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Abstract

Breathing is vital for survival but also interesting from the perspective of rhythm
generation. This rhythmic behavior is generated within the brainstem and is
thought to emerge through the interaction between independent oscillatory
neuronal networks. In mammals, breathing is composed of three phases —
inspiration, post-inspiration, and active expiration — and this article discusses
the concept that each phase is generated by anatomically distinct
rhythm-generating networks: the preBétzinger complex (preBétC), the
post-inspiratory complex (PiCo), and the lateral parafacial nucleus (pF, ),
respectively. The preB6tC was first discovered 25 years ago and was shown to
be both necessary and sufficient for the generation of inspiration. More
recently, networks have been described that are responsible for
post-inspiration and active expiration. Here, we attempt to collate the current
knowledge and hypotheses regarding how respiratory rhythms are generated,
the role that inhibition plays, and the interactions between the medullary
networks. Our considerations may have implications for rhythm generation in
general.
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Introduction

Rhythms and oscillations function at the core of many brain
processes'”. For example, rhythmic spinal circuits control loco-
motor gait*, thalamic oscillations detect attentional state™,
cerebellar rhythms are important for motor coordination’*, and cir-
cadian rhythms entrain our biological clocks to a 24-hour cycle”'’.
Compared to these circuits, respiratory neural networks in the
brainstem offer a uniquely advantageous system in which to study
rhythm generation because of (1) the known anatomical location
of respiratory rhythm generators''~"* and (2) the ability to reduce
the breathing network into various levels in preparations that retain
robust and autonomous rhythmic output''"~'%. As a result, the con-
trol of respiration can be studied from the molecular to the systems
level. Mammalian respiration consists of three phases: inspiration,
post-inspiration, and active expiration'”’, The networks that collec-
tively generate the three respiratory phases are distributed bilater-
ally in the ventral respiratory column (VRC) of the brainstem”'*.

Within the VRC, the first described respiratory neural network, the
preBotzinger complex (preBotC), is both necessary and sufficient
for the generation of inspiration'**~*’. The preBo6tC can singularly
reconfigure to produce the inspiratory phase of eupnea (normal
breathing), gasps, and sighs®. The respiratory rhythm generated
within the preBo6tC is dependent on excitatory mechanisms, and the
location of the network within the ventrolateral medulla has been
identified in rodents'"”, cats®, and humans®. Rhythm-generating,
glutamatergic, and bilaterally interconnected preBotC interneu-
rons are derived from progenitors that express the homeobox gene
Dbx1**'. The preBo6tC can be isolated in an in vitro transverse
slice that retains fictive inspiratory bursts in phase with inspira-
tory hypoglossal motor output''. The transverse slice is amenable
to rigorous electrophysiological, histochemical, and optogenetic
manipulation. Recently, two distinct thythm generators have been
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described that are hypothesized to control the other two phases of
respiration: the post-inspiratory complex (PiCo) for the control of
post-inspiration, and the lateral parafacial nucleus (pF, ), a subpopu-
lation within the retrotrapezoid nucleus parafacial respiratory group
(RTN/pFRG), for the control of active expiration (Figure 1). In
addition to the previously mentioned transverse in vitro slice'****,
en-bloc brainstem-spinal cord®**%, in situ®, sagittal slab'"*’, and,
most recently, horizontal slice” preparations offer further accessi-
bility and tractability to begin to unravel how the three phases of
breathing are generated and interconnected.

Mammalian respiratory rhythmogenesis

Decades of research have revolved around the endeavor to
unmask the underlying processes controlling inspiratory rhythm
generation'”**. Indeed, a long-standing question in the respira-
tory control field queries how rhythmic, inspiratory activity in the
brainstem emerges from the interaction between intrinsic cellular
properties and circuit-based synaptic properties. Amid many
theories, the answer remains unresolved, but it is likely that mul-
tiple rhythmogenic mechanisms exist within the functionally and
molecularly heterogeneous preBotC population, and these mech-
anisms may vary depending on the metabolic, behavioral, and
environmental conditions of the organism™.

Frequently, models of neural rhythmogenesis include autono-
mously bursting neurons (pacemakers, or endogenous bursters) as
contributors to rhythmogenesis*~*. Endogenous bursting neurons
have been described in numerous rhythm-generating networks and
the respiratory network is not an exception****. Approximately 20%
of preBotC neurons can be classified as pacemakers, as defined by
their tendency to burst in the absence of synaptic input at a period
and burst duration similar to the duty cycle of the in vitro respira-
tory rhythm***~7, Pacemaker neurons in the preBotC can be either

. 7 /

Figure 1. Anatomical map of oscillators in the ventral respiratory column. Schematic of the brainstem from a sagittal view illustrating
the approximate anatomical locations of the three respiratory rhythm generators. Shapes in blue represent the three distinct oscillators
(preBotzinger complex [preBotC], post-inspiratory complex [PiCo], and retrotrapezoid nucleus parafacial respiratory group [RTN/pFRG])
that are thought to individually control the three phases of respiration. The RTN/pFRG is further segregated into the lateral parafacial nucleus
(pF,), which is more lateral, dorsal, and rhythmogenic, and the ventral parafacial nucleus (pF,), which is more medial, ventral, and not
considered rhythmogenic. Shapes in gray represent motor nuclei, specifically VIl N = facial nucleus and NA = nucleus ambiguus. Green
represents neuronal populations that contribute to the respiratory rhythm but are not thought to be independent rhythm generators. The dotted
lines indicate the approximate boundaries of the horizontal slice, while the pink and yellow boxes illustrate the approximate boundaries of

transverse slices isolating preBoétC and PiCo, respectively.
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glutamatergic**'® or glycinergic*. The “pacemaker hypothesis”,
in its strictest interpretation, is the idea that excitatory pacemaker
cells play an obligatory role in driving the inspiratory rhythm. It is
supported by studies in which antagonists of the persistent sodium
current (I ; riluzole) and the calcium-activated nonspecific cati-
onic current (I.,,; flufenamic acid [FFA]), the two mechanisms
underlying bursting in preBotC neurons, block fictive inspiration
in vitro* and inspiration in vivo®’. Moreover, regions such as the
preBotC and the RTN/pFRG, that are known to have rhythmogenic
functions, are rich in endogenous bursters’’. The exact role of
endogenously bursting neurons in respiratory rhythm generation is
still a matter of debate’**"+*=72152 However, it is generally agreed
that these bursting neurons do not act as simple “pacemakers” that
drive the rhythm. Instead, these neurons are well integrated within
the respiratory network, and synaptic and other ionic mechanisms
contribute to their timing and discharge properties’*>*>%,

Although cellular properties have been identified that differentiate
pacemaker from non-pacemaker neurons™°, we shouldn’t think of
these in a binary manner. Instead, bursting and non-bursting lie on a
continuum of firing characteristics from weak tonic firing to strong
bursting™, consistent with the hypothesis that preBotC neurons
exhibit a continuous distribution of membrane conductances’.
For example, 1., and I, currents are not exclusive to endogenous
burster neurons but are present on many, if not the entire population
of, preBotC inspiratory neurons in vitro™***°, The “group pace-
maker” theory posits that activity of tonically firing, glutamatergic
preBotC neurons can percolate and increase in activity by means
of positive feedback’°!. The pre-inspiratory phase occurs when
the positive feedback has surpassed other network constituents and
recurrent excitation leads to the initiation of a synchronized inspira-
tory burst®.

This idea was further tested by using in vitro physiological data and
modeling techniques to hypothesize that each individual population
burst is driven by a dynamic, stochastic, and flexible assembly of
preBotC neurons within a sparsely connected network®. Insights
into the physiology of the sparsely connected network can be per-
formed by multi-array recordings®. Using this technique, Carroll
et al. estimated a 1% functional connectivity between preBotC
neurons®, a figure much lower than another study that estimated
a 13% probability of one-way excitatory connectivity from dual
whole-cell patch recordings of visualized, closely located preBotC
neurons”. Reasons for the order of magnitude discrepancy in con-
nectivity estimates have yet to be reconciled other than obvious dif-
ferences in approach and preparation.

Rhythm generation and pattern generation have been suggested to
be separable phenomena®-*. Rhythm generation refers to the gener-
ation of timing signals; however, the control of the timing and coor-
dination of muscle activity is referred to as pattern generation®* """
Intracellular burst activity and motor outputs can exhibit a variety
of shapes such as decrementing, augmenting, or bell-shaped'®’".
Under conventional perfusion conditions in vitro, preBotC bursts
follow a 1:1 ratio with hypoglossal motor output'®. However, when
excitability is lowered with decreased concentrations of extracel-
lular potassium, burst frequency decreases’’”>. When a burst is
expected, Feldman and colleagues instead observe “burstlets” that
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are small in amplitude and do not produce a motor output signal.
Burstlets appear at multiples of the shortest interburst interval (i.e.
are quantized) and can also be observed under specific conditions
in vivo®®. The authors hypothesize that these burstlets represent pre-
inspiratory activity that triggers inspiratory bursts when a certain,
undefined threshold is reached.

In addition to the preBotC, two other respiratory microcircuits have
been identified that function as independent oscillators control-
ling the other two phases of breathing: post-inspiration and active
expiration'*"*”?, Under physiological conditions, expiration is a pas-
sive process and mammals largely alternate their breathing between
inspiration and post-inspiration”. Located rostral to the preBotC
and dorsomedial to the nucleus ambiguus, the PiCo was recently
identified as the putative site for the generation of post-inspiratory
activity'”. Similar to the preB6tC, PiCo rhythms are also dependent
on non-NMDA, excitatory mechanisms'’. Thus, it is likely that the
two populations employ similar rhythm-generating mechanisms.
Interestingly, one study completed in goats showed that the grad-
ual ablation of the preBotC over the course of two weeks does not
result in breathing abnormalities, at least in this species, suggesting
that plasticity mechanisms are able to compensate if time is allowed
for brainstem networks to reconfigure”. Perhaps PiCo neurons are
logical candidates for assuming the preBotC’s role?

During periods of higher metabolic activity, for example during
exercise, a third phase of breathing is recruited during late expi-
ration, called active expiration, that is required to breathe air out
more forcibly than under rest conditions. The active expiratory
rhythm reportedly originates in the pF, "', This area is defined as
a conditional but independent oscillator owing to the observation
that it is active only under certain conditions”” but can generate
rhythmic motor output from facial motor roots in the presence of
an opioid agonist, DAMGO™. Similar to the preBotC and PiCo, the
pF, is dependent on excitatory mechanisms’’’. Further studies are
required to fully elucidate the rhythmogenic mechanisms of these
three excitatory oscillatory networks.

Role of inhibition

While it is generally accepted that the preBotC can burst
autonomously in vitro, even when inhibition is blocked pharma-
cologically'!, the role of inhibition within the intact respiratory
network is still debated. Originally, it was proposed that inspira-
tion and expiration were generated by “half-centered oscillators”
in which one population of neurons reciprocally inhibits the other
population to generate an alternating two-phase breathing rhythm’.
However, these hypotheses have not been rigorously tested by
specifically manipulating identified populations of neurons.

A population termed the Botzinger complex (B6tC) was discovered
to contain primarily inhibitory neurons including post-inspiratory
and augmenting expiratory neurons’’-*'. Additionally, approxi-
mately 50% of the neurons that make up the preBotC are inhibitory,
mostly glycinergic, interneurons®. A contemporary model posits an
“inhibitory connectome” or “inhibitory ring” hypothesis in which
reciprocal inhibition between the preBotC and other brainstem cir-
cuits, such as the B6tC, produce the three phases of breathing®**.
The theory states that glycinergic inhibition resets the activity of
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inspiratory, post-inspiratory, and expiratory neurons in the ventral
respiratory network®'. These interpretations are derived mainly from
intracellular recordings in vivo or in situ paired with computational
modeling (for reviews see'*’*#4%).

However, some aspects of this theory have been considered con-
troversial. The inhibitory ring model would predict that blocking
inhibition in the preBo6tC or the B6tC would result in apnea, or
cessation of breathing. When Feldman and colleagues tested this
by pharmacologically injecting glycinergic and GABA, receptor
antagonists into the preBotC and Bo6tC in vagotomized rats, they
observed little to no effect on the breathing rhythm*. They con-
cluded that inhibition is not obligatory for rhythm generation but
instead contributes to shaping the pattern of the rhythmic output.
Of note, however, the injection of somatostatin, an inhibitory neu-
ropeptide, into the B6tC region resulted in the specific elimination
of post-inspiratory vagal motor output®’.

These experiments were done under the assumption that the BotC
was responsible for the generation of post-inspiration. However,
as briefly mentioned above, it was recently discovered that the
PiCo provides a necessary excitatory drive for the generation of
post-inspiratory activity'. The novel horizontal slice, described by
Anderson et al., keeps the entire medullary VRC intact, and thus,
using this preparation, one can simultaneously record fictive inspir-
atory bursts (from the preBotC) that are immediately followed by
fictive post-inspiratory bursts (from the PiCo)" (Figure 1). The
PiCo rhythm persists in the absence of inhibition when the network
is isolated in a transverse in vitro slice immediately rostral to the
conventional transverse preBotC slice'>* (Figure 1). This is similar
to the persistence of the preBotC rhythm in the absence of synaptic
inhibition in vitro®='. Similar to the in vivo experiment by Burke
et al.*’, the PiCo rhythm was specifically abolished upon the appli-
cation of somatostatin, with little to no change in the preBotC
rhythm. Further experiments are necessary to fully elucidate the
role of inhibition between respiratory rhythms in vivo.

Interactions between oscillators

To truly understand how respiration is generated, it is imperative to
ascertain the interactions between the different rhythm generators.
While this work is far from complete, some progress has been made
studying the interactions between the preBotC and the pF, as well
as interactions between the preBotC and the PiCo.

At embryonic day 14.5 (E14.5), before the preBotC is active, the
pF,_ is rhythmic”. A day later, at E15.5, the preBotC begins to
oscillate and rhythmically couples to the pF,. In postnatal rats,
glutamatergic pF, neurons provide excitatory drive to the preB-
otC, while the preBo6tC, in turn, provides inhibitory and excitatory
influences on different subsets of pF, neurons’". In the in vivo
adult rat, the preBotC can generate an inspiratory rhythm in the
absence of pF, active expiratory activity'*”*. However, in the con-
verse situation, in order for the pF, to be active, a second low level
of activity is simultaneously required: either activity from the
preBotC or increased chemosensory drive™. Thus, the pF, drives
active expiration, but another source of excitation is required for
the network to be rhythmically active.
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Neurons in the pF, are excitatory ™’ and do not express inhibitory
biomarkers””’. Therefore, any inhibitory action associated with pF,
activity must be occurring through an intermediate relay of neu-
rons, perhaps from the preB6tC*. Even excitatory projections from
the preBotC to the pF, appear to be indirect and require an inter-
mediate relay. Neurons in the preBotC send projections rostrally to
an area adjacent to the pF , the ventral parafacial nucleus, or pF,”,
which has been shown to provide drive to expiration'“”, and could
be functioning as the intermediate relay’. While the preB6tC and
pF, are anatomically distinct and functionally separate oscillators,
the preBotC appears to be dominant, while pF, activity is condi-
tional and absent at rest.

In contrast, inspiration and post-inspiration are active at rest’,
suggesting that this activity may reflect the interaction between
anatomically and functionally distinct oscillators, preBotC and
PiCo". Horizontal slice population recordings of the preB6tC and
PiCo progressively synchronize when a GABA, receptor antago-
nist is applied to the slice. This observation suggests that GABAer-
gic connections between the preBotC and PiCo help to coordinate
the timing and phasing of the respiratory rhythms.

Light stimulation of channelrhodopsin-expressing Dbx1 neurons
in the preBotC simultaneously evokes inspiratory population
activity in the contralateral preBotC and hyperpolarizes a post-
inspiratory PiCo neuron'”. However, when this experiment is
repeated in the absence of inhibition, light stimulation now both
activates an inspiratory population burst and depolarizes the PiCo
neuron. Taken together, these results suggest that, under baseline
conditions, the preBotC imparts an inhibitory influence on PiCo.
However, when inhibition is blocked, it unmasks a concurrent exci-
tatory influence of preBo6tC onto PiCo.

This work lays the foundation for beginning to understand
the dynamic interplay between the three independent rhythm
generators. In particular, further studies are needed that probe the
interactions between the pF, and PiCo.

Conclusion

Reduced preparations that isolate respiratory microcircuits have led
to a tremendous understanding of respiratory rhythm generation.
Yet, with the availability of ever-more-advanced techniques such as
computational modeling, access to transgenic animals, and the pos-
sibility of working in intact, alert animals, we will further progress
in the unraveling of complex mechanisms.

One of the most established theories for the generation of respiratory
rhythms is the dual oscillator hypothesis, which posits that inspira-
tion and expiration are generated by alternating activity between
preBotC and RTN/pFRG oscillators and post-inspiration is merely
a motor subcomponent of expiration®’*. We propose a triple oscil-
lator hypothesis or that the three phases of breathing in mammals
— inspiration, post-inspiration, and active expiration — are generated
by anatomically distinct excitatory rhythm generators: the preBotC,
PiCo, and the pF, respectively (Figure 2). It is interesting to note
that three rhythm-generating networks have been hypothesized in
the bullfrog”®”.
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Figure 2. lllustration of triple-oscillator hypothesis. We propose that, at rest, the preBotzinger complex (preBotC) and post-inspiratory
complex (PiCo) alternate activity to generate a two-phase rhythm, inspiration and post-inspiration. Under periods of high metabolic demand,
for instance during exercise, a third oscillator is incorporated to create a three-phase rhythm. We propose that each of the three phases
— inspiration, post-inspiration, and active expiration — are controlled by independent oscillators: the preBotC, PiCo, and lateral parafacial
nucleus (pF ), respectively. We further postulate that inhibition between these networks coordinates the phasing and timing of the rhythms.

Many questions remain, however. Is there a hierarchical relation-
ship between the three oscillators, i.e. is the preBotC the “mother
of all respiratory rhythms”? Similar to the reconfiguration of the
preBotC network in the generation of eupnea, gasps, and sighs,
does the PiCo reconfigure to help generate post-inspiratory
behaviors such as vocalization, swallowing, breath-holding,
and coughing? Are the preBotC and/or PiCo networks impaired
when patients with neurodegenerative disorders fail to coordinate
breathing and swallowing and subsequently develop aspiration
pneumonia'*~'**? Do homologous networks for PiCo and pF, exist
in humans? While substantial work remains to be accomplished, we
hope that core concepts garnered from the study of the control of
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