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ABSTRACT Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have
spread from Asia to other parts of the world. Since 2014, human infections with
clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously
reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6
environmental viruses sampled from live-poultry markets or farms from 2012 to
2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses
shared the same hemagglutinin gene as originated in early 2009. From 2012 to
2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via
two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B,
and C) were generated. Internal genes of reassortant A and B viruses and reassortant
C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many
mammalian adaption mutations and antigenic variations were detected among the
three reassortant viruses. Considering their wide circulation and dynamic reassort-
ment in poultry, we highly recommend close monitoring of the viruses in poultry
and humans.

IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) vi-
ruses have caused many outbreaks in both wild and domestic birds globally. Severe
human cases with novel H5N6 viruses in this group were also reported in China in
2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 vi-
ruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to
2015 in China. Sequence analysis indicated that three major reassortants of these
H5N6 viruses had been generated by two independent evolutionary pathways. The
H5N6 reassortant viruses had been detected in most provinces of southern China
and neighboring countries. Considering the mammalian adaption mutations and an-
tigenic variation detected, the spread of these viruses should be monitored carefully
due to their pandemic potential.
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Since the 1990s, outbreaks of highly pathogenic avian influenza (HPAI) have oc-
curred frequently. The initial outbreak of HPAI H5N1 virus occurred in domestic

geese in southern China in 1996 (1, 2). Following that, continued circulation of HPAI
H5N1 virus in birds throughout many regions of the Eastern Hemisphere led to dozens
of phylogenetic clades emerging through evolution (3). Human infections with serious
clinical outcomes were sporadically reported in regions associated with epidemics.

The widely reported spread of HPAI H5 virus from Asia into the Middle East, Europe,
and Africa was due to a clade 2.2 (Qinghai-like) H5N1 virus that infected wild birds (4).
In 2014 and 2015, a new clade, 2.3.4.4, which included several subtypes (H5N1, H5N2,
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H5N3, H5N5, H5N6, and H5N8), raised great concern when it was detected in Asia,
Europe, and North America. The clade 2.3.4.4 H5 virus, which had acquired the N8
neuraminidase (NA) gene and was represented by the A/Duck/Korea/Buan2/2014
(Buan2)-like H5N8 virus, had spread following the bird migration pathway to Europe
and North America (5–8). During the same period in East Asia, where the 2.3.4.4 clade
virus originated, wide outbreaks of HPAI H5N8, H5N6, and H5N2 were reported
(http://www.oie.int/). In April 2014, the first fatal human case of HPAI H5N6 virus
infection was identified in China (9). Up to 8 June 2016, a total of 14 H5N6 cases had
been reported in China (http://www.who.int/en/), raising the threat of this viral infec-
tion to public health.

The HPAI H5 virus is a significant threat not only to animal health, in particular for
the poultry industry, but also to human health due to its pandemic potential. As for
clade 2.3.4.4 H5 viruses, HPAI H5N6, which has been detected in China, Laos (10), and
Vietnam (11), is the only subtype to date that has been reported to infect humans. It
is important to understand the origins and genesis of these subtype viruses and to
determine their relationships with other subtype viruses in this clade. Previous studies
revealed that the HPAI H5N6 virus contained the hemagglutinin (HA) gene of H5 clade
2.3.4.4, the internal genes of H5 clade 2.3.2.1, and the NA gene from the H6N6 avian
virus (9, 12, 13). Based on the genetic evidence, HPAI H5N6 virus likely originated from
migratory waterfowl (14). Further reassortment with other avian influenza viruses
generated multiple genotypes of HPAI H5N6 viruses (15–19). The origins and mecha-
nisms of dissemination of the HPAI H5N6 viruses remain to be fully elucidated, and this
information is urgently needed for the development of effective disease control and
prevention strategies.

RESULTS
Surveillance results. A total of 123 H5 or N6 environmental viruses (1 H4N6, 44

H5N1, 7 H5N2, 56 H5N6, 1 H5N8, and 14 H6N6 viruses) sampled from 2012 to 2015 in
Mainland China were sequenced (Fig. 1). Based on evolutionary analysis (Fig. 2A) and
H5 clade nomenclature designated by the WHO/OIE/FAO H5N1 Evolution Working
Group, the 108 H5 viruses from our study grouped into clades 2.3.4.4 (68/108), 2.3.2.1b
(5/108), 2.3.2.1c (33/108), and 7.2 (2/108). These environmental isolates shared high
similarity with duck or chicken isolate viruses from public databases, for example,
A/Environment/Hubei/38005/2014 (H5N6) and A/Duck/Wuhan/WHYF03/2015 (H5N6)
(see Fig. S1A in the supplemental material).

Genetic divergence of clade 2.3.4.4 HPAI H5 genes. To elucidate the timing and
pattern of divergence, we integrated the evolutionary analysis of the HA gene of HPAI
H5Nx viruses onto the same time scale. As shown in Fig. 2B, HA genes of clade 2.3.4.4
HPAI H5Nx viruses can be divided into four subclades, I, II, III, and IV. The H5 viruses
reassorted with different NA subtypes, including N2, N6, and N8. HPAI H5N6 mainly
distributed into subclades I and II along with a few HPAI H5N2 and H5N1 viruses,
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FIG 1 Time distribution of H5 or N6 viruses isolated in this study. The number of isolates of each subtype was accumulated by month.
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respectively. The majority of viruses in subclade III were HPAI H5N2 and H5N8 viruses,
and in subclade IV were mainly HPAI H5N8 viruses. The median time to the most recent
common ancestor (tMRCA) of these four subclades was estimated to be early 2009 (95%
highest posterior density [HPD], November 2008 to August 2009).

HPAI H5N8 viruses have evolved into two subgroups, the larger being subclade III
and the smaller being subclade IV, which was in agreement with an early study on
Korean H5N8 lineages (20). The smaller subclade contained the viruses isolated in Korea
and neighboring regions, whereas the larger subclade included viruses from Asia,
Europe, and North America. This result indicated that after the reassortment of clade
HPAI H5 with N8 genes, some viruses circulated regionally, while others (Buan2-like
viruses) dispersed following bird migration pathways and disseminated worldwide.

Similar to HPAI H5N8, two subgroups of HPAI H5N2 viruses have been observed.
HPAI H5N2 viruses in subclade I were isolated in Mainland China from 2010 to 2014.
This subclade can be distinguished from H5N8 viruses isolated in 2009. In subclade III,
HPAI H5N2 viruses were isolated from 2014 to 2015 and grouped together with
Buan2-like HPAI H5N8 viruses. In this subclade, the H5N2 viruses which have been
responsible for outbreaks in North America were derived from the reassortment of
H5N8 and local avian influenza viruses.

HPAI H5N6 viruses mainly circulated in Southern China, Laos, and Vietnam. The HA
genes of subclade I viruses may have originated from HPAI H5N2 viruses, while the HA
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FIG 2 Evolutionary analysis of H5 gene sequences. (A) Maximum likelihood phylogenetic analysis of HA genes of 108 HPAI H5 viruses. The viruses isolated in
our study are highlighted in red. (B) Bayesian maximum clade credibility (MCC) phylogeny of clade 2.3.4.4 HPAI H5Nx viruses. The phylogenetic clades that
included clade 2.3.4.4 HPAI H5N2/N6/N8 viruses were obtained from the dated phylogeny of HA gene segments constructed by molecular phylogenetic analysis
and are further aligned onto the same time scale. The branches in purple, blue, red, gray, and black represent clade 2.3.4.4 HPAI H5N2, H5N8, H5N6, H5N5, and
H5N1 viruses, respectively. The tMRCAs of the clade HPAI H5Nx viruses and the two H5N6 subgroups are indicated by red, blue, and yellow dots. The posterior
probabilities of the main branches are shown as numbers. For details of the phylogeny, see Fig. S1 in the supplemental material.
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genes of subclade II may be derived from HPAI H5N8 viruses. The tMRCA of subclades
I and II was estimated to be late 2011 (95% HPD, June 2011 to June 2012) and mid-2012
(95% HPD, December 2011 to December 2012), respectively. These results indicated
that clade 2.3.4.4 H5N6 viruses might have been generated via different reassortment
events. To examine this assumption, we next investigated the NA and internal genes.

Genetic divergence of NA genes of clade 2.3.4.4 HPAI H5N6 viruses. Similar to
the HA genes, a maximum clade credibility phylogenetic tree of the NA genes of HPAI
H5N6 viruses divided into two subclades (Fig. 3). A significant difference between the
two subclades was that subclade II consisted of H6N6 viruses with 59 to 69 deletions
in the NA protein stalk. In late 2003, N6 genes evolved into two subclades based on the
tMRCA estimation (June 2002 to November 2004). Thereafter, the N6 genes reassorted
with two subclades of HPAI H5 viruses during the middle of 2011 (95% HPD, December
2010 to July 2012) and the middle of 2012 (95% HPD, October 2011 to December 2012),
generating two subclades of H5N6 viruses circulating in ducks.

Thus, the two subclades of HPAI H5N6 viruses may have been generated by two
independent reassortment events. Specifically, subclade I H5N2 viruses might have
reassorted with H6N6 viruses without NA deletion in late 2011. Then subclade II H5N8
viruses might have reassorted with the H6N6 viruses with 59 to 69 deletions in
mid-2012.

Dynamic reassortment of internal genes of clade 2.3.4.4 HPAI H5N6 viruses.
Consistent with the HA and NA genes, six internal genes of HPAI H5N6 viruses that
originated from clade 2.3.2.1c H5N1 viruses divided into two subclades. The tMRCA of
the two clades was dated to be between mid-2012 and mid-2013 (95% HPD, March
2012 to July 2013 [Fig. 3]), similar to the case with the HA and NA genes. On the basis
of combining the results from all eight genes, the HPAI H5N6 viruses likely underwent
two independent reassortment events.

As shown in Fig. 4, clade 2.3.2.1c HPAI H5N1 viruses provided six internal genes to
the majority of subgroup I and II H5N6 viruses. However, subgroup II H5N6 viruses
isolated in Yunnan and Guangdong provinces from late 2015 had acquired the six
internal genes from H9N2 viruses. Another two viruses from subgroup I H5N6 acquired
the PB2 or M genes from H9N2 viruses. Additionally, several subgroup II H5N6 viruses
acquired the PB2 gene from H6N6 viruses. Reassortment among viruses from the two
H5N6 subclades has occasionally been observed.

Possible evolutionary pathways of clade 2.3.4.4 HPAI H5N6 viruses. The HA
gene of four subclades of H5Nx viruses originated from clade 2.3.4 HPAI H5N1 viruses
that had been introduced into and established among chickens in China since 2005. In
2007, the virus evolved into clade 2.3.4.4. From 2009 to 2012, the clade 2.3.4.4 H5
viruses reassorted with different NA subtype viruses from waterfowl, including the N2,
N6, and N8 subtypes, generating the HPAI H5N2/N6/N8 viruses (Fig. 5).

Phylogenetic analysis and tMRCA results suggested that two independent reassort-
ment pathways generated two subclades of H5N6 viruses from 2011 to 2013. In the first
pathway, H5N2 viruses with the clade 2.3.4.4 HA gene may have reassorted H6N6 with
the full-length NA gene between mid-2011 and mid-2012; then a further reassortment
might have occurred with six internal genes from chicken clade 2.3.2.1c H5N1 viruses,
generating the reassortant A viruses. In the second pathway, H5N8 viruses with the
clade 2.3.4.4 HA gene, and H6N6 viruses with the NA gene containing the deletion from
positions 59 to 69 in the stalk region, may have reassorted with six internal genes from
poultry clade 2.3.2.1c H5N1 viruses, generating reassortant B H5N6 viruses. Since 2015,
consecutive reassortment of reassortant B H5N6 viruses with six internal genes from
chicken H9N2 viruses generated reassortant C H5N6 viruses (Fig. 5). However, alterna-
tive reassortant pathways and hosts cannot be definitively excluded.

Geographic distribution of three reassortant A, B, and C viruses. As shown in
Fig. 6, almost all of the H5N6 viruses were distributed in southern China. Only
reassortant A viruses have been detected in the Xinjiang and Jilin provinces in northern
China. Both reassortant A and B viruses have been detected in neighboring countries,
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FIG 3 Genomic divergence of NA and six internal genes of clade 2.3.4.4 HPAI H5N6 viruses. The red and
black branches represent the clade 2.3.4.4 HPAI H5N6 viruses and other related viruses, respectively. The
tMRCAs of the two subgroups and each subgroup of H5N6 viruses are highlighted in solid red, blue, and
yellow, respectively. For details of the phylogeny, see Fig. S2 to S8 in the supplemental material.
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including Laos and Vietnam. Reassortant C viruses have been reported in the Yunnan
and Guangdong provinces.

All three reassortant viruses have been reported to cause human infections. The
virus from the first reported H5N6 human case in Sichuan Province in 2014 belonged
to the reassortant A viruses. Viruses isolated in Guangdong Province in late 2014
possessed the gene cassette from reassortant B viruses, and human isolates from the
Yunnan and Guangdong provinces since 2015 belonged to the reassortant C viruses.

Molecular characteristics and antigenic analysis of three reassortant A, B, and
C isolates. A list of amino acid substitutions of biological relevance for mammalian
adaptations or reducing drug susceptibility was investigated for the three reassortant
isolates (Table 1). Although the most well-known receptor binding sites (222 to 224, H5
numbering) were still avian-like (QSG) in the three reassortant isolates (21), other
mutations that may alter receptor specificity were detected, such as S123P, I151T, and
T156A (22–24). The reassortant C isolates carried a deletion at position 126 in the HA,
adding a potential N-glycosylation at site 124. The R152K mutation in the NA in Yunnan
human isolates may affect susceptibility to inhibitors (25). Mutations E627K and D701N,
which that enhanced virulence in mammals, were found in the PB2 protein of human
isolates (26). Some mutations in PB1, PA, M1, and M2 associated with viral transmissi-
bility, species specificity, virulence, or adamantine resistance were detected in reas-
sortant C viruses due to their internal gene from H9N2 virus (27–30). The reassortant A
and B viruses with NS1 genes from H5N1 carried mutations that increased virulence in
mice (31, 32).

Hemagglutination inhibition assays were conducted, using available H5N1, H5N6,
and H5N8 viruses from distinct clades and subclades, according to standard protocols

HA NA PB2 PB1 PA NP MP NS

H5N6 Group I

H5N6 Group II

H5N1 2.3.2.1cH9N2

H6N6 Other Subtypes

FIG 4 Reassortant patterns of the clade 2.3.4.4 HPAI H5N6 viruses and their potential donor-like viruses.
A phylogenetic tree demonstrating the similar evolutionary pattern of clade 2.3.4.4 HPAI H5Nx HA gene
in Fig. 2 is shown on the left. The unrooted tree was based on the full-length HA gene sequences.
Reassortant patterns of the H5N6 viruses are listed on the right. Eight gene segments are indicated at the
top of each bar. The colors of the bars represent the potential donor-like viruses listed at the bottom.
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using 0.5% turkey red blood cells in a biosafety level 3 (BSL3) laboratory. The results
showed that viruses from clade 2.3.4.4 were antigenically different from other clades,
and antigenicity varied within clades (Table 2). The Sichuan and Guangdong human
isolates (representing the reassortant A and B viruses, respectively) were similar to each
other but different from subclade III H5N8 virus. The Yunnan human isolate, represent-
ing the reassortant C viruses, showed very low activity with all antisera of reference
viruses.

DISCUSSION

There are several possible evolutionary pathways for the generation of diverse
genotypes of influenza virus: (i) one-time reassortment, (ii) multiple independent
reassortment events, or (iii) sequential multiple-step reassortment events (33). In this
study, we found that two independent reassortment events underlie the generation of
reassortant A and B H5N6 viruses. Reassortant B H5N6 viruses further reassorted with
H9N2 viruses to generate reassortant C H5N6 viruses. It is probable that the reassort-
ment pathway of the H5N6 virus was due to the epidemic of clade 2.3.4.4 H5 virus in
both migratory and domestic birds. Unlike clade 2.2 (Qinghai-like) HPAI H5N1 virus,
clade 2.3.4.4 H5 viruses have undergone reassortment activities with other NA subtypes
(34). This novel combination of NA might facilitate the virus to circulate in migratory
birds. The wide prevalence of clade 2.3.4.4 H5 viruses in wild birds could increase the
probability of reassortment among H5 and other avian influenza viruses, generating
new reassortants. It also may raise the reassortment frequency with viruses prevalent in
poultry and generate poultry-adapted viruses, such as the reassortant A and B H5N6

H5N1 2.3.4

H5N5 2.3.4.4

H5N1 2.3.2.1c H6N6 H6N6

H9N2

H5N6
Reassortant A H5N6

Reassortant B

2009

2007

2005

2012

2015

H5N6
Reassortant C

H5N8H5N2

FIG 5 Possible evolutionary pathways toward the generation of clade 2.3.4.4 HPAI H5N2/N6/N8 viruses and
the diverse genotypes of HPAI H5N6 viruses. Virus particles are represented by colored ovals containing
horizontal bars that represent the eight gene segments (from top to bottom: PB2, PB1, PA, HA, NP, NA, M,
and NS). Segments in descendant viruses are colored according to their corresponding source viruses (top)
to illustrate gene ancestry through reassortment events. Source viruses for a reassortment are adjacent to
arrow tails; arrowheads point to the resulting reassortants. A broken bar in segment 6 (NA) indicates a stalk
region deletion. The timeline on the left indicates the possible time of virus emergence or reassortment
events.
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viruses, through interaction between migratory birds and local poultry. H5N6 viruses
could further exchange gene segments with viruses circulating in poultry, especially in
live-poultry markets (16, 35, 36).

According to our surveillance data, clade 2.3.4.4 HPAI H5N6 viruses have been
circulating in poultry in China. All reassortants may have originated in southern China
based on the geographic distribution of the viruses (Fig. 6). Previously we reported that
“genetic tuning” mediated the genesis and interspecies transmission of novel H7N9
viruses (37, 38). As HPAI H5N6 viruses circulate in environments similar to those of H7N9
viruses, the same forces of evolution may affect H5N6 viruses. Similar to H7N9 viruses,
reassortant C H5N6 viruses contain an NA stalk deletion and internal genes derived
from H9N2 viruses. Although the isolates in this study were from environmental
samples, we speculated that reassortant C H5N6 viruses may have potential advantages
for pathogenicity in chickens based on their genetic characteristics.

Our surveillance results revealed that multiple clades of HPAI H5 virus had been
cocirculating in Mainland China. The evolution of distinct clades could lead to antigenic
alterations. The hemagglutination inhibition assay results provided evidence that the
three reassortant H5N6 viruses had undergone antigenic variation. Therefore, contin-
ued surveillance of these H5N6 reassortants, along with antigenic characterization,
should be implemented to avoid the development of a mismatched vaccine when
preparing for a pandemic. In addition, some studies have reported that clade 2.3.4.4
HPAI H5N6 viruses show highest affinity for the avian-like receptor (�-2,3 sialic acid),

FIG 6 Geographic distributions of three reassortant HPAI H5N6 viruses in Mainland China and neighboring Laos and Vietnam. Provinces in which clade 2.3.4.4
HPAI H5N6 viruses were isolated in Mainland China, Laos, and Vietnam are in dark gray. Solid red squares, blue triangles, and cyan circles indicate the reassortant
A, B, and C H5N6 viruses, respectively. This map was drawn using ArcGIS (ESRI) software version 9.
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with lower but increased affinity for the human-like receptor (�-2,6 sialic acid) (14, 39,
40). The mutations identified in human isolates (S123P, I151T, T156A, and the deletion
at position 126 in HA) should be further investigated to identify their effects on the
receptor binding preferences of H5N6 viruses.

Previous studies showed that while avian influenza virus lacks the capacity for
sustained human-to-human transmission, human infection with avian influenza virus
resulted from direct contact with infected birds or exposure to contaminated environ-
ments, such as live-poultry markets (41–43). Over the past decade, viruses from both
clades 2.3.2 and 2.3.4 have been circulating in poultry (44, 45) and have been respon-
sible for most of the confirmed human cases in China (46). In this study, we detected
clade 2.3.4.4 HPAI H5N6 virus in environmental samples from most provinces of
southern China. In addition, over 30 outbreaks in poultry caused by H5N6 viruses have
been reported by the World Organization for Animal Health (OIE). This revealed the risk
of human infection posed by these reassortant viruses. Recently, we reported that the
increased H5N6 virus positivity rate in the live-poultry markets coincided with subse-
quent human infections in Shenzhen in China (47). Human infections with HPAI H5N6
viruses resulted in high mortality rates (10/14) and clinical symptoms similar to those
seen in HPAI H5N1 patients (9, 48). Therefore, H5N6 viruses pose a significant public
health threat, which requires close monitoring similar to that for HPAI H5N1 viruses.

MATERIALS AND METHODS
Surveillance of avian influenza viruses from avian-linked environment in Mainland China from

2012 to 2015. From January 2012 to December 2015, routine avian influenza virus surveillance was
carried out in Mainland China. Samples were randomly collected from avian-linked environments
(live-poultry markets or farms) once per month across 31 provinces. In total, 170,072 samples were
collected, and 34,492 of these samples tested positive for influenza A virus at local centers for disease
control and prevention using a real-time PCR assay. Of these, 16,341 positive samples were received by
our laboratory for virus isolation. A preliminary test for HPAI H5 by real-time PCR was conducted. The
positive samples were isolated in a BSL3 laboratory. Swab samples were treated with antibiotics for 30
min, and then 0.2 ml of the supernatant was inoculated into the allantoic cavities of 9-day-old
specific-pathogen-free embryonated chicken eggs. After incubation at 35°C for 48 to 72 h, the presence
of virus in the allantoic fluid of the embryos was determined by a hemagglutination test using 0.5%
turkey red blood cells. The HA subtypes of all of the viruses were identified by quantitative reverse
transcription-PCR (RT-PCR).

Virus sequencing. RNA was extracted from viruses using the QIAamp viral RNA minikit (Qiagen,
Hilden, Germany). Extracted RNA was subjected to reverse transcription and amplification using the
SuperScript III One-Step RT-PCR system (Thermo Fisher, Waltham, MA) according to a previously
described method (49). Whole-genome sequencing of FluA was implemented on the Ion Torrent PGM
platform (Thermo Fisher) with a read length of 200 bp. Data analysis was mainly conducted using CLC
Genomics Workbench 7.5.1 software. Low-quality reads were trimmed out using a CLC trimmer with the
quality limit set at 0.05. The filtered reads were de novo assembled in CLC using the default parameters.
Contigs with a coverage over 10 were extracted and used in a BLAST search against a database
containing all of the FluA sequences collected from the NCBI and Global Initiative on Sharing All
Influenza Data (GISAID) databases. The sequences with the highest levels of similarity were selected as
references for reads mapping under the parameters “Length fraction � 0.8, Similarity fraction � 0.8.”
FluA genome sequences were obtained by extracting the consensus sequences from the mapping
results, with at least 100� coverage depth at each site for the eight segments.

Evolutionary analysis. The whole-genome sequences of 123 environmental H5/N6 isolates were
obtained in this study. Phylogenetic analyses were conducted together with the available sequences
from the GISAID. Approximate maximum likelihood (ML) phylogenetic trees for each of the genes were
constructed using the FastTree 2.1 software with the general reversible GTR�� model and 1,000
bootstraps.

To estimate the time to the most recent common ancestor (tMRCA) of each of the segments of HPAI
H5N6 virus, nonredundant sub-data sets were selected to run time-measured Bayesian Markov chain
Monte Carlo analysis via BEAST v1.82 software (50). A root-to-tip regression plot was performed using
TempEst software, and no outliers were found in the sub-data sets. The SRD06 substitution model (51)
and the uncorrelated relaxed molecular clock model were used. The Bayesian skygrid coalescent was set
as tree prior. The uniform distribution was used for prior CP1 � 2, CP3, and ucld.mean. The Bayesian
MCMC was run for up to 5 � 107 steps, with sampling at each 5,000 steps to achieve convergence. Tracer
v1.6 software was used to examine the effective sample sizes of the parameters in the log file, and these
were all �200, implying reasonable convergence and posterior estimates. A maximum clade credibility
tree with median node height was conducted after excluding the beginning 10 to 15% states.

Accession number(s). The full genome sequences of the H5 and N6 viruses determined in our study
have been deposited in the GISAID database under the accession numbers listed in Table S1 in the
supplemental material.
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