Skip to main content
. 2017 Feb 15;18:16. doi: 10.1186/s12863-017-0481-y

Table 1.

System performance measures

Program Positives Negatives Program performance evaluation
TP FP TN FN Rc Pr Acc MCC
SignaLPv4-Da 74 2 398 4 0.949 0.995 0.987 0.954
SignalPv3-HMM-S/TMHMMv2 76 9 373 20 0.792 0.976 0.939 0.805
Phobius 74 8 392 4 0.949 0.980 0.975 0.910
ProtComp-v9 59 6 391 22 0.728 0.985 0.941 0.781
WolfPsort 56 7 392 23 0.709 0.982 0.937 0.759
SignalPv3-NN-D 76 34 366 2 0.974 0.915 0.925 0.781
SignalPv3-HMM-S 76 32 368 2 0.974 0.920 0.929 0.790
SignalPv3-NN-D/SignalPv3-HMM-S 75 15 370 18 0.806 0.961 0.931 0.777
WolfPsort/SignalPv3-NN-D 56 32 367 23 0.709 0.920 0.885 0.602
WolfPsort/SignalPv3-HMM-S 56 23 377 22 0.718 0.943 0.906 0.657
WolfPsort/Phobius 55 12 387 24 0.696 0.970 0.925 0.713

Performance was measured based on the program’s ability to correctly discriminate extracellular proteins from non-extracellular proteins

Abbreviations: TP true positive prediction, FP false positive prediction, TN true negative prediction, FN false negative prediction, Rc recall, Pr precision, Acc accuracy, MCC Mathew’s Correlation Coefficient

aMost accurate method to identify extracellular proteins