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Abstract

Background—Rapid eye movements (REMs) are a defining feature of REM sleep. The number 

of discrete REMs over time, or REM density, has been investigated as a marker of clinical 

psychopathology and memory consolidation. However, human detection of REMs is a time-

consuming and subjective process. Therefore, reliable, automated REM detection software is a 

valuable research tool.

New method—We developed an automatic REM detection algorithm combining a novel set of 

extracted features and the ‘AdaBoost’ classification algorithm to detect the presence of REMs in 

Electrooculogram data collected from the right and left outer canthi (ROC/LOC). Algorithm 

performance measures of Recall (percentage of REMs detected) and Precision (percentage of 

REMs detected that are true REMs) were calculated and compared to the gold standard of human 

detection by three expert sleep scorers. REM detection by four non-experts were also investigated 

and compared to expert raters and the algorithm.

Results—The algorithm performance (78.1% Recall, 82.6% Precision) surpassed that of the 

average (expert & non-expert) single human detection performance (76% Recall, 83% Precision). 

Agreement between non-experts (Cronbach Alpha = 0.65) is markedly lower than experts 

(Cronbach Alpha = 0.80).

Comparison with existing method(s)—By following reported methods, we implemented all 

previously published LOC and ROC based detection algorithms on our dataset. Our algorithm 

performance exceeded all others.

Conclusions—The automatic detection algorithm presented is a viable and efficient method of 

REM detection as it reliably matches the performance of human scorers and outperforms all other 

known LOC- and ROC-based detection algorithms.
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1. Introduction

As first described by Aserinsky and Kleitman in 1953, Rapid Eye Movement (REM) Sleep 

is characterized by low muscle tone and rapid horizontal simultaneous movements of the 

eyes. REM sleep has been related to a range of biological and cognitive functions, including 

brain maturation (Marks et al., 1995), muscular efficiency (Cai, 2015), non-declarative 

memory consolidation (Stickgold, 2005; Mednick et al., 2003), rescuing memory from 

interference (McDevitt et al., 2015) and implicit cueing in a creativity task (Cai et al., 2009) 

among others. Yet despite over half a century of research, the specific cause and function of 

its defining feature, the rapid eye movements (REMs), is not understood. Ladd (1892) 

suggested that REMs represent saccadic shifts to visual elements of dreams. Consistent with 

this hypothesis, subjects woken from REM sleep, compared with other sleep stages, more 

frequently report vivid dreams (Hobson, 2009), and the same cortical areas involved in 

REMs are involved in waking eye movements (Hong et al., 1995; Hong et al., 2009). These 

findings suggest that similar neural activity occurs during REM sleep and waking. 

Furthermore, studies of lucid dreaming, in which a dreamer is purportedly cognizant and 

able to control the dream state, have shown deliberate eye movements in dreams that appear 

similar to waking REMs (LaBerge et al., 1981; LaBerge, 1990). However, it is unknown 

whether all REMs are caused by eye movements within dreams, or if this is an artifact of the 

atypical lucid dream state. Studies have also shown that clinical psychopathologies can be 

differentiated based on this sleep feature, with altered REMs patterns during sleep being 

related to depression (Gillin et al., 1981; Lahmeyer et al., 1983; Mellman et al., 1997), 

narcolepsy (Vanková et al., 2001), obsessive compulsive disorder (Insel et al., 1982), post-

traumatic stress disorder (Ross et al., 1994; Mellman et al., 1997, 2002) and chronic sleep 

deprivation (Feinberg et al., 1987). Increased REM presence (measured as REM density, the 

number of REMs per minute of REM sleep) have been also associated with enhanced 

procedural (Fogel et al., 2007) and declarative (Schredl et al., 2001) memory and may be a 

marker of memory consolidation (Smith and Lapp, 1991).

Given that the average human spends approximately 5–6% of her life in REM sleep, it is 

surprising how little investigation has been done on this psychophysiological event. This is 

due, in part, to the difficulty, and time consuming task of manually counting REMs. 

Development of a computational algorithm to automatically detect these ocular events would 

provide a solution to this problem, and open a pathway to aid in the discovery of the nature 

and function of REMs. Here, we provide an automated approach to REM detection utilizing 

a learning algorithm designed to detect REMs from the Left Ocular Canthi (LOC) and Right 

Ocular Canthi (ROC) channels of EEG data. We compared our novel algorithm to several 

prior published algorithms (Minard and Krausman, 1971; McPartland et al., 1973; Ktonas 

and Smith, 1978; Hatzilabrou et al., 1994; Doman et al., 1995; Agarwal et al., 2005) and to 

expert and non-expert human scorers. Each algorithm detects a slightly different subset of 

REM, therefore we combine detections from each implemented detector to improve 

reliability and performance. Our best performing single algorithm integrates a novel set of 

features (Dynamic Time Warping and similarity features) and the powerful ‘AdaBoost’ 

classification algorithm to detect the presence of REMs.

Yetton et al. Page 2

J Neurosci Methods. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For development and comparison of future algorithms, the MATLAB code from this 

investigation (both our detectors and our implementations of others) is available online 

through The Open Science Framework (https://osf.io/fd837/).

2. Materials and methods

2.1. Data Set

2.1.1. Participants—The data set consisted of 5 (3 Female) subjects polysomnography 

data (Astro-Med Grass Heritage model 15 amplifiers [Natus Neurology Incorporated, West 

Warwick, RI, USA]) taken from the control condition of a previous nap study (Mednick et 

al., 2013). Subjects gave informed consent and study protocol was reviewed by University 

Of California, San Diego Institutional Review Board. Participants were healthy (BMI = 23 

± 2.4 kg/m2), non-smokers aged 18 to 35 (22 ± 3 years) with no personal history of 

neurological, psychological, or other chronic illness and were normal sleepers, habitually 

obtaining approximately 8 h of sleep each night. Informed consent and original study was.

2.1.2. Sleep analysis—AASM (2007) guidelines recommend two channels of EOG, 

“recording from an electrode placed 1 cm above or below the outer canthus of the eye” 

(LOC and ROC). See Fig. 1 for approximate placements. Although the placement of these 

channels does not allow for the ability to detect differences between vertical and horizontal 

eye movements (Padovan and Pansini, 1972; Värri et al., 1996), they continue to remain the 

gold standard eye channels used in sleep labs. The goal of our algorithm is to generalize to 

the majority of sleep labs, hence LOC and ROC are used.

2.1.3. REMs scoring—Expert sleep scorers identified 110 min of REM stage sleep and 

this was used to train and test the algorithm. REM peaks in each subject’s PSG data were 

independently identified by an expert group (3 expert sleep scorers, each with 2 or more 

years of experience) and a non-expert group, (4 non-expert sleep scorers, familiar with PSG, 

and having undergone basic in lab training on identifying REMs) by marking REM 

movement peaks. Raters adhered to the AASM (2007) REM definition of ‘conjugate, 

irregular, sharply peaked eye movements with an initial deflection usually lasting less than 

500 ms’. Horizontal lines at ± 37.5 µV (as suggested by Werth et al., 1996) were used as 

visual aids to alert raters to the possible presence of REM, although the EOG signal did not 

have to cross these lines to be considered as a REM. Slow Eye Movements (SEM) with 

sinusoidal peaks and longer deflection times (>500 ms) (AASM, 2007) were not considered 

by raters and are to be ignored by our the algorithm. Examples of REMs can be seen in Fig. 

2, REM statistics for each subject in Table 1, and descriptive statistics of REMs can be 

found in the results.

2.2. Algorithm development

2.2.1. Overview—We employed two approaches: feature thresholding and machine 

learning. We obtained respectable results using a threshold-based approach with an 

intersection of Amplitude, Slope, Cross-Correlation, and Discrete Wavelet Transform 

(DWT) (e.g. if Amplitude > w AND slope > x AND Cross-Correlation > y AND DWT > z 
then label as a REM). By adding the features with high recall first and only adding precision 
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in the later steps, we began with a high number of true and false positives and iteratively 

reduced false positives while controlling for false negatives.

A large set of features can be predictive, and this simple thresholding approach becomes 

intractable when REMs are best predicted from multiple feature interaction terms. In the 

second approach, we used an adaptive boosting (AdaBoost) classification algorithm (Freund 

and Schapire, 1997), which is able to automatically tune the thresholds and combinations of 

multiple features by learning the statistical regularities that predict REM from a training data 

set. It combines many simpler algorithms, each of which focuses on different examples of 

REM. This algorithm has been previously used on EEG signals to successfully classify 

epilepsy-related EEG signals (Niknazar et al., 2013b), sleep apnea (Xie and Minn, 2012), 

and schizophrenia (Boostani et al., 2009).

Our AdaBoost detection algorithm follows a 4-step process (Fig. 3). First, data is filtered, 

discretized (by splitting into consecutive windows) and a gold standard is created from 

human scorers (correct classification of each window). Next, features are extracted from 

each window. Third, a classifier algorithm trains a classifier to learn to distinguish between 

windows containing no REM, a single REM or two REMs in an iterative manner. Finally, 

the testing set is run through the now trained classifier, and classification performance is 

measured by comparing classifier output to the expert human gold standard (see Sections 

2.2.3 and 2.3).

2.2.2. Filtering and windowing—The spectral power across all REMs peaks between 

0.3 Hz and 5 Hz (Fig. 4). Frequency components higher or lower were considered as noise 

and removed with a zero phase digital bandpass filter [0.3 Hz–5 Hz, 40DB attenuation]. 

Other filter cutoff frequencies ranging from 0 Hz to 15 Hz were considered, but did not 

improve performance. Other than initial bandpass filtering, EOG signal artifacts were not 

removed from the dataset and did not affect results. The filtered LOC and ROC data across 

subjects were divided into 8022 consecutive 1 s windows, each of which undergoes feature 

extraction. This window size was chosen to capture the average time for a complete REM 

movement. Results of other window sizes (0.5, 0.7, 1.2, 1.4, 1.6 s among others) were 

investigated, but performance did not increase.

2.2.3. Gold standard—Raters were instructed to mark REM peaks by hand. A REM peak 

location ‘gold standard’ was created by combining the REM peaks scored by each rater. To 

avoid over counting the same REM as identified by different raters, MATLAB’s hierarchical 

clustering algorithm (MathWorks, 2015) was used. Effectively, REM peak marks closer than 

120 ms across raters are merged into a single REM with the resulting peak at the maximum 

absolute value of the LOC or ROC signal. Only merged REM were considered as gold 

standard REM, in this way, at least 2 raters must agree on a REM movement before it is 

marked as such. Multi peaked waves (as marked by a single rater) closer than 120 ms did not 

occur, REMs further apart were always considered as separate movements.

2.2.4. Feature extraction—Features were extracted from each consecutive window of 

filtered LOC, ROC and the negative product of LOC and ROC (NEGP) (as proposed in 

Agarwal et al., 2005, this signal is maximal during REM movements). These features can be 
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broken into 4 broad categories: time domain features, frequency domain features, time-

frequency domain features and nonlinear features. This does not suggest that all time, 

frequency and time-frequency domain techniques are linear but rather they are not based on 

the theories of dynamical systems. Features were generally based on apriori theoretical 

intuition (e.g. REMs have higher amplitudes, thus amplitude is considered a good feature). 

However, human scoring is a subjective process that cannot be perfectly captured by a 

discrete set of rules, thus a range of features were implemented. Many features were trialed, 

however, only features used in the final algorithm are described.

2.2.4.1. Time domain features: Time domain features are continuous variables extracted 

from the filtered windows of voltage over time.

Amplitude (LOC, ROC, NEGP): REMs are deflections from the voltage signal baseline; a 

simple index of this deflection is the maximum absolute amplitude of the voltage. This point 

is considered as the peak of the signal.

Peak prominence & peak width (LOC, ROC, NEGP): For the maximum voltage peak in 

each window (positive or negative), a measure of how much it extends from the signals 

baseline (as opposed to the zero line for amplitude) was calculated (prominence) along with 

the width of the signal at half of the prominence (width).

Rise and fall slope at peak (LOC, ROC, NEGP): REM movements deflect sharply (Rise) 

from the signal mean, then decay (Fall) at a slower rate back to baseline. The slope of the 

signal both before and after the max amplitude peak was calculated.

Cross-correlation: Cross-correlation is a measure of the similarity of two signals found by 

computing the correlation of their overlap as a function of the lag of one relative to the other. 

In a REM, both LOC and ROC simultaneously deflect from their signal baseline. The 

maximum cross-correlation of LOC and negative ROC provides a measure of this 

synchrony.

Local variance (LOC, ROC, NEGP): The variance for each window was calculated.

Mobility (LOC, ROC, NEGP): This is a measure of the variance of the sudden changes in a 

signal and is defined as the standard deviation of the first derivative of the signal to that of 

the original signal:

where σ is standard deviation and s′(n) = s(n + 1) − s(n).

Complexity (LOC, ROC, NEGP): Defined as the ratio of the mobility of the first derivative 

of the signal to the mobility of the signal:
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Coastline (LOC, ROC, NEGP): Essentially, a sum of the derivative of the signal, this feature 

was chosen due to the relatively higher-amplitude and higher-frequency of REMs when 

compared to Non-REMs.

where |.| represents the absolute value operator and N is the number of data points in the 

present window.

Nonlinear energy (LOC, ROC, NEGP): This measure of signal energy is defined as 

follows:

where N is number of data points in the present window (Niknazar et al., 2013a).

Dynamic time warping (LOC, ROC, NEGP): Dynamic Time Warping (DTW), commonly 

used in speech and handwriting recognition (e.g. Müller, 2007), is an algorithm for 

measuring similarity between two temporal signals that may vary in time or speed. The 

signals are “warped” iteratively in the time dimension to along an optimal ‘warp path’ to 

transform one signal into another. The length of the warp path gives a measure of signal 

similarity. Here, we compare the similarity of each time domain window to an ‘ideal’ REM 

created by averaging all gold standard REM windows centered on their peaks.

Many time domain features (peak amplitude, prominence, width, rise/fall angle) are 

calculated from the most prominent peak in a 1 s window. If two REMs are present, these 

features will be associated with the largest REM movement. Performance did not increase 

when features associated with the second largest peak were included.

2.2.4.2. Frequency domain features: Frequency domain windows for LOC and ROC were 

analyzed via Fourier transformation from the time domain.

Spectral skewness and kurtosis (LOC, ROC): Skewness is a measure of the asymmetry of 

the probability distribution and can be defined as:
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where E(x) is the mathematic expectation of random variable x and S represents the 

amplitude of the fast Fourier transform (FFT) coefficient of an EEG signal in the present 

window. η and σ are the mean and standard deviation of S, respectively.

Kurtosis is a measure of the peakedness of the probability distribution of a real-valued 

random variable as is defined as:

Higher kurtosis means that the variance is mostly the result of infrequent extreme deviations, 

as opposed to frequent modestly sized deviations. Both measures are common in descriptive 

statistics.

Shannon entropy (LOC, ROC): In information theory, entropy is a measure of the 

uncertainty associated with a random variable. Spectral entropy can be calculated as the 

classical Shannon entropy (Shannon, 1948) after normalizing the frequency domain window:

2.2.4.3. Time-frequency domain features. Discrete wavelet transform by Haar and DB2 
(LOC, ROC, NEGP): Discrete Wavelet Transforms (DWT) decomposes a discrete signal 

into a set of basis function (similar to Fourier transform, where the sine function is the 

basis). Here we use both the Haar wavelet and the Daubechies 2 (DB2) wavelet as basis 

function because they closely resemble REMs. For the Haar wavelet, we applied the DWT 

method on the approximate decomposition for 4 iterations (level −4, approximate signal) 

and used the maximum amplitude of the −4 level inverse DWT as our feature. The same 

method was applied for 6 iterations for the db2 wavelet. In this way, larger amplitude of the 

inverse DWT signal suggest the more the signal can be represented by a combination of 

these wavelets and the more likely that the window contains a REM (because wavelets 

resemble REM). Discrete wavelet transforms were successful in previous papers 

(Barschdorff et al., 1997; Tsuji et al., 2000).

2.2.4.4. Nonlinear features. Similarity features (LOC, ROC, NEGP): These methods 

consist of the reconstruction and subsequent comparison of the EEG dynamics between each 

signal window and an ‘ideal REM’ reference window (created from the average of all REM 

movements). First we extracted the optimum embedding dimension (m) and delay (tau) from 

the complete LOC, ROC and NEGP signals using Cao’s algorithm (1997) and the mutual 

information (MI) function (Fraser and Swinney, 1986), respectively. From these parameters, 

each signal window, and the reference window, is transformed into a phase space of vectors. 

Next, a trajectory matrix is constructed from the vectors, thus describing the complete record 

of patterns that have occurred within a window. To reduce noise, the trajectory matrices of 

each signal window and the reference window are projected on the principal axes of the 

reference window by means of a singular value decomposition (SVD) (Feldwisch-Drentrup 
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et al., 2010). The transformed data of each window is then compared to the transformed data 

of the ‘ideal’ REM reference window using similarity metrics of Dynamical Similarity Index 

(DSI) (Quyen et al., 2001), Fuzzy Similarity Index (FSI) (Ouyang et al., 2004) and 

Bhattacharyya based Dissimilarity Index (BBDI) (Niknazar et al., 2013a). Larger similarity 

means the current window is similar to an ideal REM and therefore has a higher probability 

that it contains a REM. Full descriptions and mathematical expression of each measure can 

be found in Niknazar et al. (2013a).

2.2.5. Feature reduction—A backward elimination stepwise algorithm was used to 

reduce the feature space. Here, the classifier starts with the set of all candidate features. We 

then remove each feature separately and measure algorithm performance (F1 Score, see 

Section 2.3). If removal of a feature corresponds to performance improvement, then that 

feature is eliminated from the set. This process was repeated until performance no longer 

increased.

2.2.6. Classifier methods and ECOC—With a window size of 1 s, and the high 

probably of short inter-REM intervals, 2 REMs were often present, therefore, a single 

Adaboost (binary) classifier, which could only label windows as containing no REM (0) or 

REM (1) would underestimate REMs. To limit classifier confusion to rare cases, windows 

containing 3 REMs in the gold standard were set to 2 REMs (<0.1% of windows), yielding 3 

classes to distinguish between: windows containing No REM (90%), 1 REM (8%), 2 REM 

(2%).

Error-Correction Output Codes (ECOC) were used to overcome this 3-class problem. 

ECOCs were implemented as in Escalera et al. (2010), and provided a method of coding and 

decoding multiple one vs one binary classification decisions into multi-class decisions (Fig. 

4). With three classes to classify, three separate dichotomous Adaboost classifiers are 

required, where each classifier learns to split a pair of classes (outputting a −1 or 1) while 

ignoring the third (classifier is not trained on the 3rd class and will output an erroneous −1 

or 1). Each window’s three classifier outputs can be compared via a distance measurement 

(Laplacian distance gave the best results in our case), to the expected outcome for each class 

and the closest class is then selected for that window.

A worked example is provided for clarity:

If we have 3 classifiers (A, B and C) and 3 classes (0REM, 1REM, 2 REM) then we might 

expect the following results pattern:

Classifier 0REM 1REM 2REM

A 1 −1 ? (−1 or 1)

B ? (−1 or 1) 1 −1

C 1 ? (−1 or 1) −1

We would expect a window containing 1 REM to give the following output pattern for each 

classifier:
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A −1

B 1

C 1 or −1

If we then compare the output pattern via the absolute difference (a form of distance 

measurement) to the expected pattern for each class, (where the unknown value is set at 

zero) then we see that indeed the output is closest to the true class of 1 REM:

0REM 1REM 2REM

Actual
output

Expected
output

Distance Expected
output

Distance Expected
output

Distance

−1 1 2 −1 0 0 1

1 0 1 1 0 −1 2

1 or −1 1 2 or 0 0 1 −1 2 or 0

Total distance 3 or 5 1 3 or 5

As each subject’s REMs have unique eccentricities, the importance of algorithm 

generalizability to new data (other subjects) cannot be understated. Along with internal 

algorithm cross-validation, k-fold cross validation was used. Here, the algorithm is trained 

on 4 of the 5 subjects and then the remaining subject can be used to test algorithm 

performance. Performance statistics can then be averaged across all 5 different combinations 

of subjects, with each subject serving as the test subject one time. In this way, the algorithm 

is never trained on all types of REMs or all subjects, giving us greater confidence of 

generalizability. Within subject performance, where training and testing data (70:30 ratio) 

was taken from the same subject is also reported.

2.3. Performance statistics

Specificity and recall, (defined below) are common measures of quantifying algorithm 

performance. However, in our dataset the true percentage of windows containing REMs as 

scored by humans was 6%. With this relatively low ratio of true positives to true negatives, 

traditional measures of algorithm performance, such as specificity, are biased (even 

detecting no REMs give specificity greater than 90%). To overcome bias, we used precision, 

defined as the percentage of true positives (as determined by the gold-standard) detected by 

the algorithm. Recall is the number of true REMs correctly classified as such. We use F1 

score as a single measure of performance useful in tuning and ranking algorithm 

performance:
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Our final algorithm makes decisions on the presence of REM in each 1 s window, but does 

not mark exact REM locations. Hence, for algorithm comparison, a windowed version of the 

gold standard is created by counting the number of gold standard REMs that fall in each 

consecutive window. Performance statistics are then based on the difference between the 

REMs per window as classified by our algorithm, and the windowed gold standard (“Win” 

statistics in Table 4). For example, if a window contains 2 gold standard REMs, and the 

algorithm detects 1 REM, then we have one True Positive and one False Negative. For 

algorithms that detect individual REM locations (such as our thresholding method), we 

create a windowed output in the same way as the gold standard.

Additionally, for location based algorithms, we compare results to the gold standard by 

marking true positives if a gold standard REM and an algorithm detected REM occur within 

200 ms of each other (“Loc” statistics in Table 5) again using MATLABs clustering 

algorithm (MathWorks, 2015). Lone REM’s in gold standard are False Negatives, and lone 

REM’s in the algorithm output are False Positives.

To measure expert and non-expert rater reliability common methods of Cronbach alpha (α), 

and inter-rater-agreement are used (defined below). Also reported is the average precision 

and recall of each rater against the gold standard. This precision and recall will be artificially 

inflated when the gold standard contains that rater (similar to a correlation with itself), 

therefore we compare each rater to a gold standard created with that rater removed.

Note that inter-rater-agreement is biased by the high number of true negatives.

where K is the number of consecutive windows, and Y a vector of the REM counts per rater 

for each window.  is the variance of component i for the set of raters and  is the 

variance of the total REM scores of raters. Inter-rater-agreement is calculated as the average 

correlation between rater’s Y vectors.

2.4. Comparison to previous work

The finding that REMs may be linked to dreaming led to a flurry of rule-based classifiers 

implemented with analogue electronics (Minard and Krausman, 1971; McPartland et al., 

1973; Ktonas and Smith, 1978). As computing power has improved, REM detectors using 

more complex combinations of features (Doman et al., 1995; Tsuji et al., 2000; Agarwal et 

al., 2005), matched filtering (Hatzilabrou et al., 1994), autoregressive modeling (Shokrollahi 

et al., 2009) and learning algorithms (Barschdorff et al., 1997) have emerged.

These algorithms have impressive performance, but comparison to own is biased by 

differing datasets (EEG channels used, subjects and numbers of human raters used to test 

performance) and further limited by different performance metrics. Therefore, along with 

developing our own algorithm, we implemented reported methods from all published LOC 

and ROC based detectors on our dataset. Note that our aim was to investigate the important 
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features and principles of all successful published methodologies and provide fair 

comparison such that future sleep researchers may be better equipped in choosing the right 

detection algorithm. Detectors using channels other than LOC and ROC (such as vEOG/

hEOG) have different signal characteristics and while their methods have been taken into 

consideration, were considered out of scope (e.g. Tsuji et al., 2000; Shokrollahi et al., 2009; 

Barschdorff et al., 1997; Gopal and Haddad, 1981; Takahashi and Atsumi, 1997; Ktonas et 

al., 2003; Tan et al., 2001). Table 4 outlines each method and its results, MATLAB code for 

all methods is open source and available at [PERM LINK TO BE INSERTED WHEN 

PAPER IN PRESS]. Training and testing with k-fold cross validation was used when 

algorithms required tuning, or when exact thresholds were not reported. Tuned parameters 

and their optimal threshold values are reported in Table 4

2.5. Combinatory algorithms

In 2007, Netflix [Netflix Inc, Los Gatos, CA, USA] held a 1 million dollar prize (Netflix, 

2015) to create the best video recommendation algorithm. The eventual winning team (Bell 

et al., 2007), and runner up (Toscher et al., 2009), combined over 100 algorithms each. The 

combination of both teams’ algorithms again improved performance. Warby et al. (2014) 

found similar performance benefits when combining individual spindle detectors. However, 

improvement from combination algorithms only occurs if each detector finds a different 

subset of REM events. Correlating the REM counts per window for each detector (Fig. 5), 

does indeed show variability in REM events, highlighting a potential performance increase 

from combinatory algorithms. Two combination approaches were implemented:

Simple average: Averaging the REM’s per consecutive 1 s window over all detectors.

F1 weighted average: Weighting the algorithms by their F1 score before then 

averaging REM’s (again per consecutive 1 s window over all detectors).

3. Results

3.1. REM statistics

Fig. 4 shows REM spectral power, intra-REM interval, amplitude, width, rise and fall angle 

distributions of our gold standard REMs. Ktonas and Smith (1978) note that many REM 

occur closer than 200 ms, with 4 REMs possible in less than 1 s. Aserinsky (1971) reports a 

peak in intra-REM intervals at 600 ms. Our REMs are similar, with intra-REM peak at 

approximately 0.7 s, but no more than 3 REMs appearing in a 1 s period.

A breakdown of REM count per window are reported in Table 2.

3.2. Human scorer performance

As expected, the expert group raters had stronger agreement than that of non-experts (Inter-

rater-agreement: Expert = 0.86, Non-Expert = 0.73). This is confirmed by Cronbach Alpha 

and Precision/Recall for a single rater vs each group (Table 3).
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3.3. Classification approach performance

The best algorithm performance averaged across subjects was 78.1% recall and 82.6% 

precision. The optimum feature set for the machine learning algorithm consisted of 

Amplitude, Width, Prominence, Rise and Fall Slope, Linear Variance, Cross Correlation, 

DWT, DTW, Coastline, Nonlinear Energy, Spectral Skew and Kurtosis, DSI, FSI and BBDI. 

Thresholds can be seen in Table 4. Average within subject performance was 74% recall (SD 

= 9%) and 80% precision (SD = 8%), with the best performance for a single subject at 78% 

recall and 90% precision. Algorithm performance is comparable to that of an expert human 

(79% Recall, 91% Precision), and surpasses average performance of our combined expert 

and non-expert set (76% Recall, 83% Precision). Considering the mixed experience of 

technicians in sleep research, the combined group is perhaps a more valid comparison.

3.4. Thresholding approach performance

Using an intersection combination of extracted features (amplitude, slope, cross-correlation, 

and Discrete Wavelet Transform), a threshold algorithm reached a performance level of 

65.2% Recall and 74.7% Precision. The single best feature of the thresholding approach was 

peak amplitude in at 75.5% Recall and 59.3% Precision (Table 4, Fig. 6).

3.5. Comparison to existing REM detectors

Table 4, ranked by F1 score (i.e., the harmonic mean of recall and precision), a common 

single metric used to compare classifiers, shows our classifier based method outperforms all 

others on this dataset (see Fig. 6 for a graphical representation of this data). Haztilabrou et 

al. had the highest performance of the implemented methodologies of past literature (71.1% 

Recall, 80.0% Precision).

3.6. Combinatory algorithm performance

The simple average combination algorithm reaching 81.1% Recall and 73.4% Precision. The 

F1 weighted algorithm produced impressive performance of 81.3% Recall and 80.2% 

Precision (F1 = 0.807) making it the top performing algorithm overall (as measured by F1 

Score).

4. Discussion and conclusion

Our top performing algorithm extracts over 25 features from bandpass filtered [0.3 Hz–5 

Hz] LOC and ROC EEG data, and then uses ECOC classifier to train the algorithm to 

predict REMs from their statistical regularities. The optimum feature set consisted of 

Amplitude, Width, Prominence, Rise and Fall Slope, Linear Variance, Cross Correlation, 

DWT, DTW, Coastline, Nonlinear Energy, Spectral Skew and Kurtosis, DSI, FSI and BBDI. 

The automatic detection algorithm presented here is a viable and efficient method of REM 

detection as it reliably matches the performance of expert human sleep scorers.

By using the same features and algorithm parameters presented here, other researchers can 

be assured that their definition of a REM movement is consistent with our own. A major 

advantage of the learning algorithm used is its ability to learn. While our version was trained 

to match three trained sleep technicians, the learning aspect of the algorithm allows it to 
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adapt to other expert gold standards. Thus, while performing well ‘out of the box’, the 

algorithm could also be automatically tuned to suit different detection needs. Furthermore, 

the algorithm could potentially be adapted to detect other features of sleep, such as sleep 

spindles. It is important to note that if researchers believe that REM movements in their 

population are significantly different to those presented here, or their own definition of REM 

is significantly different, feature sets and thresholds will no longer be optimal and 

performance will decrease. In this case, it is advised that algorithm retraining is undertaken. 

To quantify this difference researchers can mark REM movement peaks and then create 

statistical distributions as in Section 3.1 (MATLAB code provided).

We feel our dataset is of sufficient size for algorithm training, however, as with all machine 

learning algorithms, it is preferable to have more data to increase generalizability 

(Domingos, 2012). Current work by the authors includes creating a massive, open, online 

sleep dataset with expert annotations of REM, spindles and other sleep features to allow for 

better algorithm training and validation.

Importantly, any algorithm will only be as precise as its gold-standard. Our data show that 

the agreement between our experts is not unanimous and the disparity between experts and 

non-experts show some level of learning required for expertise. Since the classifier algorithm 

learns from humans, it is inherently limited by the agreement between observers. To achieve 

optimum performance, the validity of the gold-standard must increase. While adding more 

raters (and hence reliability) does not necessarily mean increased validity (Rosnow and 

Rosenthal, 1989), it does create a more reliable and generalizable standard. Since each sleep 

lab will have different criteria for scoring REM events, more algorithm generalizability is 

preferable. Gathering scored REM sleep data from expert sleep scorers across many 

different labs is possible, or potentially raters could be crowdsourced. Warby et al. (2014) 

used crowdsourcing technology to create a much larger pool of expert (24) and non-expert 

(114) raters for sleep spindle algorithm comparison (Each epoch was viewed approximately 

5 times by experts and 10.7 times by non-experts). They also found that adding 3 confidence 

levels (1 = not a spindle, 2 = unsure, 3 = definitely a spindle) to spindle scoring lead to a 

better gold-standard and more agreement among raters. Similar methods would benefit 

future REM scoring.

A limiting factor of the current machine learning algorithm is its inability to directly 

pinpoint REM locations. The resolution is limited to a 1 s window. However, the current 

algorithm is suitable for investigation of REM density. If exact locations are required, then 

the thresholding algorithm or past algorithm implantations can be used. While each 

algorithm employed appropriate cross validation techniques to reduce overfitting, when 

selecting the best algorithm from a set of algorithms (we estimate approximately 100 

variants tested), the choice is dependent on test data. This form of overfitting, common to 

algorithm development, where one algorithm may be chosen over another because it 

happened to perform well on this particular dataset, may affect our results and impact 

generalizability.

By reducing researcher time and effort, algorithms to detect NREM sleep spindles, have 

begun to give us insight into the role of sleep EEG features in cognition (Nishida and 
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Walker, 2007; Wamsley et al., 2012; Mednick et al., 2013). Similarly, considering the strong 

link between REM sleep and memory (Genzel et al., 2015), the literature on the role of 

REMs in cognition is remarkably sparse (Smith et al., 1991, 2004; Schredl et al., 2001; 

Fogel et al., 2007). Thus, the use of an automatic, reliable and time-saving detector may 

increase the number of research studies addressing this issue. In this view, our versatile 

REM detector adds an additional piece to the sleep researcher’s toolbox and aids the quest to 

understand the role of rapid eye movements in biology and cognition.

For development and comparison of future algorithms, the MATLAB code from this 

investigation (both our detectors and our implementations of methods of others) is available 

online through The Open Science Framework (https://osf.io/fd837/).
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HIGHLIGHTS

• Application of previously published and novel extracted features to detect 

Rapid Eye Movements in Rapid Eye Movement Sleep.

• Novel application of powerful Adaptive Boosting classifier.

• Comparison of previously published and novel algorithms as well as expert 

and non-expert raters on the same REM dataset.

• Best performance of any algorithm published to date.

• A viable and efficient method of REM detection reliably matching the 

performance of human sleep scorers.
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Fig. 1. 
Left and Right Outer Canthi EEG placement, each eye channel referenced to opposite ear 

(LOC-M1/ROC-M2).
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Fig. 2. 
Examples of REM waveforms. Y axis represents 3 s (3 windows). LOC in blue, ROC in red: 

(A). An example of two ‘ideal REMs’ easily detected by simple thresholding (B). Example 

of REM like movements (?) to be ignored (C). Multiple REMs in close proximity with 

different amplitudes in channels, requiring a combination of features to detect (D). Slow Eye 

Movements (SEM) to be ignored.
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Fig. 3. 
Algorithm Overview.
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Fig. 4. 
REM feature distributions. REM statistics are calculate from windows centered on GS REM 

peaks. (A) Amplitude of REM peaks. (B) Width of REM peaks, as measured in Section 

2.2.4.1. (C) Rise slope, measured clockwise from the horizontal. (D) Fall slope, measured 

clockwise from the horizontal (note the negative sign). (C) The distance between 

consecutive REM movements. Distances greater than 10 s not shown. (F) Distribution of 

REM Spectral Power. Note that the zero width, rise and fall angle are artifacts of our rise and 

fall angle algorithm.
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Fig. 5. 
Heatmap of correlations between each detector highlighting variability in REMs detected.
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Fig. 6. 
Comparison of REM detector algorithms by Recall and Precision.
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Table 2

REM count per window.

0 REM 1 REM 2 REM 3 REM Total

7271 (90%) 622 (8%) 122 (2%) 7 (<0.1%) 8022
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