoate (DMSP) is secreted, which is the only reaction allowing
the release of excess carbon.

Figure 5B demonstrates that the nitrogen supply, e.g., in the form of NO3, is indeed
the limiting factor constraining biomass production using scenario 2 with stepwise
increasing HCO3 uptake and allowing the NO3 supply to increase by 0.1 mM with each
carbon uptake increase when the HCO3 uptake is �5.5 mM. The available NO3 is
incorporated into biomass for HCO3 levels below 5 mM. The supplied rising nitrogen is
sufficient to enable nitrogen storage and fixation of all presented carbon into biomass;
thus, no DMSP is secreted.

In scenario 1, excess carbon was released in the form of DMSP. This reaction
(DM_dmsp_c) was introduced into the model because of a knowledge gap in DMSP

FIG 4 Comparison of reactions with different flux patterns. Reactions with different flux patterns (either
up- or downregulated) at low and high carbon concentrations identified in the genome-scale metabolic
model solution space sampling (blue) and the differential expression (DE, yellow) analysis are compared
for each subsystem.
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metabolism and to prevent its accumulation (6). In the third scenario, this demand
reaction was replaced with reactions representing carbon and energy storage. Diatoms
store excess carbon and energy in the form of chrysolaminarin, a �-1,3-glucose mole-
cule representing the diatom storage glycan, and the storage lipid TAG. In scenario 3,
carbon storage was enabled through the implementation of demand reactions for
chrysolaminarin and TAG (16:1Δ9/16:1Δ9/16:0) (6). The simulation results are shown in
Fig. 5C. Since NO3 uptake is constrained and constant throughout the simulation,
nitrogen storage decreases with increasing HCO3 concentrations. At an HCO3 uptake of
5 mM, the biomass production increase is slowed down before it finally stagnates when
the HCO3 uptake reaches 5.5 mM. NO3 storage shows a similar pattern and vanishes at
HCO3 levels higher than 5.5 mM. With HCO3 uptake higher than 5.5 mM, excess carbon
is stored as TAG, which increases with HCO3. In this scenario, excess carbon is not stored
as chrysolaminarin.

Using the genome-scale metabolic network, we demonstrated that biomass pro-
duction increases with elevating HCO3 levels until P. tricornutum encounters nitrogen
limitation. A strong connection between carbon metabolism and nitrogen metabolism
was also observed in the TRN, where we showed that genes involved in nitrogen and

FIG 5 Model predictions at various HCO3 conditions. With increasing HCO3 concentrations, NO3 is limiting and is completely required for biomass
production; subsequently, NO3 storage declines. Excess carbon is released as DMSP, which is the only reaction in the model allowing carbon secretion
(A). Panel B shows biomass production and NO3 storage when NO3 uptake is increased linearly shortly before NO3 becomes limiting (at an HCO3 uptake
level of 5 mM). Simulation results when carbon can be stored as chrysolaminarin or TAGs are depicted in panel C. Here, NO3 uptake is constrained and
constant as in panel A. The model predicts that excess carbon is stored in the form of TAGs. (D) Effect of the carbon/nitrogen (C/N) ratio on biomass.
Within this simulation, carbon uptake was varied from 0 to 10 mM and nitrogen uptake was kept constant at 0.535 mM. Biomass production increases
at C/N ratios under 10.28 and stagnates at ratios over 10.28 because of limiting nitrogen availability. Note that for all of the simulations shown, the
available CO2 was forced to be taken up.
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carbon metabolism are often coregulated. It should be noted that temperature, nutri-
ent deprivation, and other factors are also known to influence the growth of P. tricor-
nutum but were not taken into account in this study. Our work describes for the first
time which genes are coexpressed and coregulated upon different environmental
perturbations and provides insight into the effect the limitation of a nutrient such as
carbon or nitrogen has on the phenotype. The integration of the regulatory network
developed here and the published metabolic model offers new insights into the model
diatom P. tricornutum’s metabolic and regulatory interactions and provides a compre-
hensive framework of responses to increasing atmospheric carbon levels.

MATERIALS AND METHODS
RNA-Seq preparation and differential expression analysis. Raw read counts were read into R

version 3.2.3 (https://www.r-project.org), scaled by using DESeq scaling factors (16), log2 transformed (a
constant �1 was added prior to log2 transformation), and adjusted for batch effects introduced by the
utilization of different sampling platforms with the ComBat software (17). An overview of the
transcriptome-wide RNA-Seq expression data exploited for the diverse environmental responses used in
this study is shown in Table 1.

To filter the transcriptomic data set for metabolic genes, the genome-scale model of P. tricornutum was
used (6). Known TFs were translated into Phatr3 gene IDs (http://protists.ensembl.org/Phaeodactylum
_tricornutum/Info/Index) by using an in-house mapping table. The expression profiles of 196 known TFs
in P. tricornutum (18) were added to the filtered data set, which comprised 1,214 genes and 179
experimental samples in total.

Differential expression analysis at normal (400 ppm) and high (5,000 ppm) CO2 levels was performed
with the R/Bioconductor package limma (19). The Benjamini-Hochberg method was chosen to adjust the
P value to a false-discovery rate of 5%.

Detection of coregulated gene modules and their regulatory influences. The cMonkey2 algo-
rithm discovers coregulated modules in transcriptome profiles by integrating additional information,
such as the genome sequence, protein-protein interactions, and the de novo detection of cis-regulatory
DNA sequence motifs, and aggregates it into a combined score to improve clustering (13, 14).

Since P. tricornutum is not part of the RSAT database from which cMonkey2 retrieves all of its
organism information, the input files were assembled before running cMonkey2. The genome annotation
of P. tricornutum version 3 (Phatr3) was obtained from Ensembl Protist (http://protists.ensembl.org/
Phaeodactylum_tricornutum/Info/Index). Chloroplastic and mitochondrial genomic information was ob-
tained from NCBI (GenBank accession no. NC_008588 and HQ840789, respectively) (20, 21). The func-
tional annotation was gathered from the genome-scale model of P. tricornutum (6). Protein-protein
interactions were obtained from the STRING database version 10 (22) and replaced with the correspond-
ing Phatr3 gene IDs with an in-house Phatr2-to-Phatr3 gene ID mapping table. The cMonkey2 algorithm
was run for 2,000 iterations and generated 121 biclusters with a mean of 20 genes per cluster.

The Inferelator algorithm was used to infer the regulatory influences of 196 TFs influencing the
expression of the coregulated modules discovered by cMonkey2 (9).

GO enrichment analysis. The Python tool goatools version 0.5.9 was used to find over- and
underrepresented GO terms in the 121 coregulated modules generated on the basis of Fisher’s exact test
(23). On the basis of the gene-to-subsystem assignment in the metabolic network of P. tricornutum (6),
each gene was assigned a GO term. The option to propagate counts to all of the parents of a GO term
was disabled. To correct for multiple-hypothesis testing, a false-discovery rate correction was applied. We
found significant over- and underrepresentation of 59 GO terms in 112 out of the 121 biclusters.

Connectivity analysis. On the basis of the clustering result and the P. tricornutum genome-scale
model (6), a cluster-gene reaction product association list was compiled. On the basis of this list, for each
cluster, the substrates and products were extracted. In the case of reversible reactions, the substrates can
also be products and vice versa. All currency metabolites, i.e., water, ATP, ADP, AMP, NAD(P)�, NAD(P)H,
protons, oxygen, inorganic phosphate, pyrophosphate, and CO2, were removed from the cluster-
substrate-product list.

Highly connected clusters were identified on the basis of substrates or products. The connectivity of
two clusters was defined as the number of common substrates (or products) divided by the total number
of substrates (or products) in both clusters. Here, two clusters are strongly connected if their connectivity
is �0.9.

Modeling simulations. Modeling simulations were performed with the Gurobi Optimizer version
5.6.3 (Gurobi Optimization Inc., Houston, TX) solver in MatLab (the MathWorks Inc., Natick, MA) with the
COBRA Toolbox (24). Nutrient uptake (Table 2) and the BOF were set according to experimental data as
described in reference 6.

Sampling of solution space. To uniformly sample the solution space of the P. tricornutum metabolic
network iLB1027_lipid (6), optGpSampler (25) for MatLab (the MathWorks Inc., Natick, MA) with Gurobi
Optimizer version 6.5.0 (Gurobi Optimization Inc., Houston, TX) was used. Two different carbon condi-
tions were sampled, low and high. HCO3 uptake was set to 1.57 mM and doubled to 3.14 mM for the
simulations of high-carbon conditions. All other constraints were identical between the two sampled
conditions (Table 2). Before sampling, all of the reactions and metabolites that could not carry flux under
the simulated conditions were removed from the models. To constrain the genome-scale model more by
knocking out reactions associated with nonexpressed genes, our expression data were used to obtain
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genes not expressed under normal (400 ppm)- and high (5,000 ppm)-CO2 conditions. Corresponding
reactions and their gene-reaction associations were extracted from the genome-scale model. However,
this analysis did not result in any reaction knockout. The reduced metabolic model contains 3,904
reactions and 1,734 metabolites. Both networks, representing low- and high-carbon conditions, were
sampled by using 50,000 sample points with a step count of 7,808, which is double the number of
reactions in the model.

To determine if the flux distributions at low and high HCO3 levels are significantly different, the
minimal distance between the histograms was determined for each reaction in the metabolic model
by randomly permuting the flux vectors and subtracting them from each other. To get a represen-
tative distance, this procedure was repeated 100 times, yielding 100 distance vectors for each
histogram comparison. The mean of the minimum number of positive and negative entries in each
distance vector was used to calculate the P value for the two-sided test. To correct for multiple-
hypothesis testing, a false-discovery rate correction was applied, setting the significance threshold
at 0.05.

SUPPLEMENTAL MATERIAL
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