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Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural
network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and
realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional
(3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem
when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN
is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based
on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is
proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles
automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally,
some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed

BINN based method can deal with the real-time path planning problem for AUV efficiently.

1. Introduction

Autonomous underwater vehicle (AUV) has attracted much
attention in recent years, due to its application in both
commercial and military fields [1, 2]. AUVs can be used
for searching missing airplanes and ships wreckage, catching
underwater evaders, maritime rescuing, mine countermea-
sures, antisubmarine warfare, and so on [3-5]. In these appli-
cations of AUVs, many issues should be efficiently solved,
such as localization, path planning, and target detection [6-
8]. Among these issues, real-time path planning is very basic
and necessary when a single AUV or a multi-AUV system
executes a task in complex underwater environments [9-11].
The task of real-time path planning in this study is to find
an optimal or suboptimal collision-free path from the initial
position to the target location in an underwater environment
quickly and efficiently, which is a difficult and challenging
task because of the complexity of underwater environments.

A lot of research work has been done on the path
planning problem for AUVs. For example, Pétres et al.
[12] presented a novel fast marching based approach which
extracted a continuous path from the discrete environment
representation and took the underwater current into account.
Zhu et al. [13] applied the Dempster-Shafer inference rule
to fuse the readings of the ultrasonic sensor into a map and
combined the map and bioinspired neural network to plan a
short and smooth path for an AUV. Yilmaz et al. [14] defined
the path planning problem as an optimization framework
and presented a mixed integer linear programming based
method. Those methods introduced above are all tested in
two-dimensional (2D) environments, which does not meet
the actual requirement of AUV path planning.

Recently, more and more researchers focus on the path
planning problem in three-dimensional (3D) underwater
environments. Hu et al. [15] developed a vision-based
autonomous robotic fish which is capable of 3D locomotion,
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by using a control law with an attractive force toward a target
and a repulsive force against obstacles. Aghababa [16] applied
five evolutionary algorithms to solve the 3D path planning
problem, including genetic algorithm, memetic algorithm,
particle swarm optimization, ant colony optimization, and
shuffled frog leaping algorithm. Zhu et al. [17] proposed an
improved self-organizing map and velocity synthesis method
for multi-AUV path planning in a 3D underwater workspace.
Those methods above have their own advantages; however,
there are some shortcomings that should be studied further.
For example, the effects of the vision-based methods are not
very good in the underwater environment; the computing of
some evolution based methods is complex; and the methods
based on the assumption that the underwater environments
are completely known are not suitable for the actual situation.
To deal with those problems introduced above, some
improved and novel methods have been proposed for the
real-time path planning of AUVs. For example, Yuan and Qu
[18] designed an optimal real-time collision-free trajectory
for AUV in a 3D unknown underwater space. In their algo-
rithm, the 3D motion planning problem was reduced to a 2D
problem which can greatly reduce the computational efforts.
Acosta et al. [19] proposed a knowledge-based approach for
an AUV path planner development, by developing a real-time
expert system. Saravanakumar and Asokan [20] presented
a multipoint potential field method, and a simple strategy
was used to avoid the local minima in 3D space. Because
of the complexity of real-time path planning for AUV in
3D underwater environments, the traditional methods have
some technological bottlenecks. For example, the fuzzy logic
based methods cannot find all the fuzzy rules easily and the
general neural network based methods often need a learning
process, which are not suitable for real-time path planning.
Thus, more and more researchers are focusing on the
bioinspired methods [21, 22]. Bioinspired intelligent methods
are of a new type with more lifelike working mechanisms
to an individual or a group of organisms, which usually
have higher efficiency than the traditional artificial intelli-
gent algorithms [23]. Among these bioinspired intelligent
methods, a bioinspired neural network (BINN) has been
developed to deal with the real-time path planning problem
[24-26]. This BINN is inspired from the membrane model
for a biological neural system [27] and the shunting model
[28]. It is topologically organized which does not need
any learning process. Therefore, it can work in real-time;
namely, the robot motion planner responds immediately to
the dynamic environment. Furthermore, this BINN model is
not sensitive to any irrelevant obstacles or sensor noise for its
work mechanism [29]. However, this bioinspired intelligent
method has some problems in nature, such as the complex
computation and the inefficient use of the target information.
To deal with these problems, an improved BINN based real-
time path planning method is proposed for AUVs in this
paper. In the proposed approach, the target information is
used directly in the activities of neurons to accelerate the
transfer process of the target information. In addition, to
reduce the size of the BINN, a dynamic model is proposed,
where the AUV is regarded as the core of BINN and the
size of BINN is based on the detection range of sensors.
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At last, some simulation experiments were conducted, and
the experimental results show the efficiency of the proposed
approach.

The main contributions of this paper are summarized as
follows. (1) The BINN model is dynamic, where the BINN
will be reconstructed with the movement of the AUV. Then
the working environment of AUV can be very big, which will
not affect the computation of the BINN based real-time path
planning method. (2) The effect of the target information is
enhanced, by introducing a target attractor concept, which
can improve the computing efficiency. (3) The real-time
performance is improved, using a virtual target concept
combined with the proposed dynamic BINN model, which
can reduce the negative effect of the small sensor detection
range for big-size obstacles. (4) Some simulation experiments
were conducted in 3D underwater environments, where the
real underwater environments were simulated such as the
complex seabed and dynamic obstacles in the ocean.

This paper is organized as follows. Section 2 presents the
improved dynamic bioinspired neural network based path
planning approach for AUVs. The simulation experiments
for various situations are given in Section 3. In Section 4,
some performances of the proposed approach are discussed
in detail. Finally, conclusion is given in Section 5.

2. Proposed Approach

In this paper, the real-time path planning problem for AUV
in a 3D unknown underwater environment was studied. In
the studied path planning task, the AUVs have no knowledge
about the environment, except the location of the target.
The AUVs are equipped with various sensors to detect the
environment in a limited range. So, in a way, the working
environment is also unknown to the AUVs. In this study, the
underwater environment model is presented by a discrete 3D
grid map [30, 31], which is labeled as Q. Then the whole work
space of the AUV is discretized to cells with the same size,
and the environment can be defined as a set of X * Y % Z
map. The cell (denoted by p) will be marked as an obstacle if
it is occupied; otherwise, it will be marked as a free one. The
task of the real-time path planning is to generate an optimal
or suboptimal path for the AUV quickly and safely, from
the start location to the target location with the movement
of the AUV. To complete this task efficiently, an improved
BINN based method is proposed. The main reason to use this
BINN is that it does not need a learning process which is very
suitable for real-time path planning. The details of the general
process of the BINN based robot path planning method can
be seen in some related literatures, such as [24, 32, 33]; here
only the improvements of the proposed BINN based method
are introduced in detail as follows.

2.1. Dynamic BINN Model. In the general BINN model, each
neuron (denoted by ¢g) is corresponded to a discrete point
of the environment; namely, the whole neural network will
cover the whole environment. So the computing time and
energy cost will be very large when the working environment
is very big. When the BINN model is used for an AUV
working in a 3D environment, the number of neurons will be
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F1GURE 1: The 3D model of the proposed BINN.

very big and the computing efficiency of the neural network
will be reduced. To deal with this problem, a dynamic model
is proposed, where the AUV is regarded as the core of the
BINN model and the neural network is reconstructed with
the movement of the AUV. A schematic map of this dynamic
model is shown in Figure 1. The size of the BINN model is set
as the maximum detection radius R of the onboard sensors;
namely, the distance from every neuron g; in the proposed
dynamic BINN model to the core of the BINN g, (the neuron
at the position of the AUV) should be satisfied by

0<D(g5q) <R )

where D(:) is the function to calculate the distance of two
positions in the 3D space:

D (Pi’pj) = \/(xi - xj)2 + ()’i - )’j)2 + (z,- - ZJ')Z’ @

where (x;, ¥;, z;) and (x}, y;, z;) are the coordinates of the ith
and the jth positions, respectively.

Remark 1. To easily realize the proposed dynamic BINN
based path planning method, the discretized dimension
of the environment is set the same as the BINN neural
network in this study (see Figure 1). To reduce the number of
the neurons, the discretized dimension of the environment
should be set as big as possible; however, if the discretized
dimension of the environment is too big, the generated
path cannot be smooth enough. Thus, the distance I of two
neighboring neurons is set the same as one step of the AUV;
namely,

I=v,.S, (3)

where V, is the velocity of the AUV and S, is one unit of the
time.

To further introduce this dynamic BINN model, an
example of this neural network working in a 2D environment
is shown in Figure 2. From Figure 2, we can find that the
size of dynamic BINN model is much smaller than the
environment, and no matter how large the environment is,
the size of the neuron network is fixed and small. With the
movement of the AUV, there is only a small part of neurons
needed to update their activities at one time, which can
reduce the computation cost and energy, especially when the
environment is large.

2.2. Virtual Target Selection. In the real-time path planning
task, the location of the target is known to the AUV at the
beginning, but the environment is dynamic and unknown. So
the AUV should detect the environment and generate a path
in real-time. Because the working environment is often very
big, it is impossible for a method to calculate a path for an
AUV considering the whole environment. Thus, a dynamic
BINN model is proposed; however, the target information
cannot be used directly into this dynamic model because the
detection range of the AUV’s onboard sensor is limited and
the environment is unknown. The path will be repeated if
there are big-size obstacles (whose size is bigger than the
sensor’s detection range) on the planned route, because AUV
does not know which directions should be used based on the
general path planning method. To deal with these problems,
a virtual target concept is introduced into the proposed path
planning method.

The basic principles to select the virtual target are summa-
rized as follows. (1) The virtual target must be located on the
boundary of the dynamic BINN model. (2) The virtual target
should be close to the real target as much as possible, which
can make the generated path short to the greatest extent. (3)
The virtual target should be accessible by the AUV based
on the current BINN. (4) There are not any obstacles in the
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FIGURE 2: Dynamic working mechanism of the proposed BINN in a 2D space: (a) in the real working environment; (b) in the grid map of

environment.

forward direction from AUV to the virtual target. The virtual
target is selected based on the following concrete rules:

Py
=1{p. | Vpx € H, D(p, p,) <D (pipo)> P € HY,

where p, and p, are the cells at the positions of the virtual
target and the real target, respectively; p; denotes a cell of the
grid cell set; p,, is the nearest cell to the real target; and H is a
set of grid cells which should be satisfied by

H={p | F(px) =0n0<D(pp,) <R

N O (pys P> o) = 0}

where p, is the cell at the position of AUV; F(:) is a function
to judge whether the cell is occupied by obstacles, where 0
means free cell and 1 means occupied by an obstacle; and O(-)
is a function to judge whether there are any obstacles in the
forward direction from AUV to the virtual target.

There are different conditions in the virtual target selec-
tion. To illustrate the virtual target selection rules clearly, one
example of these conditions is shown in Figure 3 by a 2D
environment. For example, in Figure 3(a), there is nothing
in the detection range of the AUV; then the neuron closest
to the target is selected as the virtual target. In the situation
of Figure 3(c), if the virtual target is selected only according
to the distance from the neuron to the real target, the path
will become repeated. Therefore, the history information of
environment should be used. Namely, the neuron which is
free and closest to the real target and satisfies the demand that
there are no obstacles in the line between this neuron and the
real target will be selected as the virtual target.

(4)

©)

Remark 2. 'The path generated by the proposed method based
on the proposed virtual target selection method may not be
the best one (see Figure 3(d)), but it is the optimal path for
the AUV in the unknown environment, because the detection
range of the AUV is limited.

The pseudo-code of the working process of the virtual
target selection in this paper is summarized in Algorithm 1.

2.3. Target Attractor. After the dynamic model is constructed
and the virtual target is selected, a path from the current
position of AUV to the virtual target can be generated based
on the shunting model [24, 34]:

2o Ax -

ar (D +x;) [I;]

(6)

+(B- >< +Zw1,[11>

where x; is the neural activity of the ith neuron; A, B, and
D are nonnegative constants representing the passive rate
and the upper and lower bounds of the neuron activity
respectively; k is the number of neural connections of the
ith neuron to its neighboring neurons within the receptive
field. In the dynamic 3D BINN model, there are at least
26 neighbors of one neuron (see Figure 1); w; is the lateral
connection weight from the ith neuron to the jth neuron,
which is a function of the distance (see [24] for details); and
[I,]" and [I;]” represent the excitatory and inhibitory inputs
to the neuron, where the target and the surrounding positive
neurons are the excitatory input and the obstacles mean the
inhibitory input. Function [x]" is a linear-above-threshold
function defined as [x]* = max{x, 0}, and [x]” is defined as
[x]” = max{-x, 0}.

With the activity updating continually, the target globally
attracts the whole state space of the BINN and the obstacle
always keeps its corresponding neuron activity in a very low
level. The AUV always pick the best neighboring neuron with
the biggest activity as the next position. The selection rule is
as follows:

g, = x ,k} ,

i=1,2,... )

5, = max{x;
where x; is the activity of all the neighboring neurons; g,
is the location of the neuron, with the maximum activity in
these neurons. As shown in the activity updating equation
(6), the target information will be transferred to the position
of AUV by the activity of the neurons; then a path with
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FIGURE 3: Schematic diagram of virtual target selection.

Target

FIGURE 4: The target attractor concept in the shunting equation.

rising activity value will be established. But by this way, the
computing efficiency of activity will be very low. To accelerate
the target information transfer speed in the neural network,

a concept of target attractor is introduced and the general
shunting model is modified by
dx

i

= —Ax, - (D+x) [I] ®)

k
+ (B - xi) [Ii]+ + zwij [xj]+ + fj COS@i S
j

where &; cos 0; is the proposed target attractor. &; is the weight
of the excitatory connection from g, to g;, and g, represents
the neuron on the position of the AUV. Then the target
attractor is defined as

§ = L’ €)
|9 - i

where f3 is a positive constant no more than 1 and |g, — ¢!
represents the Euclidean distance between g, and g;; 0; is an
angle between two lines (one is from ¢, to g;, and the other
is from g, to the target; see Figure 4), which is a variable
within [0,7] in this study. From the overall view of all the
surrounding neurons of g,, we can see that if a neuron is
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(a) Pa= [xa, ywza]’ and p, = [.XO, yo’zo];

% Get the current position of the AUV (p,) and the target (p,), respectively.

(b) P, = [xp Yo 2,)
% Initialize the virtual target position (p,).
(©) Dy =1pa = Pols
% Calculate the distance between the AUV and the target.
(d) IfD,, <R, then

% where R is the detection range of the sensors;

P, = P.» and go to step (g);

End

(e) MinDis=R+D

ao’

% where Min_Dis is the minimum distance from the target to the neurons;

(f) Fori=1:num_x
For j = I: num_y
Fork = 1: num_z
Pu =[x ) 2]
% where p,, is the position of current neuron;

If |p, — p,| < Min_Dis && O(P,, P,, P,) == 0, then

Min_Dis = |p, — p,l,and p, = p,;
End
End
End
End

% where O(A, V, O) is a function to judge whether there are any obstacles in the forward direction from AUV to the virtual target.

(g) Return.

ALGoriTHM L: Pseudo-code of virtual target selection algorithm.

closer to the target, the angle 6, is smaller and the value of
|9, — ;] is lower.

In the improved shunting equation, the excitatory inputs
include [I,]%, z;’;l w;i[x;]" and & cos6;. Here, the target
is the most critical factor, which will affect the activity
distribution in two ways. In one way, the target globally
influences the whole state space directly because it attracts
the AUV wherever the AUV is by the term & cos6;. On
the other way, the positive neural activities derived from
the target neuron propagate to the whole space by the term
Y1 wylx;1". Thus, the newly added term speeds up the
neuron activity convergence rate, and on the other hand, by
establishing direct relation between the AUV and the target,
the proposed method can make the path shorter because of
the straightforward attraction from the AUV to the target
and will not conflict with the obstacles for its weight is much
smaller than the weights of obstacles.

The work flow of the whole proposed approach is sum-
marized as follows.

(1) The underwater model is established at first, and the
AUV makes sure regarding its own position and the target
position.

(2) As the AUV moves, the sensor detection always
operates to distinguish the obstacle or clear space in its range.

(3) The neural network and the virtual target change
dynamically, and the dynamic activity landscape of the neural
network is updated by (8).

(4) When the target is within the range of the AUV, the
real target position will replace the virtual target.

TABLE 1: Parameters of the proposed BINN model.

Parameter Value Remark

A 15 The passive decay rate of the neural activity
B 1 The upper bound of the neural network

D 1 The lower bound of the neural network

B 1 The weight of direct attraction from the target

(5) When the AUV gets the target position, the task is
successfully achieved.

3. Simulation Experiments

To prove the effectiveness of the proposed approach for real-
time path planning in 3D unknown underwater environ-
ments, various simulation experiments were conducted at
the platform of MATLAB. When the AUV is working in
the water, there are two main conditions: one condition is
that the target is floating in the middle of the water and the
other is that the target is on the seabed. So both the two
conditions were simulated with different cases in this paper,
including that there were some moving obstacles in the water.
In addition, two experiments were conducted considering
the cases having more challenging tasks. In order to easily
realize the simulation experiments, the AUV was assumed
as a point without any shape, and the signal gain and noise
modulation were not considered in this study. The parameters
in all the experiments are the same and listed in Tables 1 and 2.
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FIGURE 5: The results of the path planning experiment in static environment: (a) Step = 0, View = (=24, 22°); (b) Step = 28, View = (-40°,

26°); (c) Step = 59, View = (=35, 26"); (d) Step = 100, View = (-32°, 26").

The AUV is denoted by blue solid circles and the target is
represented by red triangle. To make the generated path of the
experiments easy to understand, the path planning process in
different stages will be shown in different points of view. In
this paper, the view angle is denoted by

View = (az,el), (10)

where az means azimuth and el means elevation of the 3D
experimental results.

To test the performance of the proposed path planning
method for AUV, these experiments were conducted where
the target was floating in the middle of water. In the water,
there are some obstacles, such as the relative static obstacles
(for example, the floating garbage and shipwreck) and the
moving obstacles (for example, fish and other AUVs). Thus,
two different experiments were conducted.

3.1.1. In Static Environment. To demonstrate the basic per-
formance of the proposed approach, this experiment was
conducted, where the environment was static and full of

TABLE 2: Parameters of the experimental settings.

Parameter Value Remark

X 100 m The length of the environment model
Y 100 m The weight of the environment model
zZ 70 m The height of the environment model
R 10 m The detection range of the sensors
V., 1m/s The velocity of the AUV

|3 0.5m/s The velocity of the dynamic obstacles

obstacles with various sizes (see Figure 5(a)). The initial
position of AUV and the target are (87,87,65) and (15,15,5),
respectively. The real-time path planning results of this
experiment are shown in Figures 5(b) to 5(d). The dynamic
activity landscapes of three profiles from Y -axis are shown in
Figure 6.

The results in Figure 5 show that the proposed approach
can find a relative smooth path for the AUV to the target in
the middle of the water. The AUV can avoid the obstacles
automatically based on the generated path. At the first time,
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FIGURE 6: The dynamic activity landscapes of three profiles from y-axis during the experiment in static environment: (a) Step =10, Y = 67;

(b) Step =50, Y = 31; (c) Step =100, Y = 15.

the AUV knows nothing about the obstacles, so it goes
straight to the target position until it detects the obstacle
O,; then the AUV successfully avoids the obstacle and goes
straight to the target continually (see Figure 5(b)). With the
movement of the AUV, the proposed BINN based method can
generate an appropriate virtual target for the AUV, which can
make the AUV go to the target in an optimal and safe path
(see Figures 5(c) and 5(d)). The results in Figure 6 show that
the neural network can move with the AUV, and the neural
activity is largest at the position of the virtual and real target
but smallest at that of obstacles.

3.1.2. In Dynamic Environment. To test the performance
of the proposed approach in dynamic environments, this
experiment was conducted, where the initial environment
was the same as that of the static experiment (see Figure 7(a)),
expect that the obstacles O; and O, would move randomly
while the AUV was moving towards the target. Compared to
the environment in Figure 5(a), the obstacle O, was moving
to block the way of AUV to the target, but the obstacle O,
was moving away from the path of AUV. The path planning
results in the dynamic environment are shown in Figures 7(b)
to 7(d).

The results in Figure 7 show that the proposed dynamic
BINN based path planning method can generate the path
in real-time. The main reason is that the proposed BINN
model can move with the movements of the AUV, so if the
AUV detects an obstacle moving into its detection range, the
path will be replanned immediately (see Figure 7(b)). This
characteristic is very important for AUV path planning in
the dynamic underwater environment. When the obstacle
goes out of the detection range, the AUV can go back to the
optimal path again, which can keep the whole path optimal
and safe for the AUV (see Figure 7(d)).

3.2. The Target Is Located at the Seabed. In the AUV path
planning task, sometimes the target may be at the seabed.
The seabed environment was very different from that of the
middle of water. There are some big underwater mountains
or deep valleys, which will make the path planning more
difficult when the target is located in the seabed. To test
the performance of the proposed method in these situations,
some experiments were conducted.

3.2.1. Behind Underwater Mountain. In this experiment, the
target was located on a big underwater mountain, and the
AUV was in front of this mountain. The environment of this
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FIGURE 7: The results of the path planning experiment in dynamic environment: (a) Step = 0, View = (—49°, 30°); (b) Step = 32, View = (—45",
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experiment is shown in Figure 8(a), where the positions of the
AUV and the target are (10,25,5) and (65,97,20), respectively.
The path planning results in this experiment are shown in
Figures 8(b) to 8(d).

The results in Figure 8 show that the AUV still can find
a path to the target efficiently, when the target is located
behind an underwater mountain that is bigger than the
detection range of the sensors. The AUV can go directly to the
mountain, behind which the target is located. When the AUV
detects that there is a very big obstacle, the adaptive virtual
target is calculated, which makes the AUV move around the
mountain successfully (see Figure 8(b)). The final path for
AUV in this experiment shows that the proposed approach
can deal with the path planning of big obstacles effectively
(see Figure 8(d)).

3.2.2. In Deep Underwater Valley. When the target is located
in a deep underwater valley, the path planning task will
become very difficult. To further test the performance of
the proposed approach in this condition, an experiment was
conducted, where the initial positions of the AUV and target

are shown in Figure 9(a). The positions of the AUV and
the target are (5,23,15) and (85,50,4), respectively. The path
planning results in this experiment are shown in Figures 9(b)
to 9(d).

The results in this experiment show that the proposed
approach can generate a path for the AUV from the start
position to the target staying in a valley surrounded by
highlands without collision with the hills (see Figure 9(b)).

3.3. The Tasks Are More Challenging. To further test the
effectiveness of the proposed approach in some challenging
tasks, two experiments were conducted where the target was
dynamic, or there was an underwater cave between the AUV
and the target.

3.3.1. The Target Is Dynamic. To illustrate the performance of
the proposed approach in the real-time path planning where
the target position will change because of the ocean current or
other reasons [35], an experiment was conducted, where the
environment was the same as the experiment in Section 3.2.1
(see Figure 8(a)). All the parameters and assumptions of
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this experiment were the same as those in Section 3.2.1,
except that the target would randomly move at a relative low
speed (which was set as V, = 0.3m/s in this study). The
initial positions of the AUV and the target are (50,5,30) and
(50,60,8), respectively, which is shown in Figure 10(a). The
results of this experiment are shown in Figures 10(b) to 10(d).
With the movements of the target, the AUV continuously
adjusts its destination and its virtual target (see Figure 10(c)).
Finally, the AUV catches the target at the position (60,95,45)
shown in Figure 10(d). The results of this experiments show
that the proposed approach can regenerate a path for AUV
automatically when the position of target changes, which is a
very important performance for the path planning of AUV in

the sea.

3.3.2. There Is an Underwater Cave between the AUV and
the Target. To further test the performance of the proposed
approach in some special underwater environment, a simu-
lation experiment was conducted, where an underwater cave
existed between the AUV and the target (see Figure 11(a)).
The result of this experiment is shown in Figure1l. The
movement of the AUV in this experiment shows that the

AUV will come into the cave firstly because there is not
any prior knowledge of the environment. However, the AUV
can escape from the cave and reach the target based on
the proposed dynamic BINN approach (see Figures 11(b) to
11(d)). Although the path is not the shortest one to the target,
the performance of the proposed approach is good in this
challenging task.

4. Discussions

The results of the simulation experiments in Section 3 show
that the presented path planning algorithm can deal with the
path planning problem in 3D unknown underwater environ-
ments effectively. The performances and improvements of the
proposed approach are discussed in this section.

The main improvement of the proposed approach is the
computational efficiency, so the performance of the proposed
real-time path planning approach in a very large underwater
environment is discussed firstly. Then a simulation experi-
ment was conducted, where the parameters of the proposed
approach were the same as those in Section 3, except that
the environment was bigger (having dimensions 300 % 100 *
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FIGURE 9: The results of the path planning experiment when target is in deep underwater valley: (a) Step = 0, View = (-15, 28°); (b) Step =
30, View = (=50°, 24"); (c) Step = 66, View = (=58", 20°); (d) Step =102, View = (12°, 20°).

TaBLE 3: Comparison on the computing time of different experiments.

Experiment Environment Length of path Total steps Total time Efficiency
Experiment in Figure 5 10010070 140.83 m 100 85.32s 0.85
Experiment in Figure 7 100%100%70 139.61m 99 84.89s 0.86
Experiment in Figure 8 100%100%70 119.78 m 82 6778 s 0.83
Experiment in Figure 9 100%100%70 132.24 m 102 87.06s 0.85
Experiment in Figure 10 100%100%70 145.41m 94 77768 0.83
Experiment in Figure 11 100%100%70 223.46m 184 162.56 s 0.88
Experiment in Figure 12 300%100%100 294.41m 231 205.88 s 0.89

These experiments were conducted in the same computer with 2.9 GHz CPU and 4.0 GB RAM.
The computing efficiency is defined as the ratio of the total computing time to the total steps.

100) and the distribution of the obstacles was more complex.
The initial position is (20,90,10) and the target position
is (250,40,40). The final path generated by the proposed
approach is shown in Figure 12. The result in Figure 12 shows
that the proposed approach can deal with the path planning

for AUV in a very large environment efficiently. To show
the performance of the proposed approach in this large
environment, the computation time in this task is compared
with those of the experiments in Section 3 (see Table 3).
The results in Table 3 show that the computation time of
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FIGURE 10: The experimental result of the path planning for a dynamic target: (a) Step = 0, View = (-49°, 18°); (b) Step = 19, View = (=51,
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TABLE 4: The comparison experiment on the target attractor.

Experiment Ler;iﬁ of Total steps Total time Efficiency
Experimentin /5 41 94 7776 's 0.83
Figure 13(a)

Experimentin 5, 6> m 98 269.60s 275

Figure 13(b)

the proposed dynamic BINN based approach almost linearly
depends on the path length and the performance of the pro-
posed approach has not been obviously affected by the size of
the environment. This performance is better than that of the
general BINN model based method which needs to calculate
activities of all the neurons in the whole environment (see
(24, 29]). In addition, the results of seven experiments in
Table 3 show that the computation efficiency of the proposed
approach is very good, which is very important for the real-
time path planning task.

The virtual target selection strategy introduced in
Section 2.2 and the simulation results based on the proposed
approach show that the repeated path problem is solved

efficiently. In the general BINN based method, the robot
will be trapped in some difficult environment when the
environment is unknown and the sensor’s range is limited
while the obstacle is very big, such as the big mountain in
Section 3.2.1 and the underwater cave in Section 3.3.2. How-
ever, the proposed approach can deal with these challenging
problems based on the virtual target selection strategy, where
the history information of environment is used fully and there
should be no any obstacles in the forward direction from
AUV to the virtual target (see Figure 3). This performance of
the proposed method is better than those of the traditional
artificial potential field methods and other optimization
methods which will encounter the local minimum problem
[20, 36].

Another improvement of the proposed approach is the
target attractor in the computation of the neuron activity (see
(6)), which will be discussed in the end part. A comparison
experiment was conducted, where the proposed approach
was compared with a method which had the same parameters
and work flow as the proposed approach, except that the
target attractor was removed from (6). The experiment in
Section 3.3.1 is used as reference. The experimental results
are shown in Figure13 and Table 4. The results of this
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FIGURE 12: The path planning result of the experiment in a very large
underwater environment (View = (-30°, 18%)).

comparison experiment show that the AUV reaches the target
at (60,95,45) by 94 steps based on the proposed approach,
but the AUV reaches the target at (53,95,52) by 98 steps
based on the method without the target attractor. The reason
is that the target attractor can increase the computation

efficiency for the neuron activity, where the efficiency is
increased more than 3 times using the target attractor (see
Table 4). The results show that the target attractor of the
proposed approach can improve the real-time performance
of the BINN based path planning method. On the other hand,
the target attractor directly attracts the AUV to the target and
the AUV is more capable of adapting to the changes in the
target trajectory than without the target attractor, which helps
the AUV get to the target quicker and the generated path
shorter (see Figure 13 and Table 4). This performance factor
is very useful in the path planning task for dynamic target.
As the discussions above and the work process introduced
in Section 2, several points about the proposed BINN based
approach are worth noticing. (1) This model is originally
derived from Hodgkin and Huxley’s [27] biological mem-
brane model, which is biologically plausible. (2) The proposed
BINN is topologically organized, and the robot motion is
planned based on the dynamic activity landscape of the
neural network, which needs no learning process. (3) Because
the computational complexity of the general BINN linearly
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FIGURE 13: The comparison experiment results for a dynamic target: (a) based on the proposed approach; (b) based on the method without

the target attractor.

depends on the number of the neurons in the neural network,
it is not suitable for a very complicated and large environ-
ment. In the proposed approach, this problem is resolved
efficiently. (4) The computation of the proposed BINN based
approach is simpler than other optimization methods, such as
GA and PSO based methods [37]. In addition, the proposed
BINN based method is distinct from the previous path
planning methods based on the general BINN model, where
the neural network is static and only the distance information
of the target is used [13, 24, 38].

5. Conclusion

Real-time path planning for an AUV in 3D underwater
environments has been investigated in this paper. A dynamic
bioinspired neural network is proposed, where a virtual target
strategy is used to help the AUV find an optimal or subop-
timal path from the start position to the target efficiently.
In the proposed BINN based method, a target attractor is
introduced into the neuron activity updating equation, to
improve the computing efliciency of the bioinspired neural
network for real-time path planning. The proposed approach
can deal with the path planning problem in various situations:
that is, the target is floating in the water and present at the
seabed, the environment is large, and the position of the target
is changing. However, there are still some limitations in the
BINN based path planning approach which should be further
studied: that is, no any prior knowledge of the environment
or the task can be used, which makes the whole efficiency
low. To deal with this problem, some learning based methods
such as reinforcement learning method may be fused into the
BINN based method to guarantee the real-time performance
and take full advantage of the prior information. In future
work the real experiments for AUV path planning will be
conducted and some new bioinspired methods will be studied
to improve the path planning efficiency.

Competing Interests

The authors declared that they have no conflict of interests
regarding this work.

Acknowledgments

The authors would like to thank the National Natural Sci-
ence Foundation of China (61203365 and 61573128), the
Jiangsu Province Natural Science Foundation (BK2012149),
the Fundamental Research Funds for the Central Universi-
ties (2015B20114 and 2015B14614), and the Jiangsu Province
Innovation Project for Postgraduate (KYLX15_0496) for their
support of this paper.

References

[1] B. Allotta, A. Caiti, R. Costanzi et al., “A new AUV navigation
system exploiting unscented Kalman filter;” Ocean Engineering,
vol. 113, pp. 121-132, 2016.

[2] X. Xiang, L. Lapierre, and B. Jouvencel, “Smooth transition of
AUV motion control: from fully-actuated to under-actuated
configuration,” Robotics and Autonomous Systems, vol. 67, pp.
14-22, 2015.

[3] M. E. A. Alaaeldeen and W.-Y. Duan, “Overview on the devel-
opment of autonomous underwater vehicles (AUVs),” Journal
of Ship Mechanics, vol. 20, no. 6, pp. 768-787, 2016.

[4] S. Yoon and C. Qiao, “Cooperative search and survey using
Autonomous Underwater Vehicles (AUVSs),” IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no. 3, pp. 364-379,
2011.

[5] K. Shojaei and M. M. Arefi, “On the neuro-adaptive feedback

linearising control of underactuated autonomous underwater

vehicles in three-dimensional space;” IET Control Theory ¢

Applications, vol. 9, no. 8, pp. 1264-1273, 2015.

L. Paull, S. Saeedi, M. Seto, and H. Li, AUV navigation and

localization: a review;” IEEE Journal of Oceanic Engineering, vol.

39, no. 1, pp. 131-149, 2014.

)



Computational Intelligence and Neuroscience

(7]

(8]

(10]

(11]

(12]

(16]

(17]

(20]

(21]

Z. Zeng, L. Lian, K. Sammut, E He, Y. Tang, and A. Lam-
mas, “A survey on path planning for persistent autonomy of
autonomous underwater vehicles,” Ocean Engineering, vol. 110,
pp. 303-313, 2015.

J.-C. Gao, M.-Y. Liu, and E Xu, “Moving target detection
based on global motion estimation in dynamic environment,”
International Journal on Smart Sensing and Intelligent Systems,
vol. 7, no. 1, pp. 360-379, 2014.

K. Shubhasri and D. R. Parhi, “Navigation based on adaptive
shuffled frog-leaping algorithm for underwater mobile robot,”
in Intelligent Computing, Communication and Devices, vol. 308
of Advances in Intelligent Systems and Computing, pp. 651-659,
Springer, New Delhi, India, 2014.

Y. Li, W.-T. Chang, D.-P. Jiang, T.-D. Zhang, and Y.-M. Su, AUV
local path planning based on acoustic image processing,” China
Ocean Engineering, vol. 20, no. 4, pp. 645-656, 2006.

M. Liu, B. Xu, and X. Peng, “Cooperative path planning for
multi-AUV in time-varying ocean flows,” Journal of Systems
Engineering and Electronics, vol. 27, no. 3, pp. 612-618, 2016.

C. Pétres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D.
Lane, “Path planning for autonomous underwater vehicles,
IEEE Transactions on Robotics, vol. 23, no. 2, pp. 331-341, 2007.

D. Zhu, W. Li, M. Yan, and S. X. Yang, “The path planning of
AUV based on D-S information fusion map building and bio-
inspired neural network in unknown dynamic environment,”
International Journal of Advanced Robotic Systems, vol. 11, no.
1, pp. 415-429, 2014.

N. K. Yilmaz, C. Evangelinos, P. E J. Lermusiaux, and N.
M. Patrikalakis, “Path planning of autonomous underwater
vehicles for adaptive sampling using mixed integer linear
programming,” IEEE Journal of Oceanic Engineering, vol. 33, no.
4, pp. 522-537, 2008.

Y. Hu, W. Zhao, and L. Wang, “Vision-based target tracking
and collision avoidance for two autonomous robotic fish,” IEEE
Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1401-
1410, 2009.

M. P. Aghababa, “3D path planning for underwater vehicles
using five evolutionary optimization algorithms avoiding static
and energetic obstacles,” Applied Ocean Research, vol. 38, pp.
48-62, 2012.

D. Zhu, H. Huang, and S. X. Yang, “Dynamic task assignment
and path planning of multi-AUV system based on an improved
self-organizing map and velocity synthesis method in three-
dimensional underwater workspace,” IEEE Transactions on
Cybernetics, vol. 43, no. 2, pp. 504-514, 2013.

H. Yuan and Z. Qu, “Optimal real-time collision-free motion
planning for autonomous underwater vehicles in a 3D under-
water space,” IET Control Theory &amp; Applications, vol. 3, no.
6, pp. 712-721, 2009.

G. Acosta, H. Curti, O. Calvo, and S. Rossi, “A knowledge-based
approach for an AUV path planner development,” WSEAS
Transactions on Systems, vol. 5, no. 6, pp. 1417-1424, 2006.

S. Saravanakumar and T. Asokan, “Multipoint potential field
method for path planning of autonomous underwater vehicles
in 3D space;” Intelligent Service Robotics, vol. 6, no. 4, pp. 211-
224, 2013.

A. Espinal, H. Rostro-Gonzalez, M. Carpio et al., “Quadrupedal
robotlocomotion: a biologically inspired approach and its hard-
ware implementation,” Computational Intelligence and Neuro-
science, vol. 2016, Article ID 5615618, 13 pages, 2016.

(22]

(23]

[24

[25]

[26]

[27]

[28

(29]

(31]

(33]

(34]

(36]

(37]

15

M. Milford and G. Wyeth, “Persistent navigation and mapping
using a biologically inspired slam system,” International Journal
of Robotics Research, vol. 29, no. 9, pp. 1131-1153, 2010.

J. Ni, L. Wu, X. Fan, and S. X. Yang, “Bioinspired intelligent
algorithm and its applications for mobile robot control: a
survey, Computational Intelligence and Neuroscience, vol. 2016,
Article ID 3810903, 16 pages, 2016.

S.X. Yangand M. Q.-H. Meng, “Real-time collision-free motion
planning of a mobile robot using a neural dynamics-based
approach,” IEEE Transactions on Neural Networks, vol. 14, no.
6, pp. 1541-1552, 2003.

H. Qu, S.X. Yang, A. R. Willms, and Z. Yi, “Real-time robot path
planning based on a modified pulse-coupled neural network
model,” IEEE Transactions on Neural Networks, vol. 20, no. 11,
pp. 1724-1739, 2009.

Z. Huang, D. Zhu, and B. Sun, “A multi-AUV cooperative
hunting method in 3-D underwater environment with obstacle,”
Engineering Applications of Artificial Intelligence, vol. 50, pp.
192-200, 2016.

A. L. Hodgkin and A. F Huxley, “A quantitative description
of membrane current and its application to conduction and
excitation in nerve,” The Journal of Physiology, vol. 117, no. 4, pp.
500-544, 1952.

S. Grossberg, “Contour enhancement, short term memory,
and constancies in reverberating neural networks,” Studies in
Applied Mathematics, vol. 52, no. 3, pp. 213-257, 1973.

X. Yang, Neural network approaches to real-time motion plan-
ning and control of robotic systems [Ph.D. thesis], Department
of Electrical and Computer Engineering, University of Alberta,
1999.

T.-K. Lee, S.-H. Baek, Y.-H. Choi, and S.-Y. Oh, “Smooth
coverage path planning and control of mobile robots based
on high-resolution grid map representation,” Robotics and
Autonomous Systems, vol. 59, no. 10, pp. 801-812, 2011.

G. Tanzmeister, M. Friedl, D. Wollherr, and M. Buss, “Efficient
evaluation of collisions and costs on grid maps for autonomous
vehicle motion planning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 5, pp. 2249-2260, 2014.

J. Ni and S. X. Yang, “Bioinspired neural network for real-
time cooperative hunting by multirobots in unknown environ-
ments,” IEEE Transactions on Neural Networks, vol. 22, no. 12,
pp. 2062-2077, 2011.

C. Luo and S. X. Yang, “A bioinspired neural network for real-
time concurrent map building and complete coverage robot

navigation in unknown environments,” IEEE Transactions on
Neural Networks, vol. 19, no. 7, pp. 1279-1298, 2008.

J. Ni, X. Yang, J. Chen, and S. X. Yang, “Dynamic bioinspired
neural network for multi-robot formation control in unknown
environments,” International Journal of Robotics and Automa-
tion, vol. 30, no. 3, pp. 256-266, 2015.

M. N. V. S. S. Kumar, N. Modalavalasa, L. Ganesh, K. Satya
Prasad, and G. Sasibhushana Rao, “A new approach for tracking
moving objects in underwater environment,” Current Science,
vol. 110, no. 7, pp. 1315-1323, 2016.

J. Chen, S. Xie, H. Li, J. Luo, and K. Feng, “Robot path plan-
ning based on adaptive integrating of genetic and ant colony
algorithm,” International Journal of Innovative Computing, vol.
11, no. 3, pp. 833-850, 2015.

H. Qu, K. Xing, and T. Alexander, “An improved genetic algo-
rithm with co-evolutionary strategy for global path planning of



16 Computational Intelligence and Neuroscience

multiple mobile robots,” Neurocomputing, vol. 120, pp. 509-517,
2013.

[38] S.Yang and M. Meng, “Neural network approaches to dynamic
collision-free trajectory generation,” IEEE Transactions on Sys-

tems, Man and Cybernetics, Part B, vol. 31, no. 3, pp. 302-318,
2001.



